首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The most nutritionally important antinutritional factor in the Canavalia seeds is Concanavalin A (Con A) which takes at least 3 h of cooking at 96°C to inactivate. The effect of breaking the seeds into smaller pieces before cooking on the Con A content was investigated. Whole seeds of Canavalia ensiformis (jackbean) and Canavalia ensiformis seeds that were broken into smaller pieces (3–7 parts per seed) were cooked at 96°C for 30, 60, 90 and 120 min, respectively. Some were cooked for 15, 30 and 45 min, respectively, under pressure using household pressure cooker. Con A content of the products was determined by the hemagglutination of rabbit fresh erythrocytes by the extracted protein samples serially diluted in PBS buffer in 96-microwell plates. Hemagglutinating activity was expressed as minimal concentration of protein inducing hemagglutination of cells. Hemagglutinating activity of the cracked beans was completely eliminated within 1 h of ordinary cooking and 15 min of pressure cooking. The cooked materials took 5–6 h of sunshine to dry to 90% dry matter. The hemagglutinating activity of the whole seeds was eliminated in 45 min of pressure cooking but not in 2 h of ordinary cooking. They took 3 days of same sunshine to dry. The crack and cook process (CAC), the name being proposed for the method, is commercially applicable in view of its relative ease of execution.  相似文献   

2.
《Journal of Asia》2014,17(3):349-354
Temperature-dependent development of Spodoptera exigua (Hübner) were evaluated at eight constant temperatures of 12, 15, 20, 25, 30, 33, 34 and 36 °C with a variation of 0.5 °C on sugar beet leaves. No development occurred at 12 °C and 36 °C. Total developmental time varied from 120.50 days at 15 °C to 14.50 days at 33 °C. As temperature increased from 15 °C to 33 °C, developmental rate (1/developmental time) of S. exigua increased but declined at 34 °C. The lower temperature threshold (Tmin) was estimated to be 12.98 °C and 12.45 °C, and the thermal constant (K) was 294.99 DD and 311.76 DD, using the traditional and Ikemoto–Takai linear models, respectively. The slopes of the Ikemoto–Takai linear model for different immature stages were different, violating the assumption of rate isomorphy. Data were fitted to three nonlinear models to predict the developmental rate and estimate the critical temperatures. The Tmin values estimated by Lactin-2 (12.90 °C) and SSI (13.35 °C) were higher than the value estimated by Briere-2 (8.67 °C). The estimated fastest development temperatures (Tfast) by the Briere-2, Lactin-2 and SSI models for overall immature stages development of S. exigua were 33.4 °C, 33.9 °C and 32.4 °C, respectively. The intrinsic optimum temperature (TΦ) estimated from the SSI model was 28.5 °C, in which the probability of enzyme being in its native state is maximal. The upper temperature threshold (Tmax) values estimated by these three nonlinear models varied from 34.00 °C to 34.69 °C. These findings on thermal requirements can be used to predict the occurrence, number of generations and population dynamics of S. exigua.  相似文献   

3.
《Journal of Asia》2014,17(4):803-810
The effect of constant temperatures on development and survival of Lista haraldusalis (Walker) (Lepidoptera: Pyralidae), a newly reported insect species used to produce insect tea in Guizhou province (China), was studied in laboratory conditions at seven temperatures (19 °C, 22 °C, 25 °C, 28 °C, 31 °C, 34 °C, and 37 °C) on Platycarya strobilacea. Increasing the temperature from 19 °C to 31 °C led to a significant decrease in the developmental time from egg to adult emergence, and then the total developmental time increased at 34 °C. Egg incubation was the stage where L. haraldusalis experienced the highest mortality at all temperatures. The survival of L. haraldusalis was significantly higher at 25 °C and 28 °C, whereas none of the eggs hatched at 37 °C. Common and Ikemoto linear models were used to describe the relationship between the temperature and the developmental rate for each immature stage of L. haraldusalis. The estimated values of the lower temperature threshold and thermal constant of the total immature stages using Common and Ikemoto linear models were 11.34 °C and 11.20 °C, and 939.85 and 950.41 degree-days, respectively. Seven nonlinear models were used to fit the experimental data to estimate the developmental rate of L. haraldusalis. Based on the biological significance for model evaluation, Ikemoto linear, Logan-6, and SSI were the best models that fitted each immature stage of L. haraldusalis and they were used to estimate the temperature thresholds. These thermal requirements and temperature thresholds are crucial for facilitating the development of factory-based mass rearing of L. haraldusalis.  相似文献   

4.
《Process Biochemistry》2014,49(5):775-782
A novel β-galactosidase gene (Tnap1577) from the hyperthermophilic bacterium Thermotoga naphthophila RUK-10 was cloned and expressed in Escherichia coli BL21 (DE3) cells to produce β-galactosidase. The recombinant β-galactosidase was purified in three steps: heat treatment to deactivate E. coli proteins, Ni-NTA affinity chromatography and Q-sepharose chromatography. The optimum temperatures for the hydrolysis of o-nitrophenyl-β-d-galactoside (o-NPG) and lactose with the recombinant β-galactosidase were found to be 90 °C and 70 °C, respectively. The corresponding optimum pH values were 6.8 and 5.8, respectively. The molecular mass of the enzyme was estimated to be 70 kDa by SDS-PAGE analysis. Thermostability studies showed that the half-lives of the recombinant enzyme at 75 °C, 80 °C, 85 °C and 90 °C were 10.5, 4, 1, and 0.3 h, respectively. Kinetic studies on the recombinant β-galactosidase revealed Km values for the hydrolysis of o-NPG and lactose of 1.31 mM and 1.43 mM, respectively. These values are considerably lower than those reported for other hyperthermophilic β-galactosidases, indicating high intrinsic affinity for these substrates. The recombinant β-galactosidase from Thermotoga naphthophila RUK-10 also showed transglycosylation activity in the synthesis of alkyl galactopyranoside. This additional activity suggests the enzyme has potential for broader biotechnological applications beyond the degradation of lactose.  相似文献   

5.
We cloned and sequenced the gene encoding Thermococcus pacificus dUTPase (Tpa dUTPase). The Tpa dUTPase gene consists of 471 bp and encodes a 156-amino acid protein. The deduced amino acid sequence of Tpa dUTPase has high sequence similarity with other archaeal dUTPases. The Tpa dUTPase had an 18-kDa major protein band consistent with the 17,801 Da molecular mass calculated based on the amino acid sequence. The specific activity of Tpa dUTPase on dUTP at 85 °C was 90,909 U/mg. For Tpa dUTPase activity, we determined an optimum pH of 8.5 and temperature of 85 °C. Magnesium ions strongly induced activity, with an optimum concentration of 0.75 mM. The half-life of the enzyme at 94 °C was about 7 h. The specific activity of the Tpa dUTPase on dUTP was about 10–20-fold higher than that of Tpa dUTPase on dCTP. Tpa dUTPase enhanced the PCR amplification efficiency of long targets when Pfu and Vent DNA polymerases were used.  相似文献   

6.
《Biological Control》2006,36(2):232-237
Adults of Trissolcus basalis and Telenomus podisi were stored either at 15 or 18 °C after their immature development had been completed at 18 or 25 °C. Longevity of the parasitoids in the storage temperatures was evaluated, as well as fecundity and longevity following their return to 25 °C after different periods in reproductive diapause. Temperature during immature development influenced female longevity and highest mean longevity was obtained for females that developed to the adult stage at 25 °C and then were stored at 15 °C (ca. 13 months for T. basalis and 10 months for Te. podisi). For adults of T. basalis that developed at 25 °C, storage periods of 120 or 180 days at 15 or 18 °C did not affect fecundity. The fecundity of T. basalis females that developed at 18 °C and were stored for 120 days at 15 or 18 °C was not affected; however, after remaining for 180 days, fecundity was reduced in ca. 30 and 50%, respectively. Storage of Te. podisi adults at 15 or 18 °C significantly reduced fecundity. It is concluded that adults of T. basalis can be stored in the adult stage at 15 or 18 °C between two soybean crop seasons for mass production purposes, aiming the biological control of stink bugs.  相似文献   

7.
Chrysoperla genanigra Freitas is a common green lacewing associated with melon pests in the Northeastern Brazil. All life stages of this recently described species were studied under a range of constant temperature conditions (17, 21, 25, 29, 33, 35 and 37 °C), a photoperiod of 12 h:12 h (L:D) and 70 ± 10% relative humidity. Adults of C. genanigra were fed on a diet consisting of a 1:1 (v/v) mixture of brewer’s yeast and honey, while larvae were provided with eggs of Sitotroga cerealella (Olivier) ad libitum. The duration of preimaginal development of the species was inversely proportional to temperature and ranged from approximately 63 days at 17 °C to 15 days at 35 °C. The percentage of adult emergence varied from 6.7% at 17 °C to 76.7% at 25 °C, although no larvae were able to complete development at 37 °C. The lower thermal threshold for total preimaginal development was approximately 10.8 °C and the thermal requirement was 336.7 degree-days. Egg production, along with the longevity of both males and females, were significantly affected by temperature. It is concluded that the best temperature for rearing C. genanigra is 25 °C, with the lowest preimaginal mortality and the highest egg production (992.7 eggs/female).  相似文献   

8.
The effect of temperature on the biology of Venturia canescens (Gravenhorst) (Hymenoptera: Ichneumonidae) is well understood under constant temperature conditions, but less so under more natural, fluctuating conditions. Herein we studied the influence of fluctuating temperatures on biological parameters of V. canescens. Parasitized fifth-instar larvae of Ephestia kuehniella Zeller (Lepidoptera: Pyralidae) were reared individually in incubators at six fluctuating temperature regimes (15–19.5 °C with a mean of 17.6 °C, 17.5–22.5 °C with a mean of 19.8 °C, 20–30 °C with a mean of 22.7 °C, 22.5–27.5 °C with a mean of 25 °C, 25.5-32.5 °C with a mean of 28.3 °C and 28.5–33 °C with a mean of 30 °C) until emergence and death of V. canescens adults. Developmental time from parasitism to adult eclosion, adult longevity and survival were recorded at each fluctuating temperature regime. In principle, developmental time decreased with an increase of the mean temperature of the fluctuating temperature regime. Upper and lower threshold temperatures for total development were estimated at 34.9 and 6.7 °C, respectively. Optimum temperature for development and thermal constant were 28.6 °C and 526.3 degree days, respectively. Adult longevity was also affected by fluctuating temperature, as it was significantly reduced at the highest mean temperature (7.0 days at 30 °C) compared to the lowest one (29.4 days at 17.6 °C). Survival was low at all tested fluctuating temperatures, apart from mean fluctuating temperature of 25 °C (37%). Understanding the thermal biology of V. canescens under more natural conditions is of critical importance in applied contexts. Thus, predictions of biological responses to fluctuating temperatures may be used in population forecasting models which potentially influence decision-making in IPM programs.  相似文献   

9.
To test the hypothesis that impaired mitochondrial respiration limits cardiac performance at warm temperatures, and examine if any effect(s) are sex-related, the consequences of high temperature on cardiac mitochondrial oxidative function were examined in 10 °C acclimated, sexually immature, male and female Atlantic cod. Active (State 3) and uncoupled (States 2 and 4) respiration were measured in isolated ventricular mitochondria at 10, 16, 20, and 24 °C using saturating concentrations of malate and pyruvate, but at a submaximal (physiological) level of ADP (200 µM). In addition, citrate synthase (CS) activity was measured at these temperatures, and mitochondrial respiration and the efficiency of oxidative phosphorylation (P:O ratio) were determined at [ADP] ranging from 25–200 µM at 10 and 20 °C. Cardiac morphometrics and mitochondrial respiration at 10 °C, and the thermal sensitivity of CS activity (Q10=1.51), were all similar between the sexes. State 3 respiration at 200 µM ADP increased gradually in mitochondria from females between 10 and 24 °C (Q10=1.48), but plateaued in males above 16 °C, and this resulted in lower values in males vs. females at 20 and 24 °C. At 10 °C, State 4 was ~10% of State 3 values in both sexes [i.e. a respiratory control ratio (RCR) of ~10] and P:O ratios were approximately 1.5. Between 20 and 24 °C, State 4 increased more than State 3 (by ~70 vs. 14%, respectively), and this decreased RCR to ~7.5. The P:O ratio was not affected by temperature at 200 μM ADP. However, (1) the sensitivity of State 3 respiration to increasing [ADP] (from 25 to 200 μM) was reduced at 20 vs. 10 °C in both sexes (Km values 105±7 vs. 68±10 μM, respectively); and (2) mitochondria from females had lower P:O values at 25 vs. 100 μM ADP at 20 °C, whereas males showed a similar effect at 10 °C but a much more pronounced effect at 20 °C (P:O 1.05 at 25 μM ADP vs. 1.78 at 100 μM ADP). In summary, our results demonstrate several sex-related differences in ventricular mitochondrial function in Atlantic cod, and suggest that myocardial oxidative function and possibly phosphorylation efficiency may be limited at temperatures of 20 °C or above, particularly in males. These observations could partially explain why cardiac function in Atlantic cod plateaus just below this species׳ critical thermal maximum (~22 °C) and may contribute to yet unidentified sex differences in thermal tolerance and swimming performance.  相似文献   

10.
Chrysoperla agilis Henry et al. is one of the five cryptic species of the carnea group found in Europe. Identification of these species is mainly based on the distinct mating signals produced by both females and males prior to copulation, although there are also morphological traits that can be used to distinguish among different cryptic species. Ecological and physiological cryptic species-specific differences may affect their potential as important biological agents in certain agroecosystems. To understand the effects of temperature on the life-history traits of C. agilis preimaginal development, adult longevity and reproduction were studied at seven temperatures. Temperature affected the development, survival and reproduction of C. agilis. Developmental time ranged from approximately 62 days at 15 °C to 15 days at 30 °C. Survival percentages ranged from 42% at 15 °C to 76% at 27 °C. One linear and five nonlinear models (Briere I, II, Logan 6, Lactin and Taylor) used to model preimaginal development were tested to describe the relationship between temperature and developmental rate. Logan 6 model fitted the data of egg to adult development best according to the criteria adopted for the model evaluation. The predicted lower developmental threshold temperatures were 11.4 °C and 11.8 °C (linear model), whereas the predicted upper threshold temperatures (Logan 6 model) were 36.6 and 36.9 °C for females and males, respectively. Adult life span, preoviposition period and lifetime cumulative oviposition were significantly affected by temperature. The effect of rearing temperature on the demographic parameters is well summarized with the estimated values of the intrinsic rate of increase (rm) which ranged from 0.0269 at 15 °C to 0.0890 at 32 °C and the highest value recorded at 27 °C (0.1530). These results could be useful in mass rearing C. agilis and predicting its population dynamics in the field.  相似文献   

11.
《Biological Control》2006,36(3):267-273
Trichogramma dendrolimi can be successfully reproduced in fresh eggs dissected from ovaries of the Chinese tussah silkworm (Antheraea pernyi) and is widely used in biological control of lepidopteran agricultural and forest pests in China. Diapause induction of T. dendrolimi in A. pernyi eggs was investigated through exposing the parasitoid to six constant temperatures (16, 13, 10, 7, 4, and 1 °C) for 19 exposure periods between 10 and 46 days. The sensitive age of T. dendrolimi for diapause induction was explored through a separate experiment to examine the parasitoids that had developed for 2, 3, 4, 5, 6, 7, and 8 days at 26 °C after parasitization, under the six constant temperatures, respectively. Diapause was induced at 10 or 7 °C, and the induction period was 4–6 weeks. The sensitive age of T. dendrolimi to react at the induction temperature was 2–3 days (at 26 °C). At 7 and 10 °C, the diapause rate increased with increasing exposure period and decreased with increased T. dendrolimi age at exposure. The optimum method to induce diapause in T. dendrolimi consisted of exposing hosts for parasitization at 26 °C for 8 h, and then keeping them at 26 °C for 40 h, finally, moving them into 10 °C for 4 weeks.  相似文献   

12.
《Journal of Asia》2014,17(2):135-142
This study was carried out to develop temperature-driven models for immature development and oviposition of the pink citrus rust mite Aculops pelekassi (Keifer). A. pelekassi egg development times decreased as the temperature increased, ranging from 6.6 days at 16 °C to 1.9 days at 35 °C. Total nymph development times decreased from 8.2 days at 16 °C to 3.3 days at 35 °C. The egg-to-adult development durations were 14.8, 11.6, 9.7, 8.0, 7.3, 6.1, and 5.2 days at 16, 20, 24, 26, 28, 32, and 35 °C, respectively. The lower developmental threshold temperatures for eggs, nymphs, and total egg-to-adult development were calculated as 9.3, 4.3, and 6.9 °C, respectively. The thermal constants were 54.0, 101.8, and 153.8 degree days for each of the above stages. The non-linear biophysical model fitted well for the relationship between the development rate and temperature for all stages. The Weibull function provided a good fit for the distribution of development times of each stage. Temperature affected the longevity and fecundity of A. pelekassi. Adult longevity decreased as the temperature increased and ranged from 24.2 days at 16 °C to 14.6 days at 35.0 °C. A. pelekassi had a maximum fecundity of 33.1 eggs per female at 28 °C, which declined to 18.8 eggs per female at 16 °C. In addition, three temperature-dependent components for an oviposition model of A. pelekassi were developed with sub-models estimated: total fecundity, age-specific cumulative oviposition rate, and age-specific survival rate. The oviposition model, coupled with the stage emergence model, should be useful to construct a population model for A. pelekassi in the future.  相似文献   

13.
Animals that can be active both during day and night offer unique opportunities to identify factors that influence activity pattern. By experimental manipulations of temperatures under constant photoperiod, we aimed to determine if emergence, activity and thermoregulatory behaviour of juvenile tuatara (Sphenodon punctatus) varied at different temperatures (20 °C, 12 °C and 5 °C). To help clarify its activity pattern, we compared tuatara with two lizard species endemic of the South Island of New Zealand for which activity pattern is known and clearly defined: the nocturnal common gecko Woodworthia “Otago/Southland” and the diurnal McCann׳s skink Oligosoma maccanni. Tuatara showed similar responses to both species of lizards. Similar to the diurnal skinks, tuatara emerged quickly at 20 °C and 12 °C while nocturnal geckos took more time to emerge. Like nocturnal geckos, tuatara continued to be active at 5 °C, but only during the day. Interestingly, tuatara shifted from diurno-nocturnal activity at 20 °C and 12 °C to being strictly diurnal at 5 °C. We suggest that this temperature-dependent strategy maximises their survival during cold periods.  相似文献   

14.
The influence of temperatures on the life parameters of the solitary oothecal parasitoid Evania appendigaster, was investigated in the laboratory. Parasitized oothecae of Periplaneta americana were left to develop under seven constant temperatures: 15, 17, 20, 25, 30, 35, and 40 °C. At the end, we found that: (i) E. appendigaster was able to complete development within the temperature range of 17–34 °C; (ii) mean adult longevity decreased as temperature increased, with the temperature of 40 °C being fatal in a matter of hours; (iii) males lived longer than females between 15 and 30 °C; (iv) adult emergence rate was the highest at 25 °C, and (v) no wasps emerged at 15 or 40 °C. Non-emerged oothecae contained either unhatched eggs or dead larvae. We determined the theoretical lower developmental threshold and thermal constant for the complete development as 12.9 °C and 584.8 day-degrees for males, and 13.1 °C and 588.2 day-degrees for females, respectively. A good balance between faster development, maximum adult longevity and good egg viability was obtained between 25–30 °C, and that would be the best temperature range for rearing E. appendigaster.  相似文献   

15.
The effects of heating rate (HR) on the performance of two-phase (batch followed by fed-batch) high cell-density cultivations (HCDC) of E. coli DH5α for the production of plasmid DNA (pDNA) were investigated. Optimal temperatures for the HCDC, as selected from shake flask experiments at constant temperatures between 30 and 45 °C, were 35 °C for biomass accumulation in the batch phase and 42 °C for inducing pDNA replication during the fed-batch. In HCDC the temperature was increased at HR of 0.025, 0.05, 0.10 and 0.25 °C/min and the performance of the cultivations were compared to a HCDC run at constant temperature (35 °C). Compared to constant 35 °C, heat-induced HCDC accumulated up to 50% less biomass within the same cultivation time and acetate and glucose accumulated to high concentrations. The overall specific productivity (QP) and average pDNA yield (Yp/x) in HCDC at 35 °C were 0.22 ± 0.02 mg/g h and 5.3 ± 0.00 mg/g, respectively. Such parameters were maximum at a HR of 0.05 °C/min, reaching 0.56 ± 0.06 mg/g h and 9.3 ± 0.6 mg/g, respectively. At HR above 0.5 °C/min, Yp/x remained relatively constant, whereas QP tended to decrease. The supercoiled pDNA fraction remained around 80% at all HR. Bioreactors were equipped with a capacitance/conductivity probe. In all cases biomass concentration correlated closely with the capacitance signal and acetate and glucose accumulation was accompanied by an increase in the conductivity signal. Thus, it was possible to calculate acetate and biomass concentrations, as well as μ, from online capacitance and conductivity signals using estimators. Altogether, in this study it was shown that it is possible to maximize pDNA productivity by choosing an appropriate HR and that relevant parameters can be estimated by capacitance/conductivity signals, which are useful for better process control and development.  相似文献   

16.
The effect of temperature (26 °C, 28 °C, 30 °C and 35 °C) on the growth of native CAAT-3-2005 Microcystis aeruginosa and the production of Chlorophyll-a (Chl-a) and Microcystin-LR (MC-LR) were examined through laboratory studies. Kinetic parameters such as specific growth rate (μ), lag phase duration (LPD) and maximum population density (MPD) were determined by fitting the modified Gompertz equation to the M. aeruginosa strain cell count (cells mL−1). A 4.8-fold increase in μ values and a 10.8-fold decrease in the LPD values were found for M. aeruginosa growth when the temperature changed from 15 °C to 35 °C. The activation energy of the specific growth rate (Eμ) and of the adaptation rate (E1/LPD) were significantly correlated (R2 = 0.86). The cardinal temperatures estimated by the modified Ratkowsky model were minimum temperature = 8.58 ± 2.34 °C, maximum temperature = 45.04 ± 1.35 °C and optimum temperature = 33.39 ± 0.55 °C.Maximum MC-LR production decreased 9.5-fold when the temperature was increased from 26 °C to 35 °C. The maximum production values were obtained at 26° C and the maximum depletion rate of intracellular MC-LR was observed at 30–35 °C. The MC-LR cell quota was higher at 26 and 28 °C (83 and 80 fg cell−1, respectively) and the MC-LR Chl-a quota was similar at all the different temperatures (0.5–1.5 fg ng−1).The Gompertz equation and dynamic model were found to be the most appropriate approaches to calculate M. aeruginosa growth and production of MC-LR, respectively. Given that toxin production decreased with increasing temperatures but growth increased, this study demonstrates that growth and toxin production processes are uncoupled in M. aeruginosa. These data and models may be useful to predict M. aeruginosa bloom formation in the environment.  相似文献   

17.
Industrial application of α-galactosidase requires efficient methods to immobilize the enzyme, yielding a biocatalyst with high activity and stability compared to free enzyme. An α-galactosidase from tomato fruit was immobilized on galactose-containing polymeric beads. The immobilized enzyme exhibited an activity of 0.62 U/g of support and activity yield of 46%. The optimum pH and temperature for the activity of both free and immobilized enzymes were found as pH 4.0 and 37 °C, respectively. Immobilized α-galactosidase was more stable than free enzyme in the range of pH 4.0–6.0 and more than 85% of the initial activity was recovered. The decrease in reaction rate of the immobilized enzyme at temperatures above 37 °C was much slower than that of the free counterpart. The immobilized enzyme shows 53% activity at 60 °C while free enzyme decreases 33% at the same temperature. The immobilized enzyme retained 50% of its initial activity after 17 cycles of reuse at 37 °C. Under same storage conditions, the free enzyme lost about 71% of its initial activity over a period of 7 months, whereas the immobilized enzyme lost about only 47% of its initial activity over the same period. Operational stability of the immobilized enzyme was also studied and the operational half-life (t1/2 was determined as 6.72 h for p-nitrophenyl α-d-galactopyranoside (PNPG) as substrate. The kinetic parameters were determined by using PNPG as substrate. The Km and Vmax values were measured as 1.07 mM and 0.01 U/mg for free enzyme and 0.89 mM and 0.1 U/mg for immobilized enzyme, respectively. The synthesis of the galactose-containing polymeric beads and the enzyme immobilization procedure are very simple and also easy to carry out.  相似文献   

18.
Thermal acclimation capacity was investigated in adults of three tropical marine invertebrates, the subtidal barnacle Striatobalanus amaryllis, the intertidal gastropod Volegalea cochlidium and the intertidal barnacle Amphibalanus amphitrite. To test the relative importance of transgenerational acclimation, the developmental acclimation capacity of A. amphitrite was investigated in F1 and F2 generations reared at a subset of the same incubation temperatures. The increase in CTmax (measured through loss of key behavioural metrics) of F0 adults across the incubation temperature range 25.4–33.4 °C was low: 0.00 °C (V. cochlidium), 0.05 °C (S. amaryllis) and 0.06 °C (A. amphitrite) per 1 °C increase in incubation temperature (the acclimation response ratio; ARR). Although the effect of generation was not significant, across the incubation temperature range of 29.4–33.4 °C, the increase in CTmax in the F1 (0.30 °C) and F2 (0.15 °C) generations of A. amphitrite was greater than in the F0 (0.10 °C). These correspond to ARR's of 0.03 °C (F0), 0.08 °C (F1) and 0.04 °C (F2), respectively. The variability in CTmax between individuals in each treatment was maintained across generations, despite the high mortality of progeny. Further research is required to investigate the potential for transgenerational acclimation to provide an extra buffer for tropical marine species facing climate warming.  相似文献   

19.
The dynamic mechanical properties of prepared maize and potato starch films were evaluated for mixtures containing 0%, 10% and 15% (w/w) of sucrose at temperatures ranging from 40.0 to 140.0 °C. The spectra of storage modulus (G′), loss modulus (G″), and loss factor (tan δ) of starch films were acquired. Remarkable reduction in the glass transition temperature of maize and potato starch films was observed with the increasing sucrose content. The spectra of storage modulus (G′), loss modulus (G″), and loss factor (tan δ) were measured for the second and third time after two and seven days, respectively. The peaks of loss factor (tan δ) appeared at 59.81 ± 1.86 °C and 95.96 ± 1.67 °C after two-day-storage, but only one peak appeared at 85.46 ± 5.50 °C after seven days. A shifting trend from higher to lower temperature for loss factor was observed after seven days.  相似文献   

20.
LETEG is a method developed and used for the separation and purification of proteins employing a single-step ligand (aptamers) evolution in which aptamers are eluted with an increasing temperature gradient. Using recombinant human growth hormone (rhGH) as the test purification target, and after avoiding cross reactions of aptamers with Bacillus subtilis extracellular proteins by negative SELEX, the effects of time and pH on aptamer binding to rhGH were investigated. The highest binding efficiency of aptamers on rhGH-immobilized microparticles was obtained at pH 7.0. The aptamers that interacted with rhGH were eluted by a multi-stage step-up temperature gradient in ΔT = 10 °C increments within the range T = 55–95 °C; and the strongest affinity binding was disrupted at T = 85 °C where CApt = 0.16 μM was eluted. The equilibrium binding data obtained was described by a Langmuir-type isotherm; where the affinity constant was KD = 218 nM rhGH. RhGH was separated from the fermentation broth with 99.8% purity, indicating that the method developed is properly applicable even for an anionic protein.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号