首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
It has been suggested that the polyunsaturated omega-3 fatty acid, docosahexaenoic acid (DHA), can adopt unique closely packed arrays in lipid bilayers (Glomset and Applegate. (1986) J. Lipid Res. 27, 658-680). These conformations are predicted on the basis of molecular dynamics calculations and are in contrast to the expanded conformations characteristic of omega-6 unsaturated fatty acids. It has also been suggested that close packing of omega-3 acyl chains could have a substantial affect on the physical properties of lipid bilayers (e.g. permeability). We report here some experimental tests of these predictions. Surface pressure-area experiments have been carried out on DHA and its mixtures with stearic and oleic acids. At low surface pressures DHA is more expanded than oleic acid. Extrapolation to the high surface pressures characteristic of lipid bilayers indicates that the area per molecule of DHA is only marginally less than that for oleic acid. Thus there is no compelling evidence to suggest that the average area per molecule of the omega-3 fatty acid is substantially different from the omega-6 fatty acid at high surface pressures. Experiments also show that the permeability of bilayers to glucose and the rates of dissociation of pyrenyl cholesterol from bilayers were similar for bilayers containing DHA compared to bilayers containing oleic acid or linoleic acid.  相似文献   

2.
Fish oil omega-3 fatty acids such as eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) protect against arrhythmia and sudden cardiac death by largely unknown mechanisms. Recent in vitro and in vivo studies demonstrate that arachidonic acid (AA) metabolizing cytochrome P450-(CYP) enzymes accept EPA and DHA as efficient alternative substrates. Dietary EPA/DHA supplementation causes a profound shift of the cardiac CYP-eicosanoid profile from AA- to EPA- and DHA-derived epoxy- and hydroxy-metabolites. CYP2J2 and other CYP epoxygenases preferentially epoxidize the ω-3 double bond of EPA and DHA. The corresponding metabolites, 17,18-epoxy-EPA and 19,20-epoxy-DHA, dominate the CYP-eicosanoid profile of the rat heart after EPA/DHA supplementation. The (ω-3)-epoxyeicosanoids show highly potent antiarrhythmic properties in neonatal cardiomyocytes, suggesting that these metabolites may specifically contribute to the cardioprotective effects of omega-3 fatty acids. This hypothesis is discussed in the context of recent findings that revealed CYP-eicosanoid mediated mechanisms in cardiac ischemia-reperfusion injury and maladaptive cardiac hypertrophy.  相似文献   

3.
Epidemiological evidence suggests that dietary consumption of the long chain omega-3 fatty acids eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), commonly found in fish or fish oil, may modify the risk for certain neuropsychiatric disorders. As evidence, decreased blood levels of omega-3 fatty acids have been associated with several neuropsychiatric conditions, including Attention Deficit (Hyperactivity) Disorder, Alzheimer's Disease, Schizophrenia and Depression. Supplementation studies, using individual or combination omega-3 fatty acids, suggest the possibility for decreased symptoms associated with some of these conditions. Thus far, however, the benefits of supplementation, in terms of decreasing disease risk and/or aiding in symptom management, are not clear and more research is needed. The reasons for blood fatty acid alterations in these disorders are not known, nor are the potential mechanisms by which omega-3 fatty acids may function in normal neuronal activity and neuropsychiatric disease prevention and/or treatment. It is clear, however, that DHA is the predominant n-3 fatty acid found in the brain and that EPA plays an important role as an anti-inflammatory precursor. Both DHA and EPA can be linked with many aspects of neural function, including neurotransmission, membrane fluidity, ion channel and enzyme regulation and gene expression. This review summarizes the knowledge in terms of dietary omega-3 fatty acid intake and metabolism, as well as evidence pointing to potential mechanisms of omega-3 fatty acids in normal brain functioning, development of neuropsychiatric disorders and efficacy of omega-3 fatty acid supplementation in terms of symptom management.  相似文献   

4.
Preclinical and clinical evidence suggests that docosahexaenoic acid (DHA), an omega-3 fatty acid derived from diet or synthesized in the liver, decreases the risk of developing Alzheimer’s disease (AD). DHA levels are reduced in the brain of subjects with AD, but it is still unclear whether human dementias are associated with dysregulations of DHA metabolism. A systems biological view of omega-3 fatty acid metabolism offered unexpected insights on the regulation of DHA homeostasis in AD [1]. Results of multi-organ lipidomic analyses were integrated with clinical and gene-expression data sets to develop testable hypotheses on the functional significance of lipid abnormalities observed and on their possible mechanistic bases. One surprising outcome of this integrative approach was the discovery that the liver of AD patients has a limited capacity to convert shorter chain omega-3 fatty acids into DHA due to a deficit in the peroxisomal d-bifunctional protein. This deficit may contribute to the decrease in brain DHA levels and contribute to cognitive impairment.  相似文献   

5.
Deficiency in docosahexaenoic acid (DHA) is associated with impaired visual and neurological postnatal development, cognitive decline, macular degeneration, and other neurodegenerative diseases. DHA is an omega-3 polyunsaturated fatty acyl chain concentrated in phospholipids of brain and retina, with photoreceptor cells displaying the highest content of DHA of all cell membranes. The identification and characterization of neuroprotectin D1 (NPD1, 10R, 17S-dihydroxy-docosa-4Z,7Z,11E,13E,15Z,19Z-hexaenoic acid) contributes in understanding the biological significance of DHA. In oxidative stress-challenged human retinal pigment epithelial (RPE) cells, human brain cells, or rat brains undergoing ischemia-reperfusion, NPD1 synthesis is enhanced as a response for sustaining homeostasis. Thus, neurotrophins, Aβ peptide 42 (Aβ42), calcium ionophore A23187, interleukin (IL)-1β, or DHA supply enhances NPD1 synthesis. NPD1, in turn, up-regulates the antiapoptotic proteins of the Bcl-2 family and decreases the expression of proapoptotic Bcl-2 family members. Moreover, NPD1 inhibits IL-1β-stimulated expression of cyclooxygenase-2 (COX-2). Because both RPE and photoreceptors are damaged and then die in retinal degenerations, elucidating how NPD1 signaling contributes to retinal cell survival may lead to a new understanding of disease mechanisms. In human neural cells, DHA attenuates amyloid-β (Aβ) secretion, resulting in concomitant formation of NPD1. NPD1 was found to be reduced in the Alzheimer's disease (AD) cornu ammonis region 1 (CA1) hippocampal region, but not in other areas of the brain. The expression of key enzymes for NPD1 biosynthesis, cytosolic phospholipase A2 (cPLA2), and 15-lipoxygenase (15-LOX) was found altered in the AD hippocampal CA1 region. NPD1 repressed Aβ42-triggered activation of pro-inflammatory genes and upregulated the antiapoptotic genes encoding Bcl-2, Bcl-xl, and Bfl-1(A1) in human brain cells in culture. Overall, these results support the concept that NPD1 promotes brain and retina cell survival via the induction of antiapoptotic and neuroprotective gene-expression programs that suppress Aβ42-induced neurotoxicity and other forms of cell injury, which in turn fosters homeostasis during development in aging, as well as during the initiation and progression of neurodegenerative diseases.  相似文献   

6.
Biomarkers of DHA status   总被引:1,自引:1,他引:0  
Docosahexaenoic acid (DHA, 22:6n-3) is a long chain omega-3 fatty acid that is the primary n-3 fatty acid found in the central nervous system where it plays both a structural and functional role in cells. Because the tissues of interest are generally inaccessible for fatty acid analysis in humans and because precise DHA intake is difficult to determine, surrogate biomarkers are important for defining DHA status. Analysis of total lipid extracts or phospholipids from plasma or erythrocytes by gas chromatography meet the criteria for a useful biomarker of DHA status. Furthermore, both plasma and erythrocyte DHA levels have been correlated with brain, cardiac, and other tissue levels. Use of these biomarkers of DHA status will enable future clinical trials and observational studies to define more precisely the DHA levels required for either disease prevention or other functional benefits.  相似文献   

7.
Omega-3 fatty acids and neurological injury   总被引:1,自引:0,他引:1  
Studies with omega-3 polyunsaturated fatty acids (PUFA) have shown that these compounds have therapeutic potential in several indications in neurology and psychiatry. Acute spinal cord injury (SCI) is an event with devastating consequences, and no satisfactory treatment is available at present. The pathogenetic mechanisms associated with SCI include excitotoxicity, increased oxidation and inflammation. We review here our recent studies, which suggest that omega-3 PUFA have significant neuroprotective potential in spinal cord trauma. In a first study, we administered an intravenous bolus of alpha-linolenic acid (LNA) or docosahexaenoic acid (DHA) 30 min after spinal cord hemisection injury in adult rats. The omega-3 PUFA led to increased neuronal and glial survival, and a significantly improved neurological outcome. In subsequent studies, we tested DHA in a more severe compression model of SCI. We also explored a combined acute and chronic treatment regime using DHA. Saline or DHA was administered intravenously 30 min after compression of the spinal cord. After injury, the saline group received a standard control diet, whereas DHA-injected animals received either a control or a DHA-enriched diet for 6 weeks following injury. We assessed locomotor recovery and analysed markers for cell survival and axonal damage, and we also investigated the effects of the treatment on the inflammatory reaction and the oxidative stress that follow SCI. We showed that the acute DHA treatment is neuroprotective after compression SCI, even if the treatment is delayed up to an hour after injury. The DHA injection led to an increased neuronal and glial cell survival, and the effect of the DHA injection was amplified by addition of DHA to the diet. Rats treated with a DHA injection and a DHA-enriched diet performed significantly better at 6 weeks in terms of neurological outcome. The analysis of the tissue after DHA administration showed that the fatty acid significantly reduced lipid peroxidation, protein oxidation and RNA/DNA oxidation, and the induction of COX-2. Parallel studies in a facial nerve injury model in mice also showed pro-regenerative effects of chronic dietary administration of DHA after nerve lesion. These observations suggest that treatment with omega-3 PUFA could represent a promising therapeutic approach in the management of neurological injury.  相似文献   

8.
Several general principles with respect to the role of the fatty acids in the progression of kidney disease have begun to emerge from the mass of observational detail. Interventions that increase renal exposure to prostaglandins of the E series appear to be beneficial. They include administration of prostaglandin analogues and dietary supplementation with their fatty acid precursor, linoleate. The beneficial effects may be attributed to preservation of renal blood flow and glomerular filtration, reduction in blood pressure, direct effects on the lipid composition and function of cell membranes, and immune suppression. Interventions that inhibit thromboxane and leukotriene production, such as omega-3 fatty acid supplementation of the diet or administration of enzyme or receptor inhibitors, are also protective. Prevention of vasoconstriction, inhibition of platelet activation, and regulation of cell proliferation and matrix production have all been implicated in the mediation of the observed retardation of sclerosis. Fish oil may have synergistic, suppressive effects on various parameters of immune activation. Essential fatty acid deficiency, of course, inhibits both prostaglandin E and thromboxane production, cancelling out the protective and injurious components of arachidonate oxidation. Yet, studies on its beneficial effects have revealed another aspect of eicosanoid metabolism, independent of cyclooxygenase and lipoxygenase activity, that appears to regulate monocyte migration into injured tissue. Dietary interruption of this pathway has proven protective to renal structure and function. Alterations in lipid metabolism may represent a common, mediating pathway of glomerular and interstitial susceptibility to progressive sclerosis in the kidney. The process appears to be amenable to manipulation by pharmacologic or dietary modulation of fatty acid metabolism. Eicosanoid metabolites and tissue-leukocyte signaling are two mechanisms by which lipid alterations can affect renal function. There are doubtless many others awaiting elucidation. Delineation of all the mechanisms whereby fatty acid metabolism can contribute to progressive kidney injury may provide a useful model for the examination of progressive sclerosis affecting other tissues subsequent to immune, vascular, or metabolic injury.  相似文献   

9.
Omega-3 fatty acids are crucial for proper development and function of the brain where docosahexaenoic acid (DHA), the primary omega-3 fatty acid in the brain, is retained avidly by the neuronal membranes. We investigated the effect of DHA depletion in the brain on the outcome of traumatic brain injury (TBI). Pregnant mice were put on an omega-3 fatty acid adequate or deficient diet from gestation day 14 and the pups were raised on the respective diets. Continuation of this dietary regime for three generations resulted in approximately 70% loss of DHA in the brain. Controlled cortical impact was delivered to both groups of mice to produce severe TBI and the functional recovery was compared. Compared to the omega-3 adequate mice, the DHA depleted mice exhibited significantly slower recovery from motor deficits evaluated by the rotarod and the beam walk tests. Furthermore, the DHA deficient mice showed greater anxiety-like behavior tested in the open field test as well as cognitive deficits evaluated by the novel object recognition test. The level of alpha spectrin II breakdown products, the markers of TBI, was significantly elevated in the deficient mouse cortices, indicating that the injury is greater in the deficient brains. This observation was further supported by the reduction of NeuN positive cells around the site of injury in the deficient mice, indicating exacerbated neuronal death after injury. These results suggest an important influence of the brain DHA status on TBI outcome.  相似文献   

10.
Inflammation is a defensive response to injury and infection, but excessive or inappropriate inflammation contributes to a range of acute and chronic human diseases. Clinical assessment of dietary supplementation of omega-3 polyunsaturated fatty acids (PUFA) including eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) indicate their beneficial impact on human diseases in which inflammation is suspected as a key component of the pathogenesis. Although the mechanism of EPA and DHA action is still not fully defined in molecular terms, recent studies have revealed that, during the course of acute inflammation, omega-3 PUFA-derived mediators including resolvins and protectins with potent anti-inflammatory and pro-resolving properties are produced. In this review, we provide an overview of the formation and actions of EPA-derived anti-inflammatory lipid mediator resolvin E1.  相似文献   

11.
A crossroads has been reached on research into docosahexaenoic acid (DHA) and Alzheimer's disease (AD). On the one hand, several prospective observational studies now clearly indicate a protective effect of higher fish and DHA intake against risk of AD. On the other hand, once AD is clinically evident, supplementation trials demonstrate essentially no benefit of DHA in AD. Despite apparently low DHA intake in AD, brain DHA levels are frequently the same as in controls, suggesting that low DHA intake results in low plasma DHA but does not necessarily reduce brain DHA in humans. Animal models involving dietary omega-3 fatty acid deficiency to deplete brain DHA may therefore not be appropriate in AD research. Studies in the healthy elderly suggest that DHA homeostasis changes during aging. Tracer methodology now permits estimation of DHA half-life in the human brain and whole body. Apolipoprotein E alleles have an important impact not only on AD but also on DHA homeostasis in humans. We therefore encourage further development of innovative approaches to the study of DHA metabolism and its role in human brain function. A better understanding of DHA metabolism in humans will hopefully help explain how higher habitual DHA intake protects against the risk of deteriorating cognition during aging and may eventually give rise to a breakthrough in the treatment of AD.  相似文献   

12.
Docosahexaenoic acid (DHA; C22:6 n-3) is an abundant fatty acid in fish phospholipids. In the present study, we employed liquid chromatography-ultraviolet spectrometry-tandem mass spectrometry and dissociated rainbow trout (Oncorhynchus mykiss) brain cells to determine whether fish utilize endogenous DHA to produce the recently uncovered novel lipid mediators termed the resolvins and protectins, generated by mammalian cells [Serhan CN, Hong S, Gronert K, et al. Resolvins: a family of bioactive products of omega-3 fatty acid transformation circuits initiated by aspirin treatment that counter proinflammation signals. J Exp Med 2002; 196:1025-37; Hong S, Gronert K, Devchand P, Moussignac R-L, Serhan, CN. Novel docosatrienes and 17S-resolvins generated from docosahexaenoic acid in murine brain, human blood, and glial cells. J Biol Chem 2003;278:14677-87]. Trout brain cells biosynthesize a range of recently identified di- and tri-hydroxy-containing bioactive products from endogenous sources of DHA when challenged in vitro. We identified neuroprotectin D1, resolvin D5, resolvin D1 and resolvin D2 from trout brain cells. Each compound was identified on the basis of its characteristic physical chemical properties that included MS, MS-MS, UV spectra and chromatographic behavior. The monohydroxy products from DHA, signatures of DHA conversion by lipoxygenases, were also identified. These included both 14S-hydroxy-docosahexaenoic acid and 17S-hydroxy-docosahexaenoic acid. The biosynthesis of these novel bioactive lipid mediators, namely resolvins and protectins, by fish cells provides the first evidence for the conservation of these structures from fish to humans as chemical signals in diverse biological systems.  相似文献   

13.
The harmony and function of the complex brain circuits and synapses are sustained mainly by excitatory and inhibitory neurotransmission, neurotrophins, gene regulation, and factors, many of which are incompletely understood. A common feature of brain circuit components, such as dendrites, synaptic membranes, and other membranes of the nervous system, is that they are richly endowed in docosahexaenoic acid (DHA), the main member of the omega-3 essential fatty acid family. DHA is avidly retained and concentrated in the nervous system and known to play a role in neuroprotection, memory, and vision. Only recently has it become apparent why the surprisingly rapid increases in free (unesterified) DHA pool size take place at the onset of seizures or brain injury. This phenomenon began to be clarified by the discovery of neuroprotectin D1 (NPD1), the first-uncovered bioactive docosanoid formed from free DHA through 15-lipoxygenase-1 (15-LOX-1). NPD1 synthesis includes, as agonists, oxidative stress and neurotrophins. The evolving concept is that DHA-derived docosanoids set in motion endogenous signaling to sustain homeostatic synaptic and circuit integrity. NPD1 is anti-inflammatory, displays inflammatory resolving activities, and induces cell survival, which is in contrast to the pro-inflammatory actions of the many of omega-6 fatty acid family members. We highlight here studies relevant to the ability of DHA to sustain neuronal function and protect synapses and circuits in the context of DHA signalolipidomics. DHA signalolipidomics comprises the integration of the cellular/tissue mechanism of DHA uptake, its distribution among cellular compartments, the organization and function of membrane domains containing DHA phospholipids, and the precise cellular and molecular events revealed by the uncovering of signaling pathways regulated by docosanoids endowed with prohomeostatic and cell survival bioactivity. Therefore, this approach offers emerging targets for prevention, pharmaceutical intervention, and clinical translation involving DHA-mediated signaling.  相似文献   

14.
Docosahexaenoic acid affects cell signaling by altering lipid rafts   总被引:8,自引:0,他引:8  
With 22 carbons and 6 double bonds docosahexaenoic acid (DHA) is the longest and most unsaturated fatty acid commonly found in membranes. It represents the extreme example of a class of important human health promoting agents known as omega-3 fatty acids. DHA is particularly abundant in retinal and brain tissue, often comprising about 50% of the membrane's total acyl chains. Inadequate amounts of DHA have been linked to a wide variety of abnormalities ranging from visual acuity and learning irregularities to depression and suicide. The molecular mode of action of DHA, while not yet understood, has been the focus of our research. Here we briefly summarize how DHA affects membrane physical properties with an emphasis on membrane signaling domains known as rafts. We report the uptake of DHA into brain phosphatidylethanolamines and the subsequent exclusion of cholesterol from the DHA-rich membranes. We also demonstrate that DHA-induced apoptosis in MDA-MB-231 breast cancer cells is associated with externalization of phosphatidylserine and membrane disruption ("blebbing"). We conclude with a proposal of how DHA incorporation into membranes may control cell biochemistry and physiology.  相似文献   

15.
The maintenance of optimal cognitive function is a central feature of healthy aging. Impairment in brain glucose uptake is common in aging associated cognitive deterioration, but little is known of how this problem arises or whether it can be corrected or bypassed. Several aspects of the challenge to providing the brain with an adequate supply of fuel during aging seem to relate to omega-3 fatty acids. For instance, low intake of omega-3 fatty acids, especially docosahexaenoic acid (DHA), is becoming increasingly associated with several forms of cognitive decline in the elderly, particularly Alzheimer's disease. Brain DHA level seems to be an important regulator of brain glucose uptake, possibly by affecting the activity of some but not all the glucose transporters. DHA synthesis from either alpha-linolenic acid (ALA) or eicosapentaenoic acid (EPA) is very low in humans begging the question of whether these DHA precursors are likely to be helpful in maintaining cognition during aging. We speculate that ALA and EPA may well have useful supporting roles in maintaining brain function during aging but not by their conversion to DHA. ALA is an efficient ketogenic fatty acid, while EPA promotes fatty acid oxidation. By helping to produce ketone bodies, the effects of ALA and EPA could well be useful in strategies intended to use ketones to bypass problems of impaired glucose access to the brain during aging. Hence, it may be time to consider whether the main omega-3 fatty acids have distinct but complementary roles in brain function.  相似文献   

16.
17.
The omega-3 polyunsaturated fatty acid docosahexaenoic acid (DHA) possesses potent anti-inflammatory properties and has shown therapeutic benefit in numerous inflammatory diseases. However, the molecular mechanisms of these anti-inflammatory properties are poorly understood. DHA is highly susceptible to peroxidation, which yields an array of potentially bioactive lipid species. One class of compounds are cyclopentenone neuroprostanes (A(4)/J(4)-NPs), which are highly reactive and similar in structure to anti-inflammatory cyclopentenone prostaglandins. Here we show that a synthetic A(4)/J(4)-NP, 14-A(4)-NP (A(4)-NP), potently suppresses lipopolysaccharideinduced expression of inducible nitric-oxide synthase and cyclooxygenase-2 in macrophages. Furthermore, A(4)-NP blocks lipopolysaccharide-induced NF-kappaB activation via inhibition of Ikappa kinase-mediated phosphorylation of IkappaBalpha. Mutation on Ikappa kinase beta cysteine 179 markedly diminishes the effect of A(4)-NP, suggesting that A(4)-NP acts via thiol modification at this residue. Accordingly, the effects of A(4)-NP are independent of peroxisome proliferator-activated receptor-gamma and are dependent on an intact reactive cyclopentenone ring. Interestingly, free radical-mediated oxidation of DHA greatly enhances its anti-inflammatory potency, an effect that closely parallels the formation of A(4)/J(4)-NPs. Furthermore, chemical reduction or conjugation to glutathione, both of which eliminate the bioactivity of A(4)-NP, also abrogate the anti-inflammatory effects of oxidized DHA. Thus, we have demonstrated that A(4)/J(4)-NPs, formed via the oxidation of DHA, are potent inhibitors of NF-kappaB signaling and may contribute to the anti-inflammatory actions of DHA. These findings have implications for understanding the anti-inflammatory properties of omega-3 fatty acids, and elucidate novel interactions between lipid peroxidation products and inflammation.  相似文献   

18.
Serotonin (5HT) released from aggregating platelets at sites of vascular injury is a known mitogen for vascular endothelial cells. Recent studies have indicated that regenerating endothelial cells at sites of vessel wall injury may play a role in the development of restenosis by synthesizing and releasing growth factors for vascular smooth muscle cells, proliferation of which may result in the development of neointima. Diets rich in fish oils (omega-3 fatty acids) are associated with reduced risk of cardiovascular disease including atherosclerosis and restenosis. This study examined the effect of the omega-3 and other fatty acids, eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), on 5HT induced endothelial cell proliferation. Among the fatty acids examined only EPA and DHA could reverse the mitogenic effect of 5HT on vascular endothelial cells, whereas oleic acid or palmitic acid did not have any effect. When added together, EPA and DHA potentiate each other in reversing the mitogenic effect of 5HT. EPA and DHA also inhibited the 5HT-induced increase in the 5HT2 receptor mRNA, without a change in the receptor density or affinity. This data suggests that one of the mechanisms by which omega-3 fatty acids may attenuate the development of atherosclerosis or restenosis is to inhibit the mitogen induced growth of vascular endothelial cells, which attenuates the release of growth factors for vascular smooth muscle cells.  相似文献   

19.
Omega-3 fatty acids and dementia   总被引:1,自引:1,他引:0  
More than a dozen epidemiological studies have reported that reduced levels or intake of omega-3 fatty acids or fish consumption is associated with increased risk for age-related cognitive decline or dementia such as Alzheimer's disease (AD). Increased dietary consumption or blood levels of docosahexaenoic acid (DHA) appear protective for AD and other dementia in multiple epidemiological studies; however, three studies suggest that the ApoE4 genotype limits protection. DHA is broadly neuroprotective via multiple mechanisms that include neuroprotective DHA metabolites, reduced arachidonic acid metabolites, and increased trophic factors or downstream trophic signal transduction. DHA is also protective against several risk factors for dementia including head trauma, diabetes, and cardiovascular disease. DHA is specifically protective against AD via additional mechanisms: It limits the production and accumulation of the amyloid β peptide toxin that is widely believed to drive the disease; and it also suppresses several signal transduction pathways induced by Aβ, including two major kinases that phosphorylate the microtubule-associated protein tau and promote neurofibrillary tangle pathology. Based on the epidemiological and basic research data, expert panels have recommended the need for clinical trials with omega-3 fatty acids, notably DHA, for the prevention or treatment of age-related cognitive decline—with a focus on the most prevalent cause, AD. Clinical trials are underway to prevent and treat AD. Results to-date suggest that DHA may be more effective if it is begun early or used in conjunction with antioxidants.  相似文献   

20.
Among omega-3 polyunsaturated fatty acids (PUFAs), docosahexaenoic acid (DHA, 22:6n-3) is important for adequate brain development and cognition. DHA is highly concentrated in the brain and plays an essential role in brain functioning. DHA, one of the major constituents in fish fats, readily crosses the blood–brain barrier from blood to the brain. Its critical role was further supported by its reduced levels in the brain of Alzheimer's disease (AD) patients. This agrees with a potential role of DHA in memory, learning and cognitive processes. Since there is yet no cure for dementia such as AD, there is growing interest in the role of DHA-supplemented diet in the prevention of AD pathogenesis. Accordingly, animal, epidemiological, preclinical and clinical studies indicated that DHA has neuroprotective effects in a number of neurodegenerative conditions including AD. The beneficial effects of this key omega-3 fatty acid supplementation may depend on the stage of disease progression, other dietary mediators and the apolipoprotein ApoE genotype. Herein, our review investigates, from animal and cell culture studies, the molecular mechanisms involved in the neuroprotective potential of DHA with emphasis on AD.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号