首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 484 毫秒
1.
Extremely decay-resistant wood and fire-resistant bark allow California’s redwoods to accumulate millennia of annual growth rings that can be useful in biological research. Whereas tree rings of Sequoiadendron giganteum (SEGI) helped formalize the study of dendrochronology and the principle of crossdating, those of Sequoia sempervirens (SESE) have proven much more difficult to decipher, greatly limiting dendroclimatic and other investigations of this species. We overcame these problems by climbing standing trees and coring trunks at multiple heights in 14 old-growth forest locations across California. Overall, we sampled 1,466 series with 483,712 annual rings from 120 trees and were able to crossdate 83% of SESE compared to 99% of SEGI rings. Standard and residual tree-ring chronologies spanning up to 1,685 years for SESE and 1,538 years for SEGI were created for each location to evaluate crossdating and to examine correlations between annual growth and climate. We used monthly values of temperature, precipitation, and drought severity as well as summer cloudiness to quantify potential drivers of inter-annual growth variation over century-long time series at each location. SESE chronologies exhibited a latitudinal gradient of climate sensitivities, contrasting cooler northern rainforests and warmer, drier southern forests. Radial growth increased with decreasing summer cloudiness in northern rainforests and a central SESE location. The strongest dendroclimatic relationship occurred in our southernmost SESE location, where radial growth correlated negatively with dry summer conditions and exhibited responses to historic fires. SEGI chronologies showed negative correlations with June temperature and positive correlations with previous October precipitation. More work is needed to understand quantitative relationships between SEGI radial growth and moisture availability, particularly snowmelt. Tree-ring chronologies developed here for both redwood species have numerous scientific applications, including determination of tree ages, accurate dating of fire-return intervals, archaeology, analyses of stable isotopes, long-term climate reconstructions, and quantifying rates of carbon sequestration.  相似文献   

2.
The crossdating of tree-ring series is typically based on tree-ring width sequences, which is a crude abstraction of the growth signal stored in tree rings. In contrast, intra-annual wood density data allows a much more detailed comparison of wood growth processes and new measurement techniques scale well to measure large amounts of samples. Thus, chronologies of intra-annual densitometric curves can be built. Here, we investigate to what extent intra-annual wood density information can improve crossdating. We evaluate different approaches on a data set of Norway spruce trees (Picea abies) and compare the results to standard methods that are based on ring width or maximum density. Our results show that intra-annual densitometric data indeed increases crossdating success rate notably for short tree ring series that cover less than 25 years.  相似文献   

3.
Annually precise dating is the cornerstone of dendrochronology. The accurate crossdating of relict wood is, however, frequently challenged during early chronology periods when sample replication is typically low. Here we present a multi-proxy approach in which stable carbon (δ13C) and radiocarbon (14C) isotope data are used to evaluate and correct dating errors in the early period of the longest high-elevation tree-ring chronology from the Mediterranean Basin. The record was initially developed using 878 tree-ring width (TRW) and 192 maximum latewood density (MXD) series from living and relict Bosnian pines (Pinus heldreichii) from Mt. Smolikas in Greece to reconstruct hydroclimate and temperature variability back to the 8th century. New annually resolved and non-pooled δ13C series now suggest a re-dating of first millennium relict pine samples during a period when sample replication was too low for proper TRW and/or MXD crossdating. The associated correction shifts the start of the Mt. Smolikas chronology from 575 back to 468 CE, a change independently confirmed by wiggle-matching annual 14C data along the 774/775 CE cosmic event. Our study demonstrates the importance of independent age validation for robust chronology development and shows how multi-proxy crossdating can improve dating success during periods of low sample replication.  相似文献   

4.
We utilize a large dendrochronological dataset for Sequoia sempervirens of 1.29 million rings from 5952 series for 278 trees to generate location and regional ring-width chronologies and to investigate constraints on crossdating. Increment cores were collected at regular height intervals along the trunk via free-hanging ropes with some terrestrial deadwood sampled. Inter-annual chronologies span 86–1687 yr for 47 locations in primary and secondary forests across the native Sequoia range. Shared signals based on declining strength of paired correlations with distance, strong correlations within regions, and groupings of principal components guide chronology creation for northern (1032 yr, 108 trees) and southern (865 yr, 52 trees) regions and four sub-regions. The suite of chronologies provides location-specific references as well as more robust regional indices that reflect distinct signals along a climatically-integrative latitudinal gradient. Secondary forests date to near completion, and we use a subset of data to assess crossdating for trees in primary forests. Among tree and landscape attributes, old age is the most important predictor of undated and missing rings, and undated rings align with periods of reduced biomass production distributed across centuries-long lifespans. Crossdating metrics vary by height above the ground with breast height (BH) and 10 m samples having more undated rings than upper samples. At 10 m, samples have the most missing rings. Buttressing affects the lower trunk as BH series have higher ring widths and lower interseries correlations compared to those up to 70 m. Whole-trunk sampling maximizes success for crossdating old, structurally-complex Sequoia and enables dating of crown damage and assessment of biomass dynamics related to environmental change. Reference chronologies, regional assessments, and crossdating insights collectively guide future study of Sequoia for applications including climatology, fire ecology, and seismology.  相似文献   

5.
Visual crossdating of tree-ring series focusses on high-frequency variations. Automated correlation-based crossdating tools mimic this by transforming raw ring widths into indices that emphasise the high frequency signal, prior to calculating the goodness-of-fit between series. Here we present a resampling methodology to determine the relative merits of alternative simple high-pass filters and demonstrate it using two tree-ring data sets (British Isles oak, New Zealand kauri). Results indicate that: (a) high-pass filtering is a critical step; (b) the efficacy of alternative filters is variable, and; (c) efficacy appears to be species specific. These results have implications for crossdating in the two contexts investigated, and also for future software developments, especially the desirability of flexible implementations of high-pass filtering.  相似文献   

6.
Radiocarbon (14C) has been used to date carbon-rich objects in Earth science, archeology, and history since the 1940s. New methods, using spikes in 14C caused by solar proton events, can be used to annually date wood when crossdating is not possible, such as when sample size is low, samples are floating in time, or external disturbances lead to insecure dates. Here, we use a spike in radiocarbon during a solar energetic particle (SEP) event in 774/775 CE to confirm crossdating of a poorly-replicated King Billy pine (Athrotaxis selaginoides) chronology. Low sample depth between 1498 and 1523 CE (two trees) prevented confident dating of the early period of the chronology. Three core samples with strong correlation with the master chronology that likely included the 774/775 CE Miyake SEP event were identified for radiocarbon isotope analysis. We sectioned segments centered on the estimated 774/775 CE date and then isolated the holocellulose in each sample. Samples were sent to an accelerator mass spectrometry (AMS) for radiocarbon measurements. The AMS data confirmed the crossdating accuracy of the tree ring series and reinforces the applicability of this technique to anchor poorly dated tree ring series in time. In addition, we found sample processing with a microtome proved superior for holocellulose extractions and yielded more accurate 14C measurements. We recommend sampling with a microtome, processing at least three samples per year, and including sample masses greater than 100 ug C to confirm dating using radiocarbon spikes.  相似文献   

7.
The application of dendrochronology in (sub)tropical regions has been limited by the difficulty in finding trees with distinct annual rings that can be crossdated. Here, we report successful crossdating of Juniperus procera trees from North Gondar, Ethiopia. The trees form annual rings in response to a unimodal rainfall regime. The selection of mesic locations ensured that the trees did not respond to intra-seasonal weather anomalies. Crossdating was achieved by comparison of the wood anatomy directly on the surface of the core samples and purpose-adapted skeleton plotting. Wood-anatomical anomalies, such as false and indistinct rings, were regarded as potentially replicated features and used in crossdating. COFECHA yielded site-specific mean series inter-correlations between 0.52 and 0.59. AMS radiocarbon dating during the bomb era indicated that dating uncertainty is ±1 year.  相似文献   

8.
Crossdating is the defining technique of dendrochronology, ensuring that all measurements in a dataset are annually resolved and absolutely dated. This level of accuracy allows for the development of high-resolution environmental reconstructions of climate, disturbance, and productivity not only in trees, but also in other ring-forming organisms including fish, corals, and bivalves. However, crossdating is a laborious process and can be a significant bottleneck in the development of new chronologies, especially when attempting to find matches among undated, dead-collected material. Several software packages have been developed to aid in crossdating, yet efficiently identifying matches among large numbers of dead-collected samples of unknown antiquity remains a gap in functionality. To address this issue we present RingdateR, a new stand-alone and web-based application for statistical and graphical crossdating that shares many key features with established crossdating applications, but has been optimised for crossdating large collections of dead-collected material. The workflow allows users to load undated measurement time series in common file types (e.g. pos, lps, csv, and xlsx) to be matched against one another (i.e. pairwise analyses) or against an existing chronology. RingdateR provides graphical tools to help identify false or missed rings remaining in the matched measurement time series and to evaluate the impact of the newly crossdated measurement time series on chronology statistics. Whilst the decision as to whether a sample is correctly crossdated ultimately lies with careful visual inspection and discretion of the investigator, guidance from RingdateR can greatly expedite the process, especially when building chronologies that involve dead-collected samples.  相似文献   

9.
赵守栋  江源  焦亮  王明昌  张凌楠  李文卿 《生态学报》2015,35(22):7494-7502
在树轮年代学领域,ARSTAN是去趋势处理和建立年表方面应用最为广泛的程序,而新兴的R语言dplR扩展包实现了ARSTAN的主要功能,且具有源代码公开、扩展性强等优点,是传统程序的良好补充。使用贺兰山青海云杉(Picea Crassifolia)树轮宽度数据,分析了ARSTAN和dplR进行树轮年代学分析所得结果的差异。结果显示,两种程序计算平均敏感度和一阶自相关系数的平均误差为0.005—0.008,但具有确定的转换关系;两种程序如果使用同种方法去趋势,拟合曲线的参数相近,建立标准年表的平均误差为0.002;拟合自回归模型时差异较大,其中时域上表现为差值年表起始30a内差异显著,在频域上表现为dplR的差值年表保留的低频信息较少;年表统计量计算和公共区间分析中,不同程序计算样本总体代表性和信噪比的差异较大。分析表明,两程序在拟合生长趋势和自回归模型时存在算法上的较大差异,同时年表统计量和公共区间各指标的算法也不尽一致,但存在较为确定的转换关系。对开展不同来源数据的整合分析提出了建议,应明确不同研究中树轮数据的处理过程,在条件允许时使用同一程序或算法重新处理数据,确保结果的可比性。  相似文献   

10.
In the context of ecological research, tree-ring analysis often deals with short time series (< 30 years). Their crossdating and averaging can be difficult but crucial to use such data for ecological modelling, multivariate statistics, and climate-growth analysis. Several studies were conducted in the Central Apennines (Italy) on recent encroachment of European black pine (Pinus nigra J.F. Arnold) on treeless areas above the current forestline. Growth of young trees is mainly controlled by endogenous or microclimatic factors making usual dendrochronology methods less applicable and crossdating very difficult or even impossible. The potential ecological information deriving from tree-ring growth in short series is therefore limited by this methodological bias. The aim of this study is to test suitable methods for optimizing the use of short ring series for further analytical use. A dataset of 734 tree-ring series of young European black pines (mean cambial age 15 years) growing at high altitude in 8 sites was used in this analysis. At each site tree-ring series were divided in two groups based on inter-series correlation: the crossdated or selected series (SEL), and non-crossdated or rejected ones (REJ). The following dendrochronological parameters were calculated for SEL and REJ series: mean tree-ring width, mean sensitivity, Gini coefficient, first order autocorrelation, inter-series correlation, and Gleichläufigkeit (GLK). Two methods of pointer years analysis were tested in order to detect years with synchronous growth: i) Normalization in a moving Window (NW) and ii) the RElative growth change method (RE). The two methods were applied to the raw series varying the standard thresholds, in order to detect synchronous growth-years in SEL and REJ group. A sensitivity analysis was included to assess how the threshold choice in the analysis could affect the results obtained. The term “common” was used to indicate years with similar tree growth response. Differences in the detected number of common years within SEL and REJ were obtained using different time windows with the RE and NW methods. The 47 % of all series were classified as SEL, showing more common years than the REJ series. However, a similar result occurred considering all the series together without SEL/REJ discrimination. In general, a significant occurrence of common years could be a tool to select series to be averaged for a site mean chronology. These are preliminary but encouraging results contributing to a more efficient use of the ecological information provided by short time series from young trees.  相似文献   

11.
The “Belfast method” of statistical crossdating has been widely used in the British Isles since public domain software was released by Baillie and Pilcher (1973). Although the conceptual merits of the approach are accepted, the details of the methodology have been severely criticised, including the fact that serially correlated tree-ring time series violate a fundamental requirement for the use of Students t statistic as a measure of statistical significance. An unfortunate consequence of this has been that t values are often published without reference to the associated probability of the specific value being obtained by chance. Here we present an empirical method for determining statistical significance from analysis of many misaligned inter-site correlations amongst over 2000 dated British Isles oak chronologies. Results indicate that a t value of 3.5 has a probability of about one in 600 for series lengths of 100+ years, but this declines (becomes less rare) as series length decreases.  相似文献   

12.
13.
A recent report by Mondino and Avalle (2009) was widely distributed that demonstrated a re-dating of the famous “Messiah” violin, a violin attributed to Antonio Stradivari with a label date of 1716. An outermost ring date of 1844 is instead suggested rather than dates in the 1680s reported in previous studies. Mondino and Avalle suggest that this outermost ring date supports the attribution of the violin to Jean-Baptiste Vuillaume, a prolific French instrument maker who was well known for his copies of famous instruments. The statistical techniques and exercises used by Mondino and Avalle, however, are problematic and do not support this revised outermost date for the “Messiah” violin. Raw measurement data with original trends are used in their statistical crossdating, properties previously shown to hinder precise crossdating. They then substantiate their re-dating with polynomial trend curves, which has ever been accepted practice in dendrochronology. Furthermore, the authors use re-scaled correlation coefficients and t-values which artificially inflate the strength of the relationship between tree-ring series that are being statistically crossdated. Using the exact same tree-ring data, but using accepted techniques in statistical crossdating (e.g., the removal of all low-frequency trends and autocorrelation), we could not verify the revised dating of the “Messiah” violin. We urge caution for those who intend to use the SynchroSearch software, book, and lesson plans developed and distributed by Mondino and Avalle. This study illustrates the adverse effects possible in dendrochronology when investigators do not adhere to accepted and time-tested techniques, and are not versed in the extensive literature that highlights issues commonly encountered in statistical crossdating.  相似文献   

14.
African pencil cedar (Juniperus procera Hochst. ex Endlicher 1847) is a tropical, irregularly growing species that can produce annual growth rings in response to an annual cycle of wet and dry seasons. In this paper, we assess the periodicity of growth-ring formation for 13 stem discs from a site in Central-Northern Ethiopia by crossdating and radiocarbon dating. The crossdating process is described more transparently than usual to allow open discussion of the methodology employed. Although the ring-width series could be tentatively matched, radiocarbon dating revealed that the growth rings of the junipers from the studied site are neither annual nor represent a common periodicity. It was found that the trees are exceptionally sensitive and respond individually to the complex local climate. For future research, it is recommended to select more mesic sites with an unambiguously unimodal rainfall regime and to gain external evidence to support assumptions about the periodicity of growth-ring formation in Juniperus procera.  相似文献   

15.
We investigated crossdating and climate sensitivity in tree-ring series from Eucalyptus delegatensis Baker, R.T. and E. obliqua L'Herit. We first visually crossdated the measured ring width series and then independently verified this crossdating using Xmatch and cross-correlation significance tests. Crossdating was verified in 28 of the 32 study trees. Crossdating success differed between E. delegatensis and E. obliqua. In E. delegatensis crossdating success appears to be related to tree dominance and elevation. In E. obliqua radial azimuth appears to affect crossdating success. We developed two chronologies for each of the species studied. The first of these chronologies was based on all visually crossdated radii and the other on radii for which crossdating had been independently verified. Signal strength was higher in the verified chronologies. Correlation analysis between the verified chronologies and climate data revealed no significant correlation between precipitation and ring width for either species. E. obliqua ring width was significantly correlated with mean minimum and maximum air temperature and vapour pressure deficit during summer of the growing season. The E. delegatensis chronology was significantly correlated with air temperature and frequency of frost during the preceding winter. Ring width in both species was significantly correlated with air temperature during the preceding summer. Potential physiological explanations for these results are discussed. Further study is required to verify the results of climatological analysis and to explore the causes of variation in signal strength within and between trees.  相似文献   

16.
Spike-timing dependent plasticity (STDP) is a type of synaptic modification found relatively recently, but the underlying biophysical mechanisms are still unclear. Several models of STDP have been proposed, and differ by their implementation, and in particular how synaptic weights saturate to their minimal and maximal values. We analyze here kinetic models of transmitter-receptor interaction and derive a series of STDP models. In general, such kinetic models predict progressive saturation of the weights. Various forms can be obtained depending on the hypotheses made in the kinetic model, and these include a simple linear dependence on the value of the weight (“soft bounds”), mixed soft and abrupt saturation (“hard bound”), or more complex forms. We analyze in more detail simple soft-bound models of Hebbian and anti-Hebbian STDPs, in which nonlinear spike interactions (triplets) are taken into account. We show that Hebbian STDPs can be used to selectively potentiate synapses that are correlated in time, while anti-Hebbian STDPs depress correlated synapses, despite the presence of nonlinear spike interactions. This correlation detection enables neurons to develop a selectivity to correlated inputs. We also examine different versions of kinetics-based STDP models and compare their sensitivity to correlations. We conclude that kinetic models generally predict soft-bound dynamics, and that such models seem ideal for detecting correlations among large numbers of inputs.  相似文献   

17.
Tree-ring inter-annual pattern variation is crucial in dendrochronology, allowing the identification of possible limiting factors on growth. Thus, trees exposed to subtropical or tropical climates without a marked seasonality may show a low degree of interannual variation, impeding a straightforward dendroclimatological approach. Meanwhile, subtropical regions, and areas in transitional climates such as the Azores archipelago, are widely unexplored in terms of dendroclimatology, providing opportunities to work with endemic trees, including the dominant Azorean tree Juniperus brevifolia (Seub.) Antoine. To evaluate the dendrochronological potential of J. brevifolia, we analyzed tree-ring patterns, crossdating capabilities, and correlation with climate parameters. We sampled 48 individual trees from two natural populations (São Miguel and Terceira islands) using an increment borer. Besides, a Trephor tool was used to obtain wood microcores for micro-anatomical analysis. Although the transition between early and latewood was evident, partially indistinct ring boundaries and wedging rings were present in some cases, affecting the crossdating process, but not impeding the establishment of reliable ring-width chronologies. Following detrending, master chronologies were built and correlated with monthly temperature and precipitation data using the treeclim R package. The climate-growth relationships indicated negative correlations with late summer temperature in both populations. Considering our results and the importance of J. brevifolia as a dominant tree in the Azores natural forests, we conclude that it shows an acceptable potential for dendrochronological research. Thus, this study provides baseline information to help fill the knowledge gap regarding the climate-growth relationship of Azorean trees.  相似文献   

18.

Background

Over the last two decades, various measures of entropy have been used to examine the complexity of human postural control. In general, entropy measures provide information regarding the health, stability and adaptability of the postural system that is not captured when using more traditional analytical techniques. The purpose of this study was to examine how noise, sampling frequency and time series length influence various measures of entropy when applied to human center of pressure (CoP) data, as well as in synthetic signals with known properties. Such a comparison is necessary to interpret data between and within studies that use different entropy measures, equipment, sampling frequencies or data collection durations.

Methods and Findings

The complexity of synthetic signals with known properties and standing CoP data was calculated using Approximate Entropy (ApEn), Sample Entropy (SampEn) and Recurrence Quantification Analysis Entropy (RQAEn). All signals were examined at varying sampling frequencies and with varying amounts of added noise. Additionally, an increment time series of the original CoP data was examined to remove long-range correlations. Of the three measures examined, ApEn was the least robust to sampling frequency and noise manipulations. Additionally, increased noise led to an increase in SampEn, but a decrease in RQAEn. Thus, noise can yield inconsistent results between the various entropy measures. Finally, the differences between the entropy measures were minimized in the increment CoP data, suggesting that long-range correlations should be removed from CoP data prior to calculating entropy.

Conclusions

The various algorithms typically used to quantify the complexity (entropy) of CoP may yield very different results, particularly when sampling frequency and noise are different. The results of this study are discussed within the context of the neural noise and loss of complexity hypotheses.  相似文献   

19.
We present the first results of a dendroecological investigation on three prevailing species growing in the Apuseni Mountains. In this study we succeeded in building up about 200-year long local master chronologies for spruce, fir and beech. These chronologies will serve as a reference for crossdating of (sub-fossil) logs that were preserved in ice caves at the Apuseni Mts.

The analysis of climate–growth relationship provided interesting and different results for the three studied species: we found significant correlations between the beech chronology and the mean temperature of the prior July, autumn and January of the actual year as well as the weather conditions at the beginning of the vegetation period. Conifers yielded coherent results for the mean temperature of prior July and sum of precipitation in April. In addition, fir seems to be favouring above-average temperatures in January and February. The coherent and significant correlations with the April precipitation suggest a common coniferous phenomenon. Finally, beech index showed negative correlation with April temperature.  相似文献   


20.
Dendrochronological studies of large and old Sequoia sempervirens are limited by access and complex crossdating, but core sampling at regular height intervals along the main trunks of five standing trees allowed for reconstruction of growth, height, and age while providing within-tree replication for crossdating. We developed a crossdated ring-width chronology (1453–2015) for redwoods growing in an easternmost old-growth forest in the Napa Range of California, determined aboveground tree attributes, investigated the inter-annual climate-growth relationships since the late 19th century, and documented long-term growth trends. Age, height, f-DBH (functional diameter at breast height), and aboveground biomass of these co-dominant trees ranged from 241 to 783 years, 45.7 to 61.5 m, 117.0 to 226.9 cm, and 9.34 to 33.62 Mg, respectively. Bootstrapped correlation and response function analysis showed radial growth positively related to May through August Palmer Drought Severity Index (PDSI) and negatively related to maximum June temperature (r ≥ │0.47│, P < 0.0001), explaining 33.3% of ring-width variation. Bootstrapped correlations over a moving 40-year window indicated strengthening relationships with PDSI and minimum temperature. The long-term growth trend, reflected by the size-detrended metric of residual wood volume increment (RWVI), varied over time and showed an average one-year decrease of 13.3% for 20th and 21st century droughts. A fire detected in August 1931 corresponded with a one-year decrease in RWVI of 43.1% followed by >100% increase within five years. Growth dynamics for redwoods in this interior forest provide a point of comparison for redwoods previously studied in old-growth forests along the latitudinal gradient, highlighting range-wide trends and site-specific differences in responses to climate and fire.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号