首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
5.
6.
Changes in cell architecture, essentially linked to profound cytoskeleton rearrangements, are common features accompanying cell transformation. Supporting the involvement of the microfilament network in tumor cell behavior, several actin-binding proteins, including zyxin, a potential regulator of actin polymerization, may play a role in oncogenesis. In this work, we investigate the status of zyxin in Ewing tumors, a family of pediatric malignancies of bone and soft tissues, which are mainly associated with a t(11;22) chromosomal translocation encoding the EWS-FLI1 oncoprotein. We observe that EWS-FLI1-transformed murine fibroblasts, as well as human Ewing tumor-derived SK-N-MC cells, exhibit a complete disruption of their actin cytoskeleton, retaining very few stress fibers, focal adhesions and cell-to-cell contacts. We show that within these cells, zyxin is expressed at very low levels and remains diffusely distributed throughout the cytoplasm, instead of concentrating in actin-rich dynamic structures. We demonstrate that zyxin gene transfer into EWS-FLI1-transformed fibroblasts elicits reconstitution of zyxin-rich focal adhesions and intercellular junctions, dramatic reorganization of the actin cytoskeleton, decreased cell motility, inhibition of anchorage-independent growth and impairment of tumor formation in athymic mice. We observe similar phenotypic changes after zyxin gene transfer in SK-N-MC cells, suggesting that zyxin has tumor suppressor activity in Ewing tumor cells.  相似文献   

7.
8.
9.
10.
11.
12.
13.
14.
15.
16.
17.
mAbs that recognize peptides presented on the cell surface by MHC class I molecules are potential therapeutic agents for cancer therapy. We have previously demonstrated that these Abs, which we termed TCR mimic mAbs (TCRm), reduce tumor growth in models of breast carcinoma. However, mechanisms of TCRm-mediated tumor growth reduction remain largely unknown. In this study, we report that these Abs, in contrast to several mAbs used currently in the clinic, destroy tumor cells independently of immune effector mechanisms such as Ab-dependent cellular cytotoxicity (ADCC) and complement-dependent cytotoxicity (CDC). We found that TCRm-mediated apoptosis of tumor cells was associated with selective and specific binding of these Abs to peptide/HLA class I complexes, which triggered the activation of JNK and intrinsic caspase pathways. This signaling was accompanied by the release of mitochondrial cytochrome c and apoptosis-inducing factor. TCRm-induced apoptosis in tumor cells was completely inhibited by soluble MHC tetramers loaded with relevant peptide as well as with inhibitors for JNK and caspases. Furthermore, mAbs targeting MHC class I, independent of the peptide bound by HLA, did not stimulate apoptosis, suggesting that the Ab-binding site on the MHC/peptide complex determines cytotoxicity. This study suggests the existence of mechanisms, in addition to ADCC and CDC, through which these therapeutic Abs destroy tumor cells. These mechanisms would appear to be of particular importance in severely immunocompromised patients with advanced neoplastic disease, since immune cell-mediated killing of tumor cells through ADCC and CDC is substantially limited in these individuals.  相似文献   

18.
19.
20.
Non-small cell lung cancer (NSCLC) is a leading cause of cancer-related mortality worldwide. Basic fibroblast growth factor (bFGF) is up-regulated in NSCLC patients and plays an important role in tumor growth. In this paper, we attempt to evaluate the therapeutic potential of bFGF binding peptide (named as P7) using as a potent bFGF antagonist via exploration of its anti-proliferation effect on NSCLC cells. Our experiments showed that P7 peptide inhibited bFGF-stimulated proliferation of NSCLC cell lines including A549, H1299, and H460. The inhibitory mechanism of P7 involved cell cycle arrest at the G0/G1phase caused by suppression of cyclin D1, blockage of the activation of Erk1/2, P38, Akt, and inhibition of bFGF internalization. Strategies using bFGF antagonist peptides with potent anti-proliferation property may have therapeutic potential in NSCLC.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号