首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 429 毫秒
1.
The influence of pH shocks on the trace metal dynamics and performance of methanol fed upflow anaerobic granular sludge bed (UASB) reactors was investigated. For this purpose, two UASB reactors were operated with metal pre-loaded granular sludge (1mM Co, Ni and Fe; 30°C; 96h) at an organic loading rate (OLR) of 5gCOD l reactor–1d–1. One UASB reactor (R1) was inoculated with sludge that originated from a full scale reactor treating alcohol distillery wastewater, while the other reactor (R2) was inoculated with sludge from a full scale reactor treating paper mill wastewater. A 30h pH shock (pH 5) strongly affected the metal retention dynamics within the granular sludge bed in both reactors. Iron losses in soluble form with the effluent were considerable: 2.3 and 2.9% for R1 and R2, respectively, based on initial iron content in the reactors, while losses of cobalt and nickel in soluble form were limited. Sequential extraction of the metals from the sludge showed that cobalt, nickel, iron and sulfur were translocated from the residual to the organic/sulfide fraction during the pH shock in R2, increasing 34, 47, 109 and 41% in the organic/sulfide fraction, respectively. This is likely due to the modification of the iron sulfide precipitate stability, which influences the extractability of iron and trace metals. Such a translocation was not observed for the R1 sludge during the first 30h pH shock, but a second 4day pH shock induced significant losses of cobalt (18%), iron (29%) and sulfur (29%) from the organic/sulfide fraction, likely due to iron sulfide dissolution and concomitant release of cobalt. After the 30h pH shock, VFA accumulated in the R2 effluent, whereas both VFA and methanol accumulated in R1 after the 4day pH shock. The formed VFA, mainly acetate, were not converted to methane due to the loss of methanogenic activity of the sludge on acetate. The VFA accumulation gradually disappeared, which is likely to be related to out-competition of acetogens by methanogens. Zinc, copper and manganese supply did not have a clear effect on the acetate removal and methanol conversion, but zinc may have induced the onset of methanol degradation after day 152 in R1.  相似文献   

2.
Acid mine drainage (AMD), an acidic metal-bearingwastewater, poses a severe pollution problem attributedto post mining activities. The metals usuallyencountered in AMD and considered of concern for riskassessment are arsenic, cadmium, iron, lead, manganese,zinc, copper and sulfate. The pollution generated byabandoned mining activities in the area of Butte, Montanahas resulted in the designation of the Silver Bow Creek–ButteArea as the largest Superfund (National Priorities List) sitein the U.S. This paper reports the results of bench-scalestudies conducted to develop a resource recovery basedremediation process for the clean up of the Berkeley Pit.The process utilizes selective, sequential precipitation (SSP)of metals as hydroxides and sulfides, such as copper, zinc,aluminum, iron and manganese, from the Berkeley Pit AMDfor their removal from the water in a form suitable foradditional processing into marketable precipitates and pigments.The metal biorecovery and recycle process is based on completeseparation of the biological sulfate reduction step and themetal precipitation step. Hydrogen sulfide produced in the SRBbioreactor systems is used in the precipitation step to forminsoluble metal sulfides. The average metal recoveries usingthe SSP process were as follows: aluminum (as hydroxide) 99.8%,cadmium (as sulfide) 99.7%, cobalt (as sulfide) 99.1% copper(as sulfide) 99.8%, ferrous iron (sulfide) 97.1%, manganese(as sulfide) 87.4%, nickel (as sulfide) 47.8%, and zinc (as sulfide)100%. The average precipitate purity for metals, copper sulfide,ferric hydroxide, zinc sulfide, aluminum hydroxide and manganesesulfide were: 92.4, 81.5, 97.8, 95.6 , 92.1 and 75.0%, respectively.The final produced water contained only calcium and magnesiumand both sulfate and sulfide concentrations were below usablewater limits. Water quality of this agriculturally usable watermet the EPA's gold standard criterion.  相似文献   

3.
Metal cofactors of lysine-2,3-aminomutase.   总被引:1,自引:0,他引:1  
Lysine-2,3-aminomutase from Clostridium SB4 contains iron and sulfide in equimolar amounts, as well as cobalt, zinc, and copper. The iron and sulfide apparently constitute an Fe-S cluster that is required as a cofactor of the enzyme. Although no B12 derivative can be detected, enzyme-bound cobalt is a cofactor; however, the zinc and copper bound to the enzyme do not appear to play a role in its catalytic activity. These conclusions are supported by the following facts reported in this paper. Purification of the enzyme under anaerobic conditions increases the iron and sulfide content. Lysine-2,3-aminomutase purified from cells grown in media supplemented with added CoCl2 contains higher levels of cobalt and correspondingly lower levels of zinc and copper relative to enzyme from cells grown in media not supplemented with cobalt. The specific activity of the purified enzyme increases with increasing iron and sulfide content, and it also increases with increasing cobalt and with decreasing zinc and copper content. The zinc and copper appear to occupy cobalt sites under conditions of insufficient cobalt in the growth medium, and they do not support the activity of the enzyme. The best preparations of lysine-2,3-aminomutase obtained to date exhibit a specific activity of approximately 23 units/mg of protein and contain about 12 g atoms of iron and of sulfide per mol of hexameric enzyme. These preparations also contain 3.5 g atoms of cobalt per mol, but even the best preparations contain small amounts of zinc and copper. The sum of cobalt, zinc, and copper in all preparations analyzed to date corresponds to 5.22 +/- 0.75 g atoms per mol of enzyme. An EPR spectrum of the enzyme as isolated reveals a signal corresponding to high spin Co(II) at temperatures below 20 K. The signal appears as a partially resolved 59Co octet centered at an apparent g value of 7. The 59Co hyperfine splitting (approximately 35 G) is prominent at 4.2 K. These findings show that lysine-2,3-aminomutase requires Fe-S clusters and cobalt as cofactors, in addition to the known requirement for pyridoxal 5'-phosphate and S-adenosylmethionine.  相似文献   

4.
Herein we present the synthesis, structural and spectroscopic characterization of coordination compounds of cobalt(II), copper(II) and zinc(II) with 2-methylbenzimidazole (2mbz), 2-phenylbenzimidazole (2phbz), 2-chlorobenzimidazole (2cbz), 2-benzimidazolecarbamate (2cmbz) and 2-guanidinobenzimidazole (2gbz). Their cytotoxic activity was evaluated using human cancer cell lines, PC3 (prostate), MCF-7 (breast), HCT-15 (colon), HeLa (cervic-uterine), SKLU-1 (lung) and U373 (glioblastoma), showing that the zinc(II) and copper(II) compounds [Zn(2mbz)2Cl2]·0.5H2O, [Zn(2cmbz)2Cl2]·EtOH, [Cu(2cmbz)Br2]·0.7H2O and [Cu(2gbz)Br2] had significant cytotoxic activity. The isostructural cobalt(II) complexes showed not significant activity. The cytotoxic activity is related to the presence of halides in the coordination sphere of the metal ion. Recuperation experiments with HeLa cells, showed that the cells recuperated after removing the copper(II) compounds and, on the contrary, the cells treated with the zinc(II) compounds did not. These results indicate that the mode of action of the coordination compounds is different.  相似文献   

5.
The acetone precipitation of a partially purified tyrosine 3-monooxygenase (L-tyrosine, tetrahydropteridine: oxygen oxidoreductase (3-hydroxylating), EC 1.14.16.2) resulted in the complete loss of enzymatic activity. The enzymatic activity was restored by incubation with iron and dithiothreitol. The restoration of the activity was a pH-, temperature- and time-dependent reaction. Since cobalt, nickel, copper, zinc, manganese, cadmium, magnesium calcium and barium ions were all ineffective in restoring activity, iron ion appeared to be specifically required in the restoration of the enzyme activity. Dithiothreitol could be partially replaced in the restoration step by glutathione, 2-mercaptoethanol or cysteine.  相似文献   

6.
Copper sulfide precipitation by yeasts from Acid mine-waters   总被引:1,自引:1,他引:0       下载免费PDF全文
Two strains of Rhodotorula and one of Trichosporon precipitated dissolved copper with H2S formed by reducing elemental sulfur with glucose. Iron stimulated this activity under certain conditions. In the case of Rhodotorula strain L, iron stimulated copper precipitation aerobically at a copper concentration of 18 but not 180 μg/ml. Anaerobically, the L strain required iron for precipitation of copper from a medium with 180 μg of copper per ml. Rhodotorula strain L was able to precipitate about five times as much copper anaerobically as aerobically. The precipitated copper was identified as copper sulfide, but its exact composition could not be ascertained. Iron was not precipitated by the H2S formed by any of the yeasts. Added as ferric iron, it was able to redissolve copper sulfide formed aerobically by Rhodotorula strain L from 18 but not 180 μg of copper per ml of medium. Since the yeasts were derived from acid mine-waters, their ability to precipitate copper may be of geomicrobial importance.  相似文献   

7.
Metal cofactors are required for many enzymes in anaerobic microbial respiration. This study examined iron, cobalt, nickel, copper, and zinc in cellular and abiotic phases at the single-cell scale for a sulfate-reducing bacterium (Desulfococcus multivorans) and a methanogenic archaeon (Methanosarcina acetivorans) using synchrotron X-ray fluorescence microscopy. Relative abundances of cellular metals were also measured by inductively coupled plasma mass spectrometry. For both species, zinc and iron were consistently the most abundant cellular metals. M. acetivorans contained higher nickel and cobalt content than D. multivorans, likely due to elevated metal requirements for methylotrophic methanogenesis. Cocultures contained spheroid zinc sulfides and cobalt/copper sulfides.  相似文献   

8.
The proton nuclear magnetic resonance spectra of various metal substituted derivatives of horse cytochrome c have been studied and compared to the spectra of native cytochrome c. The proteins studied were the cobalt(III), copper(II), iron(II), iron(III), manganese(III), nickel(II), and zinc(II) derivatives. Spectra of the diamagnetic cobalt(III), iron(II), and zinc(II) proteins were well-resolved and specific resonance assignments were made. All three proteins possessed a methionine ligand to the metal. The spectrum of cobalt(III) cytochrome c was investigated in some detail as this protein was used as a diagmagnetic control for iron(III) cytochrome c. Comparison of the spectra of cobalt(III) and iron(II) cytochromes c revealed that their conformations were very similar but the following conclusion could be made; the oxidation of cytochrome c is accompanied by a small conformation change.  相似文献   

9.

Sulfate-reducing bacteria (SRB) play a major role in the precipitation of metal sulfides in the environment. In this work, biogenic copper sulfide formation was examined in cultures of SRB and compared to chemically initiated Cu sulfide precipitation as a reference system. Mixed cultures of SRB were incubated at 22, 45, and 60°C in nutrient solutions that contained copper sulfate. Abiotic reference samples were produced by reacting uninoculated liquid media with Na2S solutions under otherwise identical conditions. Precipitates were collected anaerobically by centrifugation, frozen in liquid N2, and freeze-dried, followed by analysis using X-ray diffraction (XRD), X-ray fluorescence, and scanning electron microscopy. Covellite (CuS) was the only mineral found in the precipitates. Covellite was less crystalline in the biogenic precipitates than in the abiotic samples based on XRD peak widths and peak to background ratios. Poor crystallinity may be the result of slower precipitation rates in bacterial cultures as compared to the abiotic reference systems. Furthermore, bacterial cells may inhibit the nucleation steps that lead to crystal formation. Incubation at elevated temperatures improved the crystallinity of the biotic specimens.  相似文献   

10.
Bacterial leaching of sulfide ores using Thiobacillus ferrooxidans, Thiobacillus thiooxidans, or a combination of the two was studied at various concentrations of specific anions. Selective zinc and copper solubilization was obtained by inhibiting iron oxidation without affecting sulfur/sulfide oxidation. Phosphate reduced iron solubilization from a pyrite (FeS(2))-sphalerite (ZnS) mixture without significantly affecting zinc solubilization. Copper leaching from a chalcopyrite (CuFeS(2))-sphalerite mixture was stimulated by phosphate, whereas chloride accelerated zinc extraction. In a complex sulfide ore containing pyrite, chalcopyrite, and sphalerite, both phosphate and chloride reduced iron solubilization and increased copper extraction, whereas only chloride stimulated zinc extraction. Maximum leaching obtained was 100% zinc and 50% copper. Time-course studies of copper and zinc solubilization suggest the possibility of selective metal recovery following treatment with specific anions.  相似文献   

11.
The influence of silicon treatment on the levels of trace elements zinc (Zn), copper (Cu), and iron (Fe) in serum and tissues was studied in rats. The concentrations of silicon, iron, and zinc were estimated in samples of sera and tissues of rats receivingper os a soluble, inorganic silicon compound—sodium metasilicate nonahydrate (Na2SiO3·9H2O), dissolved in the drinking water. An increase of copper concentrations in liver and aortic walls in the experimental group was observed, with simultaneous reduction of zinc amounts in serum and all the tissue samples in the course of the experiment. The iron concentrations in the analyzed samples did not show any significant changes between both groups. The silicon levels in serum and in all the examined tissues were significantly higher in the tested group. The results provide evidence for the silicon interaction with copper and zinc, which could result in a number of metabolic process modifications, antiatheromatous activity among them.  相似文献   

12.
The concentration of trace elements in L-cells has been studied as a function of the trace metal content of the growth medium. Cells were cultured in synthetic media which contained varying trace amounts of the elements manganese, iron, cobalt, copper, zinc and molybdenum. The cellular concentration of the elements potassium, iron, copper and zinc were then determined. It was found that the cell accumulates trace metals at a different rate than they are made available. Deficiencies in zinc could be “induced” in the cell by increasing the concentration of iron, manganese and cobalt; cellular iron deficiencies were observed at larger medium concentrations of zinc, manganese, copper and cobalt. Trace metal uptake by the cell was seen to parallel the utilization by multicellular organisms.  相似文献   

13.
Salts of 1,2,4,5-benzenetetracarboxylic acid with copper, aluminum, ammonium, cobalt(II), thallium(I), tin(II), uranyl ion, zinc, manganese, iron(II), nickel, potassium and sodium have been prepared and characterized by their IR spectra. The salts of aluminum, ammonium, thallium(I), tin(II), zinc, iron(II), nickel, potassium and sodium had not been reported before with adequate characterization. Raman spectra of selected compounds also aided structural interpretation. The IR spectra of Na2C10H4O8·2H2O, Fe(C10H5O8)2·12H2O, Zn(C10H5O8)2·12H2O, Ni(C10H5O8)2·12H2O, (NH4)3C10H3O8·H2O and CoC10H4O8·6H2O indicate very short, strong hydrogen bonds in these compounds. The IR and Raman spectra can be used to determine the mode of coordination (if any) of the carboxylate groups of 1,2,4,5- benzenetetracarboxylate to metal ions.  相似文献   

14.
Metal complexes of 2-pyridinecarboxaldehyde 2′-pyridylhydrazone (PCPH) and related compounds with manganese(II), iron(II), cobalt(II), nickel(Il), copper(II), zinc(II) and platinum(II) were synthesized and characterized by magnetic susceptibility measurements down to liquid nitrogen temperature and also by electronic, infrared, electron spin resonance and Mössbauer spectra. All the metal(II) complexes appeared to be monomeric, high-spin, five-coordinate (square-pyramidal) (X = Cl or OAc), except for Ni(PCPH)Cl2 which is polymeric, high-spin, six-coordinate. Each ligand behaved as a tridentate NNN donor, via the pyridine nitrogen, azomethine nitrogen, and pyridine or quinoline nitrogen. One of the most active agents of this series, Cu(PCPH)Cl2, showed antitumour activity against a variety of transplanted tumours, including Sarcoma 180, Ehrlich carcinoma and L1210 leukaemia sensitive to α(N)-heterocyclic carboxaldehyde thiosemicarbazones. This agent caused inhibition of 3H-thymidine and 3H-uridine incorporation into DNA and RNA, respectively, of Sarcoma 180 ascites cells; protein biosynthesis was relatively insensitive to the action of this agent.  相似文献   

15.
Binary and ternary systems involving adenosine 5′-triphosphate (ATP), 2,2′-dipyridylamine (DPA) and magnesium, calcium, strontium, manganese, cobalt, copper, and zinc(II) metal ions have been investigated in aqueous media by potentiometric titrations. The analysis of the titration curves shows the existence of M(ATP)2−, M(ATP)(H), and M(ATP)2(H)24− species for alkaline-earth metal ions, while no ternary complex can be detected. For transition metal ions both binary and ternary species are found. Binary M(ATP)2(H)24− complexes are present in solutions containing manganese and cobalt(II) metal ions but these species cannot be revealed in the case of copper and zinc(II). Ternary complexes as M(ATP)(DPA)2− and M(ATP)(DPA)(H) are common to all transition metals. Binuclear and hydroxo complexes as M2(ATP)(OH) and M(ATP)(OH)3− are found only for copper and zinc(II). A hypothesis on the possible role of the species M-ATP in 1:2 ratio in the dephosphorylation mechanism is advanced on the basis of a comparison between the equilibrium data in the solution phase and the solid state structures of the magnesium, calcium, and manganese(II)- ATP-DPA systems.  相似文献   

16.
17.
The molecular basis for the transport of manganese across membranes in plant cells is poorly understood. We have found that IRT1, an Arabidopsis thaliana metal ion transporter, can complement a mutant Saccharomyces cerevisiae strain defective in high-affinity manganese uptake (smf1). The IRT1 protein has previously been identified as an iron transporter. The current studies demonstrated that IRT1, when expressed in yeast, can transport manganese as well. This manganese uptake activity was inhibited by cadmium, iron(II) and zinc, suggesting that IRT1 can transport these metals. The IRT1 cDNA also complements a zinc uptake-deficient yeast mutant strain (zrt1zrt2), and IRT1-dependent zinc transport in yeast cells is inhibited by cadmium, copper, cobalt and iron(III). However, IRT1 did not complement a copper uptake-deficient yeast mutant (ctr1), implying that this transporter is not involved in the uptake of copper in plant cells. The expression of IRT1 is enhanced in A. thaliana plants grown under iron deficiency. Under these conditions, there were increased levels of root-associated manganese, zinc and cobalt, suggesting that, in addition to iron, IRT1 mediates uptake of these metals into plant cells. Taken together, these data indicate that the IRT1 protein is a broad-range metal ion transporter in plants.  相似文献   

18.
《Inorganica chimica acta》1987,131(2):241-245
Complexes of 3-hydroxy-2-naphthaldehyde benzylhydrazone (H2nabh) and 3-hydroxy-2-naphthaldehyde salicyloylhydrazone (H3nash) of the empirical composition M(L2H)·nH2O [M = manganese(II), iron(II), cobalt(II), nickel(II), copper(II), zinc(II), cadmium(II), mercury(II), L = H2nabh, H3nash and n = 0, 1, 2] were prepared and characterized by elemental analyses, magnetic susceptibility, electronic and infrared spectral data. Zinc(II) and cadmium(II) complexes were also studied by 13C, 1H NMR and the Cu(nabh)·H2O complex by transmission electron microscopy. The complexes are coloured and highly insoluble in common organic solvents. Absence of the original anion in the complexes indicates deprotonation of the ligands (H2nabh and H3nash) which bind the metal ions from the OH and the CN groups.  相似文献   

19.
Atomic absorption studies indicate that the DNA-dependent RNA polymerase II from wheat germ contains about 7 tightly bound zinc atoms per enzyme molecule. This value has been repeatedly obtained with a number of enzyme preparations subjected to varying conditions of purification and dialysis. However, prolonged dialysis of the enzyme with the metal chelator o-phenanthroline results in the loss of enzyme activity and extraction of the bound zinc. Other metals including copper, cobalt, manganese, magnesium, chromium, nickel and iron were not present in significant amounts.  相似文献   

20.
We have developed a novel microrespirometric method to characterize the inhibitory effects due to heavy metals on activated sludge treatment. This method was based on pulse dynamic respirometry and involved the injection of several pulses of substrate and inhibitors, of increasing concentration. Furthermore, we evaluated the inhibitory effects of heavy metals (copper and zinc), substrate and biomass concentrations, and pH on activated sludge activity. While higher biomass concentrations counteracted the inhibitory effects of both copper and zinc, higher substrate concentrations predominantly augmented the inhibitory effect of copper but no significant change in inhibition by zinc was observed. pH had a clear but relatively small effect on inhibition, partially explained by thermodynamic speciation. We determined the key kinetic parameters; namely, the half saturation constant (K S ) and the maximum oxygen uptake rate (OUR max ). The results showed that higher heavy metal concentrations substantially decreased K S and OUR max suggesting that the inhibition was uncompetitive.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号