首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
Protein arginine methylation is a common post-translational modification in eukaryotes that is catalyzed by a family of the protein arginine methyltransferases (PRMTs). PRMTs are classified into three types: type I and type II add asymmetrically and symmetrically dimethyl groups to arginine, respectively, while type III adds solely monomethyl group to arginine. However, although the enzymatic activity of type I and type II PRMTs have been reported, the substrate specificity and the methylation activity of type III PRMTs still remains unknown. Here, we report the characterization of Caenorhabditis elegans PRMT-2 and PRMT-3, both of which are highly homologous to human PRMT7. We find that these two PRMTs can bind to S-adenosyl methionine (SAM), but only PRMT-3 has methyltransferase activity for histone H2A depending on its SAM-binding domain. Importantly, thin-layer chromatographic analysis demonstrates that PRMT-3 catalyzes the formation of monomethylated, but not dimethylated arginine. Our study thus identifies the first type III PRMT in C. elegans and provides a means to elucidate the physiological significance of arginine monomethylation in multicellular organisms.  相似文献   

4.
5.
6.
Protein arginine methylation is a common post-translational modification in eukaryotes that is catalyzed by a family of the protein arginine methyltransferases (PRMTs). PRMTs are classified into three types: type I and type II add asymmetrically and symmetrically dimethyl groups to arginine, respectively, while type III adds solely monomethyl group to arginine. However, although the enzymatic activity of type I and type II PRMTs have been reported, the substrate specificity and the methylation activity of type III PRMTs still remains unknown. Here, we report the characterization of Caenorhabditis elegans PRMT-2 and PRMT-3, both of which are highly homologous to human PRMT7. We find that these two PRMTs can bind to S-adenosyl methionine (SAM), but only PRMT-3 has methyltransferase activity for histone H2A depending on its SAM-binding domain. Importantly, thin-layer chromatographic analysis demonstrates that PRMT-3 catalyzes the formation of monomethylated, but not dimethylated arginine. Our study thus identifies the first type III PRMT in C. elegans and provides a means to elucidate the physiological significance of arginine monomethylation in multicellular organisms.  相似文献   

7.
Lim Y  Lee E  Lee J  Oh S  Kim S 《Journal of biochemistry》2008,144(4):523-529
Protein arginine methylation is one of the post-translational modifications which yield monomethyl and dimethyl (asymmetric or symmetric) arginines in proteins. In the present study, we investigated the status of protein arginine methylation during human diploid fibroblast senescence. When the expression of protein arginine methyltransferases (PRMTs), namely PRMT1, PRMT4, PRMT5 and PRMT6 was examined, a significant reduction was found in replicatively senescent cells as well as their catalytic activities against histone mixtures compared with the young cells. Furthermore, when the endogenous level of arginine-dimethylated proteins was determined, asymmetric modification (the product of type I PRMTs including PRMT1, PRMT4 and PRMT6) was markedly down-regulated. In contrast, both up- and down-regulations of symmetrically arginine-methylated proteins (the product of type II PRMTs including PRMT5) during replicative senescence were found. Furthermore, when young fibroblasts were induced to premature senescence by sub-cytotoxic H2O2 treatment, results similar to replicative senescence were obtained. Finally, we found that SV40-mediated immortalized WI-38 and HeLa cell lines maintained a higher level of asymmetrically modified proteins as well as type I PRMTs than young fibroblasts. These results suggest that the maintenance of asymmetric modification in the expressed target proteins of type I PRMTs might be critical for cellular proliferation.  相似文献   

8.
Protein arginine methylation is one of the most abundant post-translational modifications in the nucleus. Protein arginine methylation can be identified and/or determined via proteomic approaches, and/or immunoblotting with methyl-arginine specific antibodies. However, these techniques sometimes can be misleading and often provide false positive results. Most importantly, these techniques cannot provide direct evidence in support of the PRMT substrate specificity. In vitro methylation assays, on the other hand, are useful biochemical assays, which are sensitive, and consistently reveal if the identified proteins are indeed PRMT substrates. A typical in vitro methylation assay includes purified, active PRMTs, purified substrate and a radioisotope labeled methyl donor (S-adenosyl-L-[methyl-3H] methionine). Here we describe a step-by-step protocol to isolate catalytically active PRMT1, a ubiquitously expressed PRMT family member. The methyl transferase activities of the purified PRMT1 were later tested on Ras-GTPase activating protein binding protein 1 (G3BP1), a known PRMT substrate, in the presence of S-adenosyl-L-[methyl-3H] methionine as the methyl donor. This protocol can be employed not only for establishing the methylation status of novel physiological PRMT1 substrates, but also for understanding the basic mechanism of protein arginine methylation.  相似文献   

9.
Hepatocellular carcinoma (HCC) is one of the most frequently diagnosed cancers with a high mortality rate worldwide. The complexity of HCC initiation and progression poses a great challenge to the diagnosis and treatment. An increasing number of studies have focused on the emerging roles of protein arginine methylation in cancers, including tumor growth, invasion, metastasis, metabolism, immune responses, chemotherapy sensitivity, etc. The family of protein arginine methyltransferases (PRMTs) is the most important proteins that mediate arginine methylation. The deregulation of PRMTs’ expression and functions in cancers have been gradually unveiled, and many PRMTs inhibitors are in preclinical and clinical investigations now. This review focuses predominantly on the aberrant expression of PRMTs, underlying mechanisms, as well as their potential applications in HCC, and provide novel insights into HCC therapy.  相似文献   

10.
Elevated levels of asymmetric dimethylarginine (ADMA) correlate with risk factors for cardiovascular disease. ADMA is generated by the catabolism of proteins methylated on arginine residues by protein arginine methyltransferases (PRMTs) and is degraded by dimethylarginine dimethylaminohydrolase. Reports have shown that dimethylarginine dimethylaminohydrolase activity is down-regulated and PRMT1 protein expression is up-regulated under oxidative stress conditions, leading many to conclude that ADMA accumulation occurs via increased synthesis by PRMTs and decreased degradation. However, we now report that the methyltransferase activity of PRMT1, the major PRMT isoform in humans, is impaired under oxidative conditions. Oxidized PRMT1 displays decreased activity, which can be rescued by reduction. This oxidation event involves one or more cysteine residues that become oxidized to sulfenic acid (-SOH). We demonstrate a hydrogen peroxide concentration-dependent inhibition of PRMT1 activity that is readily reversed under physiological H2O2 concentrations. Our results challenge the unilateral view that increased PRMT1 expression necessarily results in increased ADMA synthesis and demonstrate that enzymatic activity can be regulated in a redox-sensitive manner.  相似文献   

11.
The protein arginine methyltransferaseas (PRMTs) family is conserved from yeast to human, and regulates stability, localization and activity of proteins. We have characterized deletion strains corresponding to genes encoding for PRMT1/3/5 (designated amt-1, amt-3 and skb-1, respectively) in Neurospora crassa. Deletion of PRMT-encoding genes conferred altered Arg-methylated protein profiles, as determined immunologically. Δamt-1 exhibited reduced hyphal elongation rates (70% of wild type) and increased susceptibility to the ergosterol biosynthesis inhibitor voriconazole. In ▵amt-3, distances between branches were significantly longer than the wild type, suggesting this gene is required for proper regulation of hyphal branching. Deletion of skb-1 resulted in hyper conidiation (2-fold of the wild type) and increased tolerance to the chitin synthase inhibitor polyoxin D. Inactivation of two Type I PRMTs (amt-1 and amt-3) conferred changes in both asymmetric as well as symmetric protein methylation profiles, suggesting either common substrates and/or cross-regulation of different PRMTs. The PRMTs in N. crassa apparently share cellular pathways which were previously reported to be regulated by the NDR (Nuclear DBF2-related) kinase COT1. Using co-immunprecipitation experiments (with MYC-tagged proteins), we have shown that SKB1 and COT1 physically interacted and the abundance of the 75 kDa MYC::COT1 isoform was increased in a Δskb-1 background. On the basis of immunological detection, we propose the possible involvement of PRMTs in Arg-methylation of COT1.  相似文献   

12.
蛋白质精氨酸甲基转移酶(protein arginine methyltransferases,PRMTs)是真核生物中常见的一种酶,可催化组蛋白和非组蛋白底物中的精氨酸残基发生甲基化.在人类的基因组中,PRMTs由9个基因编码.作为最主要的Ⅱ型精氨酸甲基转移酶,PRMT5是PRMT家族成员之一,参与了包括信号转导、转...  相似文献   

13.
Protein arginine methylation plays a key role in numerous eukaryotic processes, such as protein transport and signal transduction. In Candida albicans, two candidate protein arginine methyltransferases (PRMTs) have been identified from the genome sequencing project. Based on sequence comparison, C. albicans candidate PRMTs display similarity to Saccharomyces cerevisiae Hmt1 and Rmt2. Here we demonstrate functional homology of Hmt1 between C. albicans and S. cerevisiae: CaHmt1 supports growth of S. cerevisiae strains that require Hmt1, and CaHmt1 methylates Npl3, a major Hmt1 substrate, in S. cerevisiae. In C. albicans strains lacking CaHmt1, asymmetric dimethylarginine and omega-monomethylarginine levels are significantly decreased, indicating that Hmt1 is the major C. albicans type I PRMT1. Given the known effects of type I PRMTs on nuclear transport of RNA-binding proteins, we tested whether Hmt1 affects nuclear transport of a putative Npl3 ortholog in C. albicans. CaNpl3 allows partial growth of S. cerevisiae npl3Delta strains, but its arginine-glycine-rich C terminus can fully substitute for that of ScNpl3 and also directs methylation-sensitive association with ScNpl3. Expression of green fluorescent protein-tagged CaNpl3 proteins in C. albicans strains with and without CaHmt1 provides evidence for CaHmt1 facilitating export of CaNpl3 in this fungus. We have also identified the C. albicans Rmt2, a type IV fungus- and plant-specific PRMT, by amino acid analysis of an rmt2Delta/rmt2Delta strain, as well as biochemical evidence for additional cryptic PRMTs.  相似文献   

14.
15.
The discovery of roles for arginine methylation in intracellular transport and mRNA splicing has focused attention on the methylated arginine–glycine (RG)-rich domains found in many eukaryotic RNA-binding proteins. Sequence similarity among these highly repetitive RG domains, combined with interactions between RG-rich proteins, raises the question of whether these regions are general interaction motifs or whether there is specificity within these domains. Using the essential Saccharomyces cerevisiae mRNA-binding protein Npl3 (ScNpl3) as a model system, we first tested the importance of the RG domain for protein function. While Npl3 lacking the RG domain could not support growth of cells lacking Npl3, surprisingly, expression of the RG domain alone supported partial growth of these cells. To address the specificity of this domain, we created chimeric forms of ScNpl3 with RG-rich domains of S. cerevisiae nucleolar proteins, Gar1 and Nop1 (ScGar1, ScNop1), or of the Candida albicans Npl3 ortholog (CaNpl3). Whereas the CaNpl3 RG chimeric protein retained nearly wild-type function in S. cerevisiae, the ScGar1 and ScNop1 RG domains significantly reduced Npl3 function and self-association, indicating RG domain specificity. Nuclear localization of Npl3 also requires specific RG sequences, yet heterologous RG domains allow similar modulation of Npl3 transport by arginine methylation.  相似文献   

16.
Arginine methylation governs important cellular processes that impact growth and proliferation, as well as differentiation and development. Through their ability to catalyze symmetric or asymmetric methylation of histone and non-histone proteins, members of the protein arginine methyltransferase (PRMT) family regulate chromatin structure and expression of a wide spectrum of target genes. Unlike other PRMTs, PRMT5 works in concert with a variety of cellular proteins including ATP-dependent chromatin remodelers and co-repressors to induce epigenetic silencing. Recent work also implicates PRMT5 in the control of growth-promoting and pro-survival pathways, which demonstrates its versatility as an enzyme involved in both epigenetic regulation of anti-cancer target genes and organelle biogenesis. These studies not only provide insight into the molecular mechanisms by which PRMT5 contributes to growth control, but also justify therapeutic targeting of PRMT5.  相似文献   

17.
18.
Human protein arginine methyltransferase (PRMT) 9 symmetrically dimethylates arginine residues on splicing factor SF3B2 (SAP145) and has been functionally linked to the regulation of alternative splicing of pre-mRNA. Site-directed mutagenesis studies on this enzyme and its substrate had revealed essential unique residues in the double E loop and the importance of the C-terminal duplicated methyltransferase domain. In contrast to what had been observed with other PRMTs and their physiological substrates, a peptide containing the methylatable Arg-508 of SF3B2 was not recognized by PRMT9 in vitro. Although amino acid substitutions of residues surrounding Arg-508 had no great effect on PRMT9 recognition of SF3B2, moving the arginine residue within this sequence abolished methylation. PRMT9 and PRMT5 are the only known mammalian enzymes capable of forming symmetric dimethylarginine (SDMA) residues as type II PRMTs. We demonstrate here that the specificity of these enzymes for their substrates is distinct and not redundant. The loss of PRMT5 activity in mouse embryo fibroblasts results in almost complete loss of SDMA, suggesting that PRMT5 is the primary SDMA-forming enzyme in these cells. PRMT9, with its duplicated methyltransferase domain and conserved sequence in the double E loop, appears to have a unique structure and specificity among PRMTs for methylating SF3B2 and potentially other polypeptides.  相似文献   

19.
Post-translational modifications are well-known modulators of DNA damage signaling and epigenetic gene expression. Protein arginine methylation is a covalent modification that results in the addition of methyl groups to the nitrogen atoms of the arginine side chains and is catalyzed by a family of protein arginine methyltransferases (PRMTs). In the past, arginine methylation was mainly observed on abundant proteins such as RNA-binding proteins and histones, but recent advances have revealed a plethora of arginine methylated proteins implicated in a variety of cellular processes including RNA metabolism, epigenetic regulation and DNA repair pathways. Herein, we discuss these recent advances, focusing on the role of PRMTs in DNA damage signaling and its importance for maintaining genomic stability.  相似文献   

20.
One of the regulatory mechanisms of epigenetic gene expression is the post-translational methylation of arginine residues, which is catalyzed by protein arginine methyltransferases (PRMTs). Abnormal expression of PRMT4/CARM1, one of the PRMTs, is associated with various diseases, including cancers. Here, we designed and synthesized a Förster resonance energy transfer (FRET)-based probe, FRC, which contains coumarin and fluorescein fluorophores at the N-terminus and C-terminus of a peptide containing an arginine residue within an appropriate amino acid sequence to serve as a substrate of CARM1; the two fluorophores act as a FRET donor and a FRET acceptor, respectively. Since trypsin specifically hydrolyzes the arginine residue, but not a monomethylarginine or dimethylarginine residue, CARM1 activity can be evaluated from the change of the coumarin/fluorescein fluorescence ratio of FRC in the presence of trypsin.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号