首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 99 毫秒
1.
We used LANDIS, a model of forest disturbance and succession, to simulate successional dynamics of forests in the southern Appalachian Mountains. The simulated environments are based on the Great Smoky Mountains landscapes studied by Whittaker. We focused on the consequences of two contrasting disturbance regimes—fire exclusion versus frequent burning—for the Yellow pine (Pinus L., subgenus Diploxylon Koehne) and oak (Quercus L.) forests that occupy dry mountain slopes and ridgetops. These ecosystems are a conservation priority, and declines in their abundance have stimulated considerable interest in the use of fire for ecosystem restoration. Under fire exclusion, the abundance of Yellow pines is projected to decrease, even on the driest sites (ridgetops, south‐ and west‐facing slopes). Hardwoods and White pine (P. strobus L.) replace the Yellow pines. In contrast, frequent burning promotes high levels of Table Mountain pine (P. pungens Lamb.) and Pitch pine (P. rigida Mill.) on the driest sites and reduces the abundance of less fire‐tolerant species. Our simulations also imply that fire maintains open woodland conditions, rather than closed‐canopy forest. For oaks, fire exclusion is beneficial on the driest sites because it permits oaks to replace the pines. On moister sites (north‐ and east‐facing slopes), however, fire exclusion leads to a diverse mix of oaks and other species, whereas frequent burning favors Chestnut oak (Q. montana Willd.) and White oak (Q. alba L.) dominance. Our results suggest that reintroducing fire may help restore decadent pine and oak stands in the southern Appalachian Mountains.  相似文献   

2.
Question: Can fire be used to maintain Yellow pine (Pinus subgenus Diploxylon) stands disturbed by periodic outbreaks of southern pine beetle? Location: Southern Appalachian Mountains, USA. Methods: We used LANDIS to model vegetation disturbance and succession on four grids representative of xeric landscapes in the southern Appalachians. Forest dynamics of each landscape were simulated under three disturbance scenarios: southern pine beetle, fire, and southern pine beetle and fire, as well as a no disturbance scenario. We compared trends in the abundance of pine and hardwood functional types as well as individual species. Results: Yellow pine abundance and open woodland conditions were best maintained by a combination of fire and southern pine beetle disturbance on both low elevation sites as well as mid‐elevation ridges & peaks. On mid‐elevation SE‐W facing slopes, pine woodlands were best maintained by fire alone. Conclusions: Our simulations suggest that fire can help maintain open pine woodlands in stands affected by southern pine beetle outbreaks.  相似文献   

3.
Question: What was the role of fire in montane pine‐oak (Pinus‐Quercus) stands under changing human land uses on a temperate forest landscape in eastern North America? Location: Mill Mountain in the central Appalachian Mountains, Virginia, US. Methods: A dendroecological reconstruction of fire history was generated for four stands dominated by xerophytic pine and oak species. The fire chronology began under presettlement conditions following aboriginal depopulation. Subsequent land uses included European settlement, iron mining, logging, and US Forest Service acquisition and fire protection. Results: Fires occurred approximately every 5 years until 1930 without any evidence of a temporal trend in fire frequency. Burning ceased after 1930. Area‐wide fires affecting multiple pine stands were common, occurring at intervals of approximately 16 years. Most living pines became established during the late 1800s and early 1900s. Dead pines indicated that an older cohort established ca. 1730. Most hardwoods were established between the 1920s and 1940s. Conclusions: Except for fire protection, changes in land use had no discernible influence on fire frequency. Lightning ignitions and/or large fire extent may have been important for maintaining frequent burning in the 1700s, while fuel recovery may have constrained fire frequency during later periods. The disturbance regime appears to be characterized by frequent surface fires and occasional severe fires, insect outbreaks or other disturbances followed by pine recruitment episodes. Industrial disturbances appear to have had little influence on the pine stands. The greatest impact of industrial society is fire exclusion, which permitted hardwood establishment.  相似文献   

4.
Climate warming and increasing aridity may negatively impact forest productivity across southern Europe. A better understanding of growth responses to climate and drought in southernmost populations could provide insight on the vulnerability of those forests to aridification. Here we investigate growth responses to climate and drought in nine Pinus pinaster (maritime pine) stands situated in Andalusia, southern Europe. The effect of climatic variables (temperatures and precipitation) and drought on radial growth was studied using dendrochronology along biogeographic and ecological gradients. We analyzed old native stands with non-tapped and resin-tapped trees mixed, showing their usefulness in dendroclimatic studies. Our results indicate a high plasticity in the growth responses of maritime pine to climate and drought, suggesting that site aridity modulated these responses. The positive growth responses to spring precipitation and the negative responses to summer drought were stronger in the more xeric inland sites than in wet coastal ones, in particular from the 1980s onwards. The characterization of tree species’ responses to climate at the southern or dry limits in relation to site conditions allows improving conservation strategies in drought-prone forest ecosystems.  相似文献   

5.
Pinus sylvestris, the most widely distributed pine species, is commonly used in dendrochronological studies. Based on a lack of studies at its southeastern distribution, we analysed the growth responses of P. sylvestris to temperature and precipitation. We selected 13 sites to study the effects of climate on the growth of Scots pine stands throughout a geographic gradient over time. Trees were sampled from pure stands at different elevations and landscape conditions. The linear and non-linear associations between tree-ring widths and climate variables were calculated with locally specific linear correlation analysis and a mixed generalised additive model. Moving window correlation function was also performed to understand the temporal stability of limiting factors on growth from 1930 to 2013. Our findings showed that early spring temperature (March-April) and late spring-early summer precipitation (May-June) are the major drivers of growth at all sites, where high temperature constraints and high precipitation enhances the growth. Moving window correlation analysis highlighted that the response to precipitation was stationary while temperature changed over time. Our non-linear analysis provided a threshold for March-April temperature. The threshold indicates that the relative additional increment sharply increases up to 7 °C and then slightly decreases.  相似文献   

6.
Eleven stands of Scots pine (Pinus sylvestris L.) from the city of Ekaterinburg and its surroundings were sampled and analyzed using dendrochronological methods to detect the effects of climate, biotic and anthropogenic factors on the annual growth of trees. Tree-ring chronologies were developed for six sites within the city and for five control sites. All chronologies were highly and positively correlated before the 1940s. However, after this period, there was a significant decrease in the correlation among chronologies from urban and rural sites. Divergence lasted about 20 years. This firstly has an anthropogenic cause, mainly due to the evacuation in 1941 of more than 60 industrial factories to Sverdlovsk (now Ekaterinburg), which generated a significant increase in air pollution. Environmental pollution seems to negatively affect tree growth. In the early 1950s, trees in the region also suffered from severe droughts. The results of climate and historical data analysis suggest that the trees on urban sites were weakened by both climate and air pollution factors, which led to a massive nun moth (Lymantria monacha L.) infestation of trees. Defoliation led to a drastic reduction in tree-ring width and, in some cases, to the complete loss of annual rings. The recovery period lasted 10–15 years on average. Rural populations were much less affected by the insect outbreak. After urban populations of pine recovered in the 1960s, radial growth of urban and rural populations became synchronized again.  相似文献   

7.
Abstract. To assess the effects of site type, forest initiation periods and fire regimes on the dynamics of Pinus banksiana (Jack pine), the age structure of 69 populations of the species was analyzed. Two landscapes with different fire regimes were selected in the southern part of the Canadian boreal forest in Québec: the ‘mainland landscape’ is characterized by a fire regime of large lethal fires, the ‘island landscape’ is affected by a complex fire regime including lethal and non-lethal fires. Age structure was compared between forest initiation periods and site types (mesic mainland, xeric mainland and xeric island) using the Shannon regularity index. An even-aged population structure was found within the first 100 yr following a lethal fire, while after that period the population structure becomes more uneven-aged. Under mesic conditions, populations tend to have an even-aged structure, under xeric conditions an uneven-aged structure. Natural openings present in xeric sites allow for recruitment in the absence of fire. This permits the self-maintenance of Pinus banksiana. Xeric island populations show more uneven-aged structures than xeric mainland populations. The occurrence of non-lethal fires on the islands creates uneven-aged structures. Further, the results suggest that the selection pressure of the island fire regime, favouring non-serotinous and mixed P. banksiana individuals, is one of the factors responsible for a higher recruitment in the absence of fire on islands than on the mainland.  相似文献   

8.
Growth models can be used to assess forest vulnerability to climate warming. If global warming amplifies water deficit in drought‐prone areas, tree populations located at the driest and southernmost distribution limits (rear‐edges) should be particularly threatened. Here, we address these statements by analyzing and projecting growth responses to climate of three major tree species (silver fir, Abies alba; Scots pine, Pinus sylvestris; and mountain pine, Pinus uncinata) in mountainous areas of NE Spain. This region is subjected to Mediterranean continental conditions, it encompasses wide climatic, topographic and environmental gradients, and, more importantly, it includes rear‐edges of the continuous distributions of these tree species. We used tree‐ring width data from a network of 110 forests in combination with the process‐based Vaganov–Shashkin‐Lite growth model and climate–growth analyses to forecast changes in tree growth during the 21st century. Climatic projections were based on four ensembles CO2 emission scenarios. Warm and dry conditions during the growing season constrain silver fir and Scots pine growth, particularly at the species rear‐edge. By contrast, growth of high‐elevation mountain pine forests is enhanced by climate warming. The emission scenario (RCP 8.5) corresponding to the most pronounced warming (+1.4 to 4.8 °C) forecasted mean growth reductions of ?10.7% and ?16.4% in silver fir and Scots pine, respectively, after 2050. This indicates that rising temperatures could amplify drought stress and thus constrain the growth of silver fir and Scots pine rear‐edge populations growing at xeric sites. Contrastingly, mountain pine growth is expected to increase by +12.5% due to a longer and warmer growing season. The projections of growth reduction in silver fir and Scots pine portend dieback and a contraction of their species distribution areas through potential local extinctions of the most vulnerable driest rear‐edge stands. Our modeling approach provides accessible tools to evaluate forest vulnerability to warmer conditions.  相似文献   

9.
Oberhuber  Walter  Pagitz  Konrad  Nicolussi  Kurt 《Plant Ecology》1997,130(2):213-221
In this study dendrochronological methods are used to investigate tree growth of several coniferous species growing on serpentine outcrops in the subalpine region. Though stands are thriving on the same parent material, almost barren sites covered with Scots pine trees (Pinus sylvestris/ L.) contrast sharply with adjacent dense stands composed of mixed coniferous species. To find a reasonable explanation for this vegetation pattern and to evaluate the influence of serpentine soil on radial tree growth annual variability in ring-widths was analyzed and compared between both types of stands. Tree-ring analyses show that sparse tree cover on steep slopes might be caused by environmental stress factors especially unfavourable physical soil properties such as instability and dryness. Several abrupt growth reductions followed by slow release in ring-widths indicate repeated mechanical injury to the root system due to soil erosion. On the other hand the aggravating impact of anthropogenic disturbances (tree felling) on this ecologically fragile serpentine area could be determined and dated. There was no evidence that radial tree growth of coniferous species at this site could be limited by toxic heavy metals in the soil.  相似文献   

10.
Robinia pseudoacacia, a nitrogen-fixing, clonal tree species native to the central Appalachian and Ozark Mountains, is considered to be one of the top 100 worldwide woody plant invaders. We initiated this project to determine the impact of black locust (Robinia pseudoacacia) on an upland coastal ecosystem and to estimate the spread of this species within Cape Cod National Seashore (CCNS). We censused 20 × 20 m plots for vegetation cover and environmental characteristics in the center of twenty randomly-selected Robinia pseudoacacia stands. Additionally, paired plots were surveyed under native overstory stands, comprised largely of pitch pine (Pinus rigida) and mixed pitch pine–oak (Quercus velutina and Quercus alba) communities. These native stands were located 20 m from the edge of the sampled locust stand and had similar land use histories. To determine the historical distribution of black locust in CCNS, we digitized and georeferenced historical and current aerial photographs of randomly-selected stands. Ordination analyses revealed striking community-level differences between locust and pine–oak stands in their immediate vicinity. Understory nonnative species richness and abundance values were significantly higher under Robinia stands than under the paired native stands. Additionally, animal-dispersed plant species tended to occur in closer stands, suggesting their spread between locust stands. Robinia stand area significantly decreased from the 1970’s to 2002, prompting us to recommend no management action of black locust and a monitoring program and possible removal of associated animal-dispersed species. The introduction of a novel functional type (nitrogen-fixing tree) into this xeric, nutrient-poor, upland forested ecosystem resulted in ‘islands of invasion’ within this resistant system.  相似文献   

11.
Because species affect ecosystem functioning, understanding migration processes is a key component of predicting future ecosystem responses to climate change. This study provides evidence of range expansion under current climatic conditions of an indigenous species with strong ecosystem effects. Surveys of stands along the northern distribution limit of lodgepole pine (Pinus contorta var. latifolia) in central Yukon Territory, Canada showed consistent increases in pine dominance following fire. These patterns differed strongly from those observed at sites where pine has been present for several thousand years. Differences in species thinning rates are unlikely to account for the observed increases in pine dominance. Rates of pine regeneration at its range limits were equivalent to those of spruce, indicating a capacity for rapid local population expansion. The study also found no evidence of strong climatic limitation of pine population growth at the northern distribution limit. We interpret these data as evidence of current pine expansion at its range limits and conclude that the northern distribution of lodgepole pine is not in equilibrium with current climate. This study has implications for our ability to predict vegetation response to climate change when populations may lag in their response to climate.  相似文献   

12.
Ongoing climate change has induced modification in the frequency and intensity of extreme climatic events, with consequent impact on tree and forest growth resilience. Araucaria araucana is an endangered Patagonian conifer, which provides several ecosystem services to local human societies and plays fundamental ecological roles in natural communities. These woodlands have historically suffered different types of anthropogenic disturbance, such as fire, logging and grazing, nevertheless the species resilience to extreme drought events remains still poorly understood. To fill this gap of knowledge, we applied dendrochronological methods to several A. araucana stands distributed along a steep bioclimatic gradient in order to reconstruct resilience capacity, in term of stem growth resistance and recovery, to three successive extreme spring-early summer droughts which occurred during the 20th century. Results showed an increase in the species recovery along the considered dry spells, whereas no clear trend emerged for resistance, suggesting no cumulative effect of drought upon resilience. Both resistance and recovery presented different values depending on bioclimatic settings, being xeric stands more sensitive to extreme episodes with respect to mesic woodlands, particularly during the more recent drought event when trees growing in drier environments were not able to reach pre-drought stem growth rates. Tree-level characteristics, such as age and growth trends prior to drought, modulated the species resilience, suggesting that future dry spells would possibly induce shifts in population dynamics, and furthermore be detrimental for fast-growing trees. Our analysis highlighted the response of a key Patagonian tree species to extreme drought events, providing bioclimatic-specific useful information for conservation plans of this natural resource.  相似文献   

13.
杨绕琼  范泽鑫  李宗善  温庆忠 《生态学报》2018,38(24):8983-8991
云南松(Pinus yunnanensis)是重要的造林树种,在我国西南地区广泛分布。研究不同海拔云南松径向生长对气候变化的响应,有助于了解气候变化背景下云南松的敏感性和适应性。在滇西北丽江玉龙雪山不同海拔采集了云南松树木年轮样品,采用传统的树木年轮方法制作了不同海拔云南松树轮宽度标准化年表,并分析了不同海拔云南松径向生长与气候因子的相关性。结果表明:1)低海拔样点云南松具有较快的年平均生长速率。2)不同海拔云南松对气候因子的响应模式一致,树轮宽度与当年5—6月的降水量、帕尔默干旱指数(PDSI)和相对湿度呈正相关,与同期温度呈负相关。3)不同海拔的云南松径向生长对气象因子的响应程度不一样,即低海拔样点云南松树轮宽度与当年5月份的干旱指数、相对湿度、降水量相关系数较高;而高海拔样点的云南松树轮宽度与5—6月的降水、相对湿度、干旱指数的相关系数较低。研究表明春末夏初的水分条件是玉龙雪山云南松径向生长的主要限制因子,且低海拔地区云南松生长受水分限制更为严重,区域气候变暖和干旱化趋势可能对低海拔地区云南松的生长产生持续的负面效应。研究结果可为探讨气候变化下云南松的适宜分布区、以及云南松人工林的经营和可持续管理提供参考。  相似文献   

14.
In Valais, an inner-Alpine dry valley in Switzerland, low-elevation Scots pine (Pinus sylvestris L.) forests are changing. While pine shows high mortality rates, deciduous species, in particular pubescent oak (Quercus pubescens Willd.), are becoming more abundant. We hypothesise that increasing drought and the species-specific drought tolerance are key factors in these processes. In this study, the growth reaction to drought years of pine and oak growing at a xeric site in Valais was analysed using dendrochronological and wood anatomical methods. Congruent with theoretical expectations, the tree-ring widths of both species, the mean lumen area of earlywood vessels in oak and the number of tracheids in a radial row in pine decreased in response to dry conditions. However, both species also showed reactions deviating from those known from mesic sites: In oak, the mean lumen area of latewood vessels increased in drought years. In pine, in the driest year of the period (1976), the mean radial diameter increased in latewood and decreased only slightly in earlywood. These results emphasises that the process of wood formation and cell functionality at xeric sites is not completely understood yet. Both species seem to have difficulties to adapt the size of their water-conducting cells to strongly reduced water availability in drought years. Additionally, the cell number is strongly reduced. Thus it remains unclear if both species can maintain sufficient water transport under increasingly dry conditions.  相似文献   

15.
Mediterranean environments are of special interest for the study of the relationships between climate, growth and anatomic features. Dendrochronological techniques were applied at eight sampling sites that were selected throughout the natural distribution area of Pinus halepensis in the Iberian Peninsula. The objectives of this paper were: (i) to identify relationships between radial growth and climate for different crown classes of Aleppo pine (P. halepensis Mill.); (ii) to quantify the presence of intra-annual density fluctuations (IADFs) according to crown class and cambial age; (iii) to establish the relationships between IADFs and climate. In the more mesic sites, dominant trees showed higher climatic sensitivity than suppressed trees, while in the more xeric sites suppressed trees showed higher sensitivity than dominant trees. Tree-ring growth of both crown classes correlated positively with precipitation during and prior to the growing season. IADFs were more frequent in young than in old stands without differences between crown classes. Precipitation in April and December was positively correlated to the occurrence of IADFs, while precipitation in July correlated negatively. A higher frequency in IADFs occurred in the last 50 years, which coincides with the increase in drought events in the Iberian Peninsula.  相似文献   

16.
Principal components analysis, followed by K-means cluster analysis, was used to detect variations in the timing and magnitude of Pinus contorta Dough ex Loud. growth releases attributed to mountain pine beetle outbreaks in 31 stands of central British Columbia. Four major growth release patterns were identified from 1970 to 2000. Variations in the timing of growth releases among clustered stands corresponded well to aerial survey data indicating the timing of beetle outbreaks in the study area. Redundancy analysis was used to determine how variations in the timing and magnitude of growth releases attributed to beetle outbreaks changed with variations in climate or stand conditions over the study area. The first RDA axis, which accounted for 39% of the variations in growth patterns among stands, was significantly (P〈0.05) correlated with gradients in the percentage of pine in stands killed by mountain pine beetle, summer aridity, variation in summer precipitation, distance from initial infestation site, average pine age, and maximum August temperatures. The second RDA axis explained 6% of the variations and was significantly correlated with gradients in the beetle climate suitability index, extreme cold month temperatures, and site index. Comparisons of growth release patterns with aerial survey data and redundancy analyses indicated that dendrochronological techniques are useful for identifying mountain pine beetle outbreaks in central British Columbia, particularly among stands that had a density high enough to produce a growth release signal. Provided future studies account for interannual weather fluctuations, identification of growth increases due to stand thinning caused by beetle outbreaks will be useful for reconstructing the history of beetle outbreaks over much longer time periods.  相似文献   

17.
Principal components analysis, followed by K-means cluster analysis, was used to detect variations in the timingand magnitude of Pinus contorfa Dougl. ex Loud. growth releases attributed to mountain pine beetle outbreaks in31 stands of central British Columbia. Four major growth release patterns were identified from 1970 to 2000.Variations in the timing of growth releases among clustered stands corresponded well to aerial survey dataindicating the timing of beetle outbreaks in the study area. Redundancy analysis was used to determine howvariations in the timing and magnitude of growth releases attributed to beetle outbreaks changed with variationsin climate or stand conditions over the study area. The first RDA axis, which accounted for 39% of the variations ingrowth patterns among stands, was significantly (P<0.05) correlated with gradients in the percentage of pine instands killed by mountain pine beetle, summer aridity, variation in summer precipitation, distance from initialinfestation site, average pine age, and maximum August temperatures. The second RDA axis explained 6% of thevariations and was significantly correlated with gradients in the beetle climate suitability index, extreme coldmonth temperatures, and site index. Comparisons of growth release patterns with aerial survey data and redun-dancy analyses indicated that dendrochronological techniques are useful for identifying mountain pine beetleoutbreaks in central British Columbia, particularly among stands that had a density high enough to produce agrowth release signal. Provided future studies account for interannual weather fluctuations, identification ofgrowth increases due to stand thinning caused by beetle outbreaks will be useful for reconstructing the history ofbeetle outbreaks over much longer time periods.  相似文献   

18.
A large body of literature suggests that asymmetric competition, where large individuals suppress the growth of smaller individuals by intercepting a disproportionate share of incoming light, is a dominant process in tree population development. This has not been examined extensively for long-lived tree species that accumulate growth over many years under varying growing conditions. Using dendrochronological techniques, we reconstructed annual growth and mortality rates at ten stands of jack pine (Pinus banksiana Lamb.) in Western Canada. We used these data to calculate an annual index of the size asymmetry of growth for each stand for the last 50 years. Jack pine is a shade-intolerant species found in even-aged monoculture stands, so the simple hypothesis is that large trees should consistently perform relatively better than small trees. Inter-annual variation in the index of size-asymmetric growth was positively associated with interannual variation in stand productivity at eight of ten sites. The size asymmetry of growth also showed a positive trend with age at eight of ten sites, even though all sites were in a period of declining leaf area. This should have reduced the intensity of asymmetric competition for light and reduced the size asymmetry of growth over time. Alternate hypotheses for this trend are (1) that physical collisions between crowns result in asymmetric competition for growing space because they are more damaging to small trees, or (2) that a differential build up of diseases in susceptible trees suppresses their growth, even in the absence of competition.  相似文献   

19.
Principal components analysis, followed by K-means cluster analysis, was used to detect variations in the timing and magnitude of Pinus contorta Dougl. ex Loud. growth releases attributed to mountain pine beetle outbreaks in 31 stands of central British Columbia. Four major growth release patterns were identified from 1970 to 2000.Variations in the timing of growth releases among clustered stands corresponded well to aerial survey data indicating the timing of beetle outbreaks in the study area. Redundancy analysis was used to determine how variations in the timing and magnitude of growth releases attributed to beetle outbreaks changed with variations in climate or stand conditions over the study area. The first RDA axis, which accounted for 39% of the variations in growth patterns among stands, was significantly (P<0.05) correlated with gradients in the percentage of pine in stands killed by mountain pine beetle, summer aridity, variation in summer precipitation, distance from initial infestation site, average pine age, and maximum August temperatures. The second RDA axis explained 6% of the variations and was significantly correlated with gradients in the beetle climate suitability index, extreme cold month temperatures, and site index. Comparisons of growth release patterns with aerial survey data and redundancy analyses indicated that dendrochronological techniques are useful for identifying mountain pine beetle outbreaks in central British Columbia, particularly among stands that had a density high enough to produce a growth release signal. Provided future studies account for interannual weather fluctuations, identification of growth increases due to stand thinning caused by beetle outbreaks will be useful for reconstructing the history of beetle outbreaks over much longer time periods.  相似文献   

20.

Key message

The post-fire growth responses and changes in wood C and N isotope composition depend on site water availability and fire severity in Mediterranean Aleppo pine forests.

Abstract

Mediterranean forests are subjected to recurrent wildfires and summer droughts. Under warmer and drier conditions, it is required to determine how Mediterranean pines recover after wildfires, and how this translates into changes in tree radial growth and function (e.g. intrinsic water-use efficiency—iWUE). We analysed four Aleppo pine areas located in SE Spain affected by 1994 wildfires and subjected to different water availability, ranging from mesic to semi-arid conditions. We combined dendrochronological analyses with δ13C and δ15N wood isotopes to quantify the changes in radial growth (expressed as Basal Area Increment—BAI) and functional responses (iWUE and N cycling) to three fire severities (unburned sites, low and medium severities). We expected that the post-fire release in nutrients and a reduction in competition for water would enhance radial growth. We found that fire did not significantly alter growth patterns at the driest sites, but increased BAI at the wettest sites. δ13C was significantly (P ≤ 0.01) more negative only in burned stands located at the wettest site indicating a decreased iWUE and thus improved water availability. However, the δ15N was higher in severely burned than in unburned plots from all sites but the wettest site, indicating a potential fertilization effect of fire in sites subjected to mild drought severity. Site water availability determined how fire affected subsequent modifications in growth and tree functioning of Aleppo pine forests, that is, changes in iWUE and N cycling. Therefore, site dryness should be explicitly considered to forecast the growth and functioning responses of Mediterranean pine forests to the predicted increasing recurrence of fire events due to global warming.
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号