首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
The most common strategy to produce recombinant proteins using Escherichia coli as expression vector is fed-batch culture, since high cell density cultures strategies have successfully been applied. Several methodologies to limit the specific growth rate in order to control E. coli metabolism have been defined, demonstrating that cultures can be grown under glucose limitation up to high cell densities without accumulation of acetic acid. However, under induction conditions it has been observed that E. coli metabolism is reorganized again and leads to acetic acid accumulation, causing inhibition of cell growth and decreasing protein expression efficiency.We propose a double limitation strategy (glucose and IPTG) for E. coli fed-batch cultures to avoid the deregulation of the metabolism in the induction phase. Reducing the concentration of IPTG while keeping glucose growth limitation, the accumulation of acetic acid decreased. At an IPTG concentration of 0.03 mmol/g DCW no accumulation of acetic acid was observed during the induction phase, in contraposition to what has normally been observed.Although a slight reduction of protein expression rate was observed when applying this double limitation strategy, the bioprocess volumetric productivity was enhanced due to the capability to prolong the induction phase, reaching higher levels of protein production. Another advantage of this strategy is the reduction of media cost due to the lower level of IPTG used.  相似文献   

4.
Carbon fluxes through main pathways of glucose utilization in Escherichia coli cells-glycolysis, pentose phosphate pathway (PPP), and Enther-Doudoroff pathway (EDP)—were studied. Their ratios were analyzed in E. coli strains MG1655, MG1655Δ(edd-eda), MG1655Δ(zwf, edd-eda), and MG1655Δ(pgi, edd-eda). It was shown that the carbon flux through glycolysis was the main route of glucose utilization, averaging ca. 80%. Inactivation of EDP did not affect growth parameters. Nevertheless, it altered carbon fluxes through the tricarboxylic acid cycles and energy metabolism in the cell. Inactivation of PPP decreased growth rate to a lesser degree than glycolysis inactivation.  相似文献   

5.
6.
Increasing recombinant protein production yields from bacterial cultures remains an important challenge in biotechnology. Acetate accumulation due to high dissolved carbon dioxide (pCO2) concentrations in the medium has been identified as a factor that negatively affects such yields. Under appropriate culture conditions, acetate could be re-assimilated by bacterial cells to maintain heterologous proteins production. In this work, we developed a simplified metabolic network aiming to establish a reaction rate analysis for a recombinant Escherichia coli when producing green fluorescent protein (GFP) under controlled pCO2 concentrations. Because E. coli is able to consume both glucose and acetate, the analysis was performed in two stages. Our results indicated that GFP synthesis is an independent process of cellular growth in some culture phases. Additionally, recombinant protein production is influenced by the available carbon source and the amount of pCO2 in the culture medium. When growing on glucose, the increase in the pCO2 concentration produced a down-regulation of central carbon metabolism by directing the carbon flux toward acetate accumulation; as a result, cellular growth and the overall GFP yield decreased. However, the maximum specific rate of GFP synthesis occurred with acetate as the main available carbon source, despite the low activity in the other metabolic pathways. To maintain cellular functions, including GFP synthesis, carbon flux was re-distributed toward the tricarboxylic acid cycle and the pentose phosphate pathway to produce ATP and NADH. The thermodynamic analysis allowed demonstrating the feasibility of the simplified network for describing the metabolic state of a recombinant system.  相似文献   

7.
Glucose and xylose are the two most abundant sugars derived from the breakdown of lignocellulosic biomass. While aerobic glucose metabolism is relatively well understood in E. coli, until now there have been only a handful of studies focused on anaerobic glucose metabolism and no 13C-flux studies on xylose metabolism. In the absence of experimentally validated flux maps, constraint-based approaches such as MOMA and RELATCH cannot be used to guide new metabolic engineering designs. In this work, we have addressed this critical gap in current understanding by performing comprehensive characterizations of glucose and xylose metabolism under aerobic and anaerobic conditions, using recent state-of-the-art techniques in 13C metabolic flux analysis (13C-MFA). Specifically, we quantified precise metabolic fluxes for each condition by performing parallel labeling experiments and analyzing the data through integrated 13C-MFA using the optimal tracers [1,2-13C]glucose, [1,6-13C]glucose, [1,2-13C]xylose and [5-13C]xylose. We also quantified changes in biomass composition and confirmed turnover of macromolecules by applying [U-13C]glucose and [U-13C]xylose tracers. We demonstrated that under anaerobic growth conditions there is significant turnover of lipids and that a significant portion of CO2 originates from biomass turnover. Using knockout strains, we also demonstrated that β-oxidation is critical for anaerobic growth on xylose. Quantitative analysis of co-factor balances (NADH/FADH2, NADPH, and ATP) for different growth conditions provided new insights regarding the interplay of energy and redox metabolism and the impact on E. coli cell physiology.  相似文献   

8.

Background

Genome sequencing and bioinformatics are producing detailed lists of the molecular components contained in many prokaryotic organisms. From this 'parts catalogue' of a microbial cell, in silicorepresentations of integrated metabolic functions can be constructed and analyzed using flux balance analysis (FBA). FBA is particularly well-suited to study metabolic networks based on genomic, biochemical, and strain specific information.

Results

Herein, we have utilized FBA to interpret and analyze the metabolic capabilities of Escherichia coli. We have computationally mapped the metabolic capabilities of E. coliusing FBA and examined the optimal utilization of the E. colimetabolic pathways as a function of environmental variables. We have used an in silicoanalysis to identify seven gene products of central metabolism (glycolysis, pentose phosphate pathway, TCA cycle, electron transport system) essential for aerobic growth of E. colion glucose minimal media, and 15 gene products essential for anaerobic growth on glucose minimal media. The in silico tpi -, zwf, and pta -mutant strains were examined in more detail by mapping the capabilities of these in silicoisogenic strains.

Conclusions

We found that computational models of E. colimetabolism based on physicochemical constraints can be used to interpret mutant behavior. These in silicaresults lead to a further understanding of the complex genotype-phenotype relation. Supplementary information: 10.1186/1471-2105-1-1  相似文献   

9.
Commonly steady state analysis of microbial metabolism is performed under well defined physiological conditions in continuous cultures with fixed external rates. However, most industrial bioprocesses are operated in fed‐batch mode under non‐stationary conditions, which cannot be realized in chemostat cultures. A novel experimental setup—rapid media transition—enables steady state perturbation of metabolism on a time scale of several minutes in parallel to operating bioprocesses. For this purpose, cells are separated from the production process and transferred into a lab‐scale stirred‐tank reactor with modified environmental conditions. This new approach was evaluated experimentally in four rapid media transition experiments with Escherichia coli from a fed‐batch process. We tested the reaction to different carbon sources entering at various points of central metabolism. In all cases, the applied substrates (glucose, succinate, acetate, and pyruvate) were immediately utilized by the cells. Extracellular rates and metabolome data indicate a metabolic steady state during the short‐term cultivation. Stoichiometric analysis revealed distribution of intracellular fluxes, which differs drastically subject to the applied carbon source. For some reactions, the variation of flux could be correlated to changes of metabolite concentrations. © 2009 American Institute of Chemical Engineers Biotechnol. Prog., 2010  相似文献   

10.
Vibrio natriegens is a fast-growing, non-pathogenic bacterium that is being considered as the next-generation workhorse for the biotechnology industry. However, little is known about the metabolism of this organism which is limiting our ability to apply rational metabolic engineering strategies. To address this critical gap in current knowledge, here we have performed a comprehensive analysis of V. natriegens metabolism. We constructed a detailed model of V. natriegens core metabolism, measured the biomass composition, and performed high-resolution 13C metabolic flux analysis (13C-MFA) to estimate intracellular fluxes using parallel labeling experiments with the optimal tracers [1,2−13C]glucose and [1,6−13C]glucose. During exponential growth in glucose minimal medium, V. natriegens had a growth rate of 1.70 1/h (doubling time of 24 min) and a glucose uptake rate of 3.90 g/g/h, which is more than two 2-fold faster than E. coli, although slower than the fast-growing thermophile Geobacillus LC300. 13C-MFA revealed that the core metabolism of V. natriegens is similar to that of E. coli, with the main difference being a 33% lower normalized flux through the oxidative pentose phosphate pathway. Quantitative analysis of co-factor balances provided additional insights into the energy and redox metabolism of V. natriegens. Taken together, the results presented in this study provide valuable new information about the physiology of V. natriegens and establish a solid foundation for future metabolic engineering efforts with this promising microorganism.  相似文献   

11.
Escherichia coli cells that are aged in batch culture display an increased fitness referred to as the growth advantage in stationary phase, or GASP, phenotype. A common early adaptation to this culture environment is a mutant rpoS allele, such as rpoS819, that results in attenuated RpoS activity. However, it is important to note that during long-term batch culture, environmental conditions are in flux. To date, most studies of the GASP phenotype have focused on identifying alleles that render an advantage in a specific environment, Luria-Bertani broth (LB) batch culture. To determine what role environmental conditions play in rendering relative fitness advantages to E. coli cells carrying either the wild-type or rpoS819 alleles, we performed competitions under a variety of culture conditions in which either the available nutrients, the pH, or both were manipulated. In LB medium, we found that while the rpoS819 allele confers a strong competitive fitness advantage at basic pH, it confers a reduced advantage under neutral conditions, and it is disadvantageous under acidic conditions. Similar results were found using other media. rpoS819 conferred its greatest advantage in basic minimal medium in which either glucose or Casamino Acids were the sole source of carbon and energy. In acidic medium supplemented with either Casamino Acids or glucose, the wild-type allele conferred a slight advantage. In addition, populations were dynamic under all pH conditions tested, with neither the wild-type nor mutant rpoS alleles sweeping a culture. We also found that the strength of the fitness advantage gained during a 10-day incubation is pH dependent.  相似文献   

12.

Background

Classic metabolic engineering strategies often induce significant flux imbalances to microbial metabolism, causing undesirable outcomes such as suboptimal conversion of substrates to products. Several mathematical frameworks have been developed to understand the physiological and metabolic state of production strains and to identify genetic modification targets for improved bioproduct formation. In this work, a modeling approach was applied to describe the physiological behavior and the metabolic fluxes of a shikimic acid overproducing Escherichia coli strain lacking the major glucose transport system, grown on complex media.

Results

The obtained flux distributions indicate the presence of high fluxes through the pentose phosphate and Entner-Doudoroff pathways, which could limit the availability of erythrose-4-phosphate for shikimic acid production even with high flux redirection through the pentose phosphate pathway. In addition, highly active glyoxylate shunt fluxes and a pyruvate/acetate cycle are indicators of overflow glycolytic metabolism in the tested conditions. The analysis of the combined physiological and flux response surfaces, enabled zone allocation for different physiological outputs within variant substrate conditions. This information was then used for an improved fed-batch process designed to preserve the metabolic conditions that were found to enhance shikimic acid productivity. This resulted in a 40% increase in the shikimic acid titer (60 g/L) and 70% increase in volumetric productivity (2.45 gSA/L*h), while preserving yields, compared to the batch process.

Conclusions

The combination of dynamic metabolic modeling and experimental parameter response surfaces was a successful approach to understand and predict the behavior of a shikimic acid producing strain under variable substrate concentrations. Response surfaces were useful for allocating different physiological behavior zones with different preferential product outcomes. Both model sets provided information that could be applied to enhance shikimic acid production on an engineered shikimic acid overproducing Escherichia coli strain.
  相似文献   

13.
In order to understand the effect of pH on growth and ethanol production in ethanologenic Escherichia coli, we investigated the kinetic behavior of ethanologenic E. coli during alcoholic fermentation of glucose or xylose in a controlled pH environment and the fermentation of glucose, xylose, or their mixtures without pH control. Based on the Monod equation, an unstructured and unsegregated kinetic model was proposed as a function of the pH of the fermentation medium. The pH effects on cell growth, sugar consumption, and ethanol production were taken into account in the proposed model. Both cell growth and ethanol production were found to be significantly influenced by the pH of the fermentation medium. The optimal pH range for ethanol production by ethanologenic E. coli on either glucose or xylose was 6.0–6.5. The highest value of the maximum specific growth rate (μ m) was obtained at pH 7.0. In the kinetic model of the fermentations of the sugar mixture, two inhibition terms related to glucose concentrations were included in both the cell growth and ethanol production equations because of the strong inhibitions of glucose and glucose metabolites on xylose metabolism. A good fit was found between model predictions and experimental data for both single-sugar and mixed-sugar fermentations without pH control within the experimental domain.  相似文献   

14.
The objective of the presented work is to demonstrate the metabolism of 1,2 propandiol by Lactobacillus reuteri and to elucidate the metabolites produced during the process. This Metabolic pathway is crucial for biotechnological applications using L. reuteri in bioconversion of glycerol to industrially important plate-form chemicals. L. reuteri grown on minimal media containing 1,2 propanediol was able to utilize the compound as a sole carbon and energy source. The growth of the bacteria was linear with time; however the specific growth rate was significantly low compared to bacteria grown on the same media in the presence of glucose.The fermentation of 1,2 propanediol by L. reuteri in presence and absence of glucose was followed for 72 h and the metabolites produced during the process were detected using HPLC. 1,2 Propanediol was completely converted to propionaldhyde in a time dependent fashion, this process had a higher rate in presence of glucose. Consequently the produced propionaldhyde was converted to propionic acid and propanol in a skewed equimolar manner. In presence of glucose: acetic acid, lactic acid, succinic acid and ethanol were detected while in absence of glucose only minute amounts of acetic acid and lactic acid were detected which indicates presence of different metabolic pathways for glucose and 1,2 propanediol metabolism. Resting cells of L. reuteri induced in presence of 1,2 propanediol have shown significant capabilities to convert aqueous glycerol to 1,3 propanediol, 3-hydroxypropionaldhyde and a compound proposed to be 3-hydroxypropionic acid as detected by gas chromatographic technique.  相似文献   

15.
Current researches into the production of biochemicals from lignocellulosic feedstocks are focused on the identification and engineering of individual microbes that utilize complex sugar mixtures. Microbial consortia represent an alternative approach that has the potential to better exploit individual species capabilities for substrate uptake and biochemical production. In this work, we construct and experimentally validate a dynamic flux balance model of a Saccharomyces cerevisiae and Escherichia coli co-culture designed for efficient aerobic consumption of glucose/xylose mixtures. Each microbe is a substrate specialist, with wild-type S. cerevisiae consuming only glucose and engineered E. coli strain ZSC113 consuming only xylose, to avoid diauxic growth commonly observed in individual microbes. Following experimental identification of a common pH and temperature for optimal co-culture batch growth, we demonstrate that pure culture models developed for optimal growth conditions can be adapted to the suboptimal, common growth condition by adjustment of the non-growth associated ATP maintenance of each microbe. By comparing pure culture model predictions to co-culture experimental data, the inhibitory effect of ethanol produced by S. cerevisiae on E. coli growth was found to be the only interaction necessary to include in the co-culture model to generate accurate batch profile predictions. Co-culture model utility was demonstrated by predicting initial cell concentrations that yield simultaneous glucose and xylose exhaustion for different sugar mixtures. Successful experimental validation of the model predictions demonstrated that steady-state metabolic reconstructions developed for individual microbes can be adapted to develop dynamic flux balance models of microbial consortia for the production of renewable chemicals.  相似文献   

16.
Successful redirection of endogenous resources into heterologous pathways is a central tenet in the creation of efficient microbial cell factories. This redirection, however, may come at a price of poor biomass accumulation, reduced cofactor regeneration and low recombinant enzyme expression. In this study, we propose a metabolite valve to mitigate these issues by dynamically tuning endogenous processes to balance the demands of cell health and pathway efficiency. A control node of glucose utilization, glucokinase (Glk), was exogenously manipulated through either engineered antisense RNA or an inverting gene circuit. Using these techniques, we were able to directly control glycolytic flux, reducing the specific growth rate of engineered Escherichia coli by up to 50% without altering final biomass accumulation. This modulation was accompanied by successful redirection of glucose into a model pathway leading to an increase in the pathway yield and reduced carbon waste to acetate. This work represents one of the first examples of the dynamic redirection of glucose away from central carbon metabolism and enables the creation of novel, efficient intracellular pathways with glucose used directly as a substrate.  相似文献   

17.
18.
Microbial metabolism can be harnessed to produce a broad range of industrially important chemicals. Often, three key process variables: Titer, Rate and Yield (TRY) are the target of metabolic engineering efforts to improve microbial hosts toward industrial production. Previous research into improving the TRY metrics have examined the efficacy of having distinct growth and production stages to achieve enhanced productivity. However, these studies assumed a switch from a maximum growth to a maximum production phenotype. Hence, phenotypes with intermediate growth and chemical production in each of the growth and production stages of two-stage processes are yet to be explored. The impact of reduced growth rates on substrate uptake adds to the need for intelligent choice of operating points while designing two-stage processes. In this work, we develop a computational framework that scans the phenotypic space of microbial metabolism to identify ideal growth and production phenotypic targets, to achieve optimal TRY targets. Using this framework, with Escherichia coli as a model organism, we compare two-stage processes that use dynamic pathway regulation, with one-stage processes that use static intervention strategies, for different bioprocess objectives. Our results indicate that two-stage processes with intermediate growth during the production stage always result in optimal TRY values even in cases where substrate uptake is limited due to reduced growth during chemical production. By analyzing the flux distributions for the production enhancing strategies, we identify key reactions and reaction subsystems that require perturbation to achieve a production phenotype for a wide range of metabolites in E. coli. Interestingly, flux perturbations that increase phosphoenolpyruvate and NADPH availability are enriched among these production phenotypes. Furthermore, reactions in the pentose phosphate pathway emerge as key control nodes that function together to increase the availability of precursors to most products in E. coli. The inherently modular nature of microbial metabolism results in common reactions and reaction subsystems that need to be regulated to modify microbes from their target of growth to the production of a diverse range of metabolites. Due to the presence of these common patterns in the flux perturbations, we propose the possibility of a universal production strain.  相似文献   

19.
Both Escherichia coli B and a proflavine-resistant mutant, E. coli B/Pr, took up the same amounts of proflavine when suspended in buffer containing the dye. In growth media, however, sensitive cells took up more proflavine than did resistant cells. Adding growth media or any one of several constituents of these media, including amino acids, glycerol, pyruvic acid, and metabolizable sugars, to resistant cells that had taken up proflavine in buffer caused them to lose the dye, but had less or no effect on sensitive cells. Certian salts caused an equal release of proflavine from resistant and sensitive cells. Proflavine released from resistant cells by glucose was not changed chemically. The effects of temperature and metabolic inhibitors suggest that proflavine uptake is a passive process but that its release may be an active one, dependent on metabolism. Glucose had more effect on the proflavine binding of E. coli B grown in a minimal medium than on that of cells grown in a complex medium. E. coli B was less susceptible to proflavine when growing in a minimal medium. The effects of other synthetic media on proflavine susceptibility of E. coli B were also studied. Deoxyribonucleic acid and envelopes from sensitive and resistant cells bound the same amounts of proflavine, and no difference was seen in the site of dye binding when sensitive and resistant cells that had taken up proflavine in buffer were sonically broken and fractionated. The results suggest that sensitive and resistant cells are equally permeable to proflavine but differ in the ease with which metabolites cause them to release bound proflavine. So far, however, these differences do not account completely for the ability of resistant cells to grow in high proflavine concentrations.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号