首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Active pharmaceutical ingredients (APIs) such as l-sugars and keto acids are favorably accessed through selective oxidation of sugar alcohols and amino acids, respectively, catalyzed by NAD(P)-dependent dehydrogenases. Cofactor regeneration from NAD(P)H conveniently is achieved via water-forming NAD(P)H oxidases (nox2), which only need molecular oxygen as co-substrate. Turnover-dependent overoxidation of the conserved cysteine residue in the active site of water-forming NADH oxidases is the presumed cause of the limited nox2 stability.We present a novel NAD(P)H oxidase, NoxV from Lactobacillus plantarum, with specific activity of 167 U/mg and apparent kinetic constants at air saturation and 25 °C of kcat,app = 212 s−1 and KM,app = 50.2 μM in the broad pH optimum from 5.5 to 8.0. The enzyme features a higher stability than other NAD(P)H oxidases against overoxidation, as is evidenced by a higher total turnover number, in the presence (168,000) and, most importantly, also in the absence (128,000) of exogenously added reducing agents. While the native enzyme shows exclusively activity on NADH, we engineered the substrate binding pocket to generate variants, G178K,R and L179K,R,H that accommodate and oxidize both NADH and NADPH as substrates.  相似文献   

2.
Acid phosphatases (E.C.3.1.3.2) are a group of enzymes widely distributed in nature, which nonspecifically catalyze the hydrolysis of a variety of phosphate esters in pH ranges from 4 to 6 and play a major role in the supply and metabolism of phosphate in plants. The objective of the present study was to investigate the in vitro effects of some metals on the activity of acid phosphatase in cucumber seedlings (Cucumis sativus L.) and to determine their kinetic parameters. The enzyme was assayed with Hg, Cd, Mn, Pb, Zn, K and Na at the 0.001–1 mM range using ATP, PPi and β-glycerol phosphate as substrates. Mn, Na and Cd did not significantly alter the enzyme activity. K caused a broad activation at low concentrations and an inhibition at high concentrations (10 mM) and lead caused no inhibition. Acid phosphatase was inhibited by Hg and Zn and the inhibition type and IC50 values were determined for these metals. Hg presented a mixed inhibition type with PPi and ATP as substrates and uncompetitive inhibition with β-glycerol phosphate as substrate. Zn presented competitive inhibition for ATP as substrate, and a mixed inhibition type with PPi and β-glycerol phosphate as substrate. IC50 values were 0.02, 0.3 and 0.15 mM for Hg, and 0.056, 0.035 and 0.24 mM for Zn with ATP, PPi and β-glycerol phosphate as substrates, respectively. Analysis of these results indicates that Zn is a more potent inhibitor of acid phosphatase from cucumbers than Hg.  相似文献   

3.
《Cell calcium》2015,58(5-6):366-375
In healthy pancreatic islets, glucose-stimulated changes in intracellular calcium ([Ca2+]i) provide a reasonable reflection of the patterns and relative amounts of insulin secretion. We report that [Ca2+]i in islets under stress, however, dissociates with insulin release in different ways for different stressors. Islets were exposed for 48 h to a variety of stressors: cytokines (low-grade inflammation), 28 mM glucose (28G, glucotoxicity), free fatty acids (FFAs, lipotoxicity), thapsigargin (ER stress), or rotenone (mitochondrial stress). We then measured [Ca2+]i and insulin release in parallel studies. Islets exposed to all stressors except rotenone displayed significantly elevated [Ca2+]i in low glucose, however, increased insulin secretion was only observed for 28G due to increased nifedipine-sensitive calcium-channel flux. Following 3–11 mM glucose stimulation, all stressors substantially reduced the peak glucose-stimulated [Ca2+]i response (first phase). Thapsigargin and cytokines also substantially impacted aspects of calcium influx and ER calcium handling. Stressors did not significantly impact insulin secretion in 11 mM glucose for any stressor, although FFAs showed a borderline reduction, which contributed to a significant decrease in the stimulation index (11:3 mM glucose) observed for FFAs and also for 28G. We also clamped [Ca2+]i using 30 mM KCl + 250 μM diazoxide to test the amplifying pathway. Only rotenone-treated islets showed a robust increase in 3–11 mM glucose-stimulated insulin secretion under clamped conditions, suggesting that low-level mitochondrial stress might activate the metabolic amplifying pathway. We conclude that different stressors dissociate [Ca2+]i from insulin secretion differently: ER stressors (thapsigargin, cytokines) primarily affect [Ca2+]i but not conventional insulin secretion and ‘metabolic’ stressors (FFAs, 28G, rotenone) impacted insulin secretion.  相似文献   

4.
Platinum resistance of cancer cells may evolve due to a decrease in intracellular drug accumulation, decreased cell permeability or by an increased deactivation of the drug by glutathione (GSH). The aim of this study was (1) to investigate the effect of adenosine 5′-triphosphate (ATP) on the cytotoxicity of cisplatin in a large cell lung carcinoma cell line (H460), and (2) to examine the potential involvement of increased cisplatin uptake, GSH depletion and pyrimidine starvation by ATP in this effect. H460 cells were harvested and seeded (5% CO2; 37 °C). Subsequently, cells were incubated with medium or ATP followed by an incubation with cisplatin. Cytotoxicity screening was analyzed by the sulforhodamine B (SRB) colorimetric assay, lactate dehydrogenase and caspase-3/7 activity. Pre-incubation for 72 h with 0.3 and 3 mM ATP strongly enhanced the anti-proliferative potency of cisplatin 2.9- and 7.6-fold, respectively. Moreover, after incubation of H460 cells with 0.3 mM ATP the intracellular platinum concentration increased, indicating increased cisplatin uptake by ATP. ATP, despite lowering the LD50 of cisplatin, did not modulate GSH levels in H460 cells. ATP itself showed a biphasic effect on H460 cell growth: 0.3 mM inhibited H460 cell growth via the pyrimidine starvation effect, activation of caspase-3/7 and LDH leakage, while 3 mM ATP showed no effect on cell growth. In conclusion, ATP sensitizes the H460 cells to cisplatin-induced apoptosis. The effect of 0.3 mM ATP is not due to GSH depletion but involves increased cisplatin uptake and pyrimidine starvation due to ATP conversion to adenosine followed by cellular uptake.  相似文献   

5.
In wild-type Escherichia coli, 1 mol of CO2 was fixated in 1 mol of succinic acid generation anaerobically. The key reaction in this sequence, catalyzed by phosphoenolpyruvate carboxylase (PPC), is carboxylation of phosphoenolpyruvate to oxaloacetate. Although inactivation of pyruvate formate-lyase and lactate dehydrogenase is found to enhance the PPC pathway for succinic acid production, it results in excessive pyruvic acid accumulation and limits regeneration of NAD+ from NADH formed in glycolysis. In other organisms, oxaloacetate is synthesized by carboxylation of pyruvic acid by pyruvate carboxylase (PYC) during glucose metabolism, and in E. coli, nicotinic acid phosphoribosyltransferase (NAPRTase) is a rate-limiting enzyme of the NAD(H) synthesis system. To achieve the NADH/NAD+ ratio decrease as well as carbon flux redistribution, co-expression of NAPRTase and PYC in a pflB, ldhA, and ppc deletion strain resulted in a significant increase in cell mass and succinic acid production under anaerobic conditions. After 72 h, 14.5 g L−1 of glucose was consumed to generate 12.08 g L−1 of succinic acid. Furthermore, under optimized condition of CO2 supply, the succinic acid productivity and the CO2 fixation rate reached 223.88 mg L−1 h−1 and 83.48 mg L−1 h−1, respectively.  相似文献   

6.

Background

Caldicellulosiruptor saccharolyticus has the ability to produce hydrogen (H2) at high yields from a wide spectrum of carbon sources, and has therefore gained industrial interest. For a cost-effective biohydrogen process, the ability of an organism to tolerate high partial pressures of H2 (PH2) is a critical aspect to eliminate the need for continuous stripping of the produced H2 from the bioreactor.

Results

Herein, we demonstrate that, under given conditions, growth and H2 production in C. saccharolyticus can be sustained at PH2 up to 67 kPa in a chemostat. At this PH2, 38% and 16% of the pyruvate flux was redirected to lactate and ethanol, respectively, to maintain a relatively low cytosolic NADH/NAD ratio (0.12 mol/mol). To investigate the effect of the redox ratio on the glycolytic flux, a kinetic model describing the activity of the key glycolytic enzyme, glyceraldehyde-3-phosphate dehydrogenase (GAPDH), was developed. Indeed, at NADH/NAD ratios of 0.12 mol/mol (K i of NADH = 0.03 ± 0.01 mM) GAPDH activity was inhibited by only 50% allowing still a high glycolytic flux (3.2 ± 0.4 mM/h). Even at high NADH/NAD ratios up to 1 mol/mol the enzyme was not completely inhibited. During batch cultivations, hydrogen tolerance of C. saccharolyticus was dependent on the growth phase of the organism as well as the carbon and energy source used. The obtained results were analyzed, based on thermodynamic and enzyme kinetic considerations, to gain insight in the mechanism underlying the unique ability of C. saccharolyticus to grow and produce H2 under relatively high PH2.

Conclusion

C. saccharolyticus is able to grow and produce hydrogen at high PH2, hence eliminating the need of gas sparging in its cultures. Under this condition, it has a unique ability to fine tune its metabolism by maintaining the glycolytic flux through regulating GAPDH activity and redistribution of pyruvate flux. Concerning the later, xylose-rich feedstock should be preferred over the sucrose-rich one for better H2 yield.
  相似文献   

7.
The most important function of mitochondria is the production of energy in the form of ATP. The socio-economic impact of human diseases that affect skeletal muscle mitochondrial function is growing, and improving their clinical management critically depends on the development of non-invasive assays to assess mitochondrial function and monitor the effects of interventions. 31P magnetic resonance spectroscopy provides two approaches that have been used to assess in vivo ATP synthesis in skeletal muscle: measuring Pi  ATP exchange flux using saturation transfer in resting muscle, and measuring phosphocreatine recovery kinetics after exercise. However, Pi  ATP exchange does not represent net mitochondrial ATP synthesis flux and has no simple relationship with mitochondrial function. Post-exercise phosphocreatine recovery kinetics, on the other hand, yield reliable measures of muscle mitochondrial capacity in vivo, whose ability to define the site of functional defects is enhanced by combination with other non-invasive techniques.  相似文献   

8.
The closely related fungi Rhizopus oryzae and Rhizopus delemar are often used for the production of lactic and fumaric acid, respectively. These organisms differ primarily by their ability to regenerate NAD through alternative fermentative routes. R. oryzae contains an NAD-dependent l-lactate dehydrogenase enzyme, RO-LdhA, that is primarily responsible for production of lactic acid, while both organisms contain another enzyme, LdhB that is thought to be involved in lactic acid production only under certain growth conditions. We have characterized LdhB from both R. oryzae and R. delemar, respectively referred to as RO-LdhB and RD-LdhB in this study, and have determined that RO-LdhB is significantly more effective than RD-LdhB with regard to kcat/Km with reductive LDH activity. Only negligible oxidative LDH activity could be measured with both enzymes; however, the presence of an amino terminal fusion with a small ubiquitin-related modifier, SUMO, increased the oxidative activity per μmol protein by more than 100-fold, while having little effect on the reductive LDH activity. We also determined that RO-LdhA, RO-LdhB, and RD-LdhB were all significantly inhibited in a non-competitive manner by fructose 1,6-bisphosphate (FBP) with Ki values of 1.2, 3.2, and 28.8 mM. Intracellular concentrations of FBP were tested with fermentative conditions to demonstrate that this metabolic intermediate does accumulate to levels that would likely cause inhibition of the R. oryzae LDH. Possible reasons for the significant Ki differences between the nearly identical LdhB proteins are discussed.  相似文献   

9.
AimsPrevious studies reported that FK506 influences bone mineralizing and hypomagnesemia, and also has immune modifying properties. This study examined whether or not the function of Mg2+ in bone metabolism plays a role in the loss of bone volume caused by immunosuppressants.Main methodsThe effects of the FK506 treatment on the intracellular magnesium and lactate dehydrogenase (LDH) activity were examined in cultured human osteoblasts (HOB) cells. The magnesium concentration was determined using microfluorescence techniques and atomic absorption spectrophotometry. Western blotting was used to measure the level of extracellular signal-regulated kinases 1/2 (ERK 1/2) activation.Key findingsFK506 (0.1 μM) did not affect cell death in HOB cells after a 24 hour treatment but decreased the level of ERK 1/2 activation. In HOB cells, the mean [Mg2+]i after exposure to a 1 mM extracellular Mg2+ ([Mg2+]o) buffer was 0.53 ± 0.01 mM (n = 25). Exposure to 100 nM FK506 produced a significant decrease in [Mg2+]i (0.41 ± 0.01 mM). The ERK inhibitor (PD98059) and FK506 produced similar effects but they were not cumulative.SignificanceThis study examined the role of ERK1/2 activation on the regulation of magnesium in HOB. These results suggest that the inhibition of ERK phosphorylation is an essential intermediate in the effects of FK506 on magnesium. Overall, FK506 causes bone disorders partly by decreasing [Mg2+]i accompanied by the inhibition of ERK 1/2.  相似文献   

10.
An aldo-keto reductase gene (klakr) from Kluyveromyces lactis XP1461 was cloned and heterologously expressed in Escherichia coli. The aldo-keto reductase KlAKR was purified and found to be NADH-dependent with a molecular weight of approximately 36 kDa. It is active and stable at 30 °C and pH 7.0. The maximal reaction rate (vmax), apparent Michaelis–Menten constant (Km) for NADH and t-butyl 6-cyano-(5R)-hydroxy-3-oxohexanoate (1a) and catalytic number (kcat) were calculated as 7.63 U mg−1, 0.204 mM, 4.42 mM and 697.4 min−1, respectively. Moreover, the KlAKR has broad substrate specificity to a range of aldehydes, ketones and keto-esters, producing chiral alcohol with e.e. or d.e. >99% for the majority of test substrates.  相似文献   

11.
A novel class of 3-hydroxy-2-mercaptocyclohex-2-enone-containing inhibitors of human lactate dehydrogenase (LDH) was identified through a high-throughput screening approach. Biochemical and surface plasmon resonance experiments performed with a screening hit (LDHA IC50 = 1.7 μM) indicated that the compound specifically associated with human LDHA in a manner that required simultaneous binding of the NADH co-factor. Structural variation of this screening hit resulted in significant improvements in LDHA biochemical inhibition activity (best IC50 = 0.18 μM). Two crystal structures of optimized compounds bound to human LDHA were obtained and explained many of the observed structure–activity relationships. In addition, an optimized inhibitor exhibited good pharmacokinetic properties after oral administration to rats (F = 45%).  相似文献   

12.
In isolated rat lung perfused with a physiological saline solution (5.5 mM glucose), complex I inhibitors decrease lung tissue ATP and increase endothelial permeability (Kf), effects that are overcome using an amphipathic quinone (CoQ1) [Free Radic. Biol. Med. 65:1455–1463; 2013]. To address the microvascular endothelial contribution to these intact lung responses, rat pulmonary microvascular endothelial cells in culture (PMVEC) were treated with the complex I inhibitor rotenone and ATP levels and cell monolayer permeability (PS) were measured. There were no detectable effects on ATP or permeability in experimental medium that, like the lung perfusate, contained 5.5 mM glucose. To unmask a potential mitochondrial contribution, the glucose concentration was lowered to 0.2 mM. Under these conditions, rotenone decreased ATP from 18.4±1.6 (mean±SEM) to 4.6±0.8 nmol/mg protein, depolarized the mitochondrial membrane potential (Δψm) from −129.0±3.7 (mean±SEM) to −92.8±5.5 mV, and decreased O2 consumption from 2.0±0.1 (mean±SEM) to 0.3±0.1 nmol/min/mg protein. Rotenone also increased PMVEC monolayer permeability (reported as PS in nl/min) to FITC–dextran (~40 kDa) continually over a 6 h time course. When CoQ1 was present with rotenone, normal ATP (17.4±1.4 nmol/mg protein), O2 consumption (1.5±0.1 nmol/min/mg protein), Δψm (−125.2±3.3 mV), and permeability (PS) were maintained. Protective effects of CoQ1 on rotenone-induced changes in ATP, O2 consumption rate, Δψm, and permeability were blocked by dicumarol or antimycin A, inhibitors of the quinone-mediated cytosol–mitochondria electron shuttle [Free Radic. Biol. Med. 65:1455–1463; 2013]. Key rotenone effects without and with CoQ1 were qualitatively reproduced using the alternative complex I inhibitor, piericidin A. We conclude that, as in the intact lung, PMVEC ATP supply is linked to the permeability response to complex I inhibitors. In contrast to the intact lung, the association in PMVEC was revealed only after decreasing the glucose concentration in the experimental medium from 5.5 to 0.2 mM.  相似文献   

13.
This study is the first to offer information on salinity-induced inhibition of physiological variables, changes in proteome, and induction of glycolate metabolism in Anabaena doliolum. A significant reduction in O2-evolution, carbon fixation, chlorophyll and NADPH/NADH level and increase in intracellular Na+ and respiration were observed following 150 mM NaCl treatment for 1 and 24 h. Interestingly, ATP content registered significant decrease after 1 h and recovery after 24 h treatment of 150 mM NaCl. Two-dimensional gel electrophoresis and MALDI-TOF MS detected a set of six proteins showing significant reproducible alterations, and homology with iron superoxide dismutase, superoxide dismutase (imported), phycocyanin alpha chain, elongation factor-Tu (EF-Tu), ribulose 1,5-bisphosphate carboxylase/oxygenase and phosphoribulokinase of Nostoc PCC7120. Increased RuBisCO and decreased carbon fixation suggested operation of glycolate metabolism. This was confirmed by accumulation of free and phospho-glyceric acid, increase in glycolate oxidase activity, glycine, serine and ammonium contents. Since peroxide generated in this pathway cannot be scavenged due to sensitivity of catalase to NaCl the organism fails to acclimatize under salt stress.  相似文献   

14.
A novel 2-thio-6-oxo-1,6-dihydropyrimidine-containing inhibitor of human lactate dehydrogenase (LDH) was identified by high-throughput screening (IC50 = 8.1 μM). Biochemical, surface plasmon resonance, and saturation transfer difference NMR experiments indicated that the compound specifically associated with human LDHA in a manner that required simultaneous binding of the NADH co-factor. Structural variation of the screening hit resulted in significant improvements in LDHA biochemical inhibition activity (best IC50 = 0.48 μM). A crystal structure of an optimized compound bound to human LDHA was obtained and explained many of the observed structure–activity relationships.  相似文献   

15.
d-Amino acids can play important roles as specific biosynthetic building blocks required by organisms or act as regulatory molecules. Consequently, amino acid racemases that catalyze the formation of d-amino acids are potential therapeutic targets. Serine racemase catalyzes the reversible formation of d-serine (a modulator of neurotransmission) from l-serine, while proline racemase (an essential enzymatic and mitogenic protein in trypanosomes) catalyzes the reversible conversion of l-proline to d-proline. We show the substrate-product analogue α-(hydroxymethyl)serine is a modest, linear mixed-type inhibitor of serine racemase from Schizosaccharomyces pombe (Ki = 167 ± 21 mM, Ki = 661 ± 81 mM, cf. Km = 19 ± 2 mM). The bicyclic substrate-product analogue of proline, 7-azabicyclo[2.2.1]heptan-7-ium-1-carboxylate is a weak inhibitor of proline racemase from Clostridium sticklandii, giving only 29% inhibition at 142.5 mM. However, the more flexible bicyclic substrate-product analogue tetrahydro-1H-pyrrolizine-7a(5H)-carboxylate is a noncompetitive inhibitor of proline racemase from C. sticklandii (Ki = 111 ± 15 mM, cf. Km = 5.7 ± 0.5 mM). These results suggest that substrate-product analogue inhibitors of racemases may only be effective when the active site is capacious and/or plastic, or when the inhibitor is sufficiently flexible.  相似文献   

16.
Novel ampelopsin glucosides (AMPLS-Gs) were enzymatically synthesized and purified using a Sephadex LH-20 column. Each structure of the purified AMPLS-Gs was determined by nuclear magnetic resonance, and the ionic product of AMPLS-G1 was observed at m/z 505 (C21H22O13·Na)+ using matrix-assisted laser desorption ionization time-of-flight mass spectrometry. AMPLS-G1 was identified as ampelopsin-4′-O-α-d-glucopyranoside. The optimum condition for AMPLS-G1, determined using response surface methodology, was 70 mM ampelopsin, 150 mM sucrose, and 1 U/mL dextransucrase, which resulted in an AMPLS-G1 yield of 34 g/L. The purified AMPLS-G1 displayed 89-fold increased water solubility and 14.5-fold browning resistance compared to those of AMPLS and competitive inhibition against tyrosinase with a Ki value of 40.16 μM. This value was smaller than that of AMPLS (Ki = 62.56 μM) and much smaller than that of β-arbutin (Ki = 514.84 μM), a commercial active ingredient of whitening cosmetics. These results indicate the potential of AMPLS and AMPLS-G1 as superior ingredients for functional cosmetics.  相似文献   

17.
Kinetics of microperoxidase-11 (MP-11) as a heme–peptide enzyme model in oxidation reaction of guaiacol (AH) by hydrogen peroxide was studied in the presence of amino acids, taking into account the inactivation of MP-11 during reaction by its suicide substrate, H2O2. Reliability of the kinetic equation was evaluated by non-linear mathematical fitting. Fitting of experimental data into a new integrated kinetic relation showed a close match between the kinetic model and the experimental data. Indeed, it was found that the mechanism of suicide-peroxide inactivation of MP-11 in the presence of amino acids is different from MP-11 and/or horseradish peroxidase. In this mechanism, amino acids compete with hydrogen peroxide for the sixth co-ordination position of iron atom in the heme group through a competitive inhibition mechanism.The proposed model can successfully determine the kinetic parameters including inactivation by hydrogen peroxide as well as the inhibitory rate constants by the amino acid inhibitor.Kinetic parameters of inactivation including the initial activity of MP-11, α0, the apparent inactivation rate constant, ki and the apparent inhibition rate constant for cysteine, kI were obtained 0.282 ± 0.006 min?1, 0.497 ± 0.013 min?1 and 1.374 ± 0.007 min?1 at [H2O2] = 1.0 mM, 27 °C, phosphate buffer 5.0 mM, pH 7.0. Results showed that inactivation and inhibition of microperoxidase as a peroxidase model enzyme occurred simultaneously even at low concentrations of hydrogen peroxide (0.4 mM). This kinetic analysis based on the suicide-substrate inactivation of microperoxidase-11, provides a tool and model for studying peroxidase models in the presence of reversible inhibitors. The introduced inhibition procedure can be used in designing activity tunable and specific protected enzyme models in the hidden and reversibly inhibited forms, which do not undergo inactivation.  相似文献   

18.
An effective and rapid method for the microwave-assisted preparation of the key intermediate for the total synthesis of tetrahydroprotoberberines (THPBs) including l-stepholidine (l-SPD) was developed. Thirty-one THPB derivatives with diverse substituents on A and D ring were synthesized, and their binding affinity to dopamine D1, D2 and serotonin 5-HT1A and 5-HT2A receptors were determined. Compounds 18k and 18m were identified as partial agonists at the D1 receptor with Ki values of 50 and 6.3 nM, while both compounds act as D2 receptor antagonists (Ki = 305 and 145 nM, respectively) and 5-HT1A receptor full agonists (Ki = 149 and 908 nM, respectively). These two THPBs compounds exerted antipsychotic actions in animal models. Further electrophysiological studies employing single-unit recording in intact animals demonstrated that 18k-excited dopaminergic (DA) neurons are associated with its 5-HT1A receptor agonistic activity. These results suggest that these two compounds targeted to multiple neurotransmitter receptors may present novel lead drugs with new pharmacological profiles for the treatment of schizophrenia.  相似文献   

19.
l-arginine, a semi essential amino acid, is an important amino acid in food flavoring and pharmaceutical industries. Its production by microbial fermentation is gaining more and more attention. In previous work, we obtained a new l-arginine producing Corynebacterium crenatum (subspecies of Corynebacterium glutamicum) through mutation breeding. In this work, we enhanced l-arginine production through improvement of the intracellular environment. First, two NAD(P)H-dependent H2O2-forming flavin reductases Frd181 (encoded by frd1 gene) and Frd188 (encoded by frd2) in C. glutamicum were identified for the first time. Next, the roles of Frd181 and Frd188 in C. glutamicum were studied by overexpression and deletion of the encoding genes, and the results showed that the inactivation of Frd181 and Frd188 was beneficial for cell growth and l-arginine production, owing to the decreased H2O2 synthesis and intracellular reactive oxygen species (ROS) level, and increased intracellular NADH and ATP levels. Then, the ATP level was further increased by deletion of noxA (encoding NADH oxidase) and amn (encoding AMP nucleosidase), and overexpression of pgk (encoding 3-phosphoglycerate kinase) and pyk (encoding pyruvate kinase), and the l-arginine production and yield from glucose were significantly increased. In fed-batch fermentation, the l-arginine production and yield from glucose of the final strain reached 57.3 g/L and 0.326 g/g, respectively, which were 49.2% and 34.2% higher than those of the parent strain, respectively. ROS and ATP are important elements of the intracellular environment, and l-arginine biosynthesis requires a large amount of ATP. For the first time, we enhanced l-arginine production and yield from glucose through reducing the H2O2 synthesis and increasing the ATP supply.  相似文献   

20.
AurF catalyzes the N-oxidation of p-aminobenzoic acid to p-nitrobenzoic acid in the biosynthesis of the antibiotic aureothin. Here we report the characterization of AurF under optimized conditions to explore its potential use in biocatalysis. The pH optimum of the enzyme was established to be 5.5 using phenazine methosulfate (PMS)/NADH as the enzyme mediator system, showing ∼10-fold higher activity than previous reports in literature. Kinetic characterization at optimized conditions give a Km of 14.7 ± 1.1 μM, a kcat of 47.5 ± 5.4 min−1 and a kcat/Km of 3.2 ± 0.4 μM−1 min−1. PMS/NADH and the native electron transfer proteins showed significant formation of the p-hydroxylaminobenzoic acid intermediate, however H2O2 produced mostly p-nitrobenzoic acid. Alanine scanning identified the role of important active site residues. The substrate specificity of AurF was examined and rationalized based on the protein crystal structure. Kinetic studies indicate that the Km is the main determinant of AurF activity toward alternative substrates.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号