首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 625 毫秒
1.
Whether animals experience human-like emotions is controversial and of immense societal concern [1-3]. Because animals cannot provide subjective reports of how they feel, emotional state can only be inferred using physiological, cognitive, and behavioral measures [4-8]. In humans, negative feelings are reliably correlated with pessimistic cognitive biases, defined as the increased expectation of bad outcomes [9-11]. Recently, mammals [12-16] and birds [17-20] with poor welfare have also been found to display pessimistic-like decision making, but cognitive biases have not thus far been explored in invertebrates. Here, we ask whether honeybees display a pessimistic cognitive bias when they are subjected to an anxiety-like state induced by vigorous shaking designed to simulate a predatory attack. We show for the first time that agitated bees are more likely to classify ambiguous stimuli as predicting punishment. Shaken bees also have lower levels of hemolymph dopamine, octopamine, and serotonin. In demonstrating state-dependent modulation of categorization in bees, and thereby a cognitive component of emotion, we show that the bees' response to a negatively valenced event has more in common with that of vertebrates than previously thought. This finding reinforces the use of cognitive bias as a measure of negative emotional states across species and suggests that honeybees could be regarded as exhibiting emotions.  相似文献   

2.
3.
Errors in decision‐making in animals can be partially explained by adaptive evolution, and error management theory explains that cognitive biases result from the asymmetric costs of false‐positive and false‐negative errors. Error rates that result from the cognitive bias may differ between sexes. In addition, females are expected to have higher feeding rates than males because of the high energy requirements of gamete production. Thus, females may suffer relatively larger costs from false‐negative errors (i.e. non‐feeding) than males, and female decisions would be biased to reduce these costs if the costs of false‐positive errors are not as high. Females would consequently overestimate their capacity in relation to the probability of predation success. We tested this hypothesis using the Japanese pygmy squid Idiosepius paradoxus. Our results show that size differences between the squid and prey shrimp affected predatory attacks, and that predatory attacks succeeded more often when the predator was relatively larger than the prey. Nevertheless, compared to male predatory attacks, female squid frequently attacked even if their size was relatively small compared to the prey, suggesting that the females overestimated their probability of success. However, if the females failed in the first attack, they subsequently adjusted their attack threshold: squid did not attack again if the prey size was relatively larger. These results suggest a sex‐specific cognitive bias, that is females skewed judgment in decision‐making for the first predation attack, but they also show that squid can modify their threshold to determine whether they should attack in subsequent encounters.  相似文献   

4.
The importance of proper model assumption in bayesian phylogenetics   总被引:16,自引:0,他引:16  
We studied the importance of proper model assumption in the context of Bayesian phylogenetics by examining >5,000 Bayesian analyses and six nested models of nucleotide substitution. Model misspecification can strongly bias bipartition posterior probability estimates. These biases were most pronounced when rate heterogeneity was ignored. The type of bias seen at a particular bipartition appeared to be strongly influenced by the lengths of the branches surrounding that bipartition. In the Felsenstein zone, posterior probability estimates of bipartitions were biased when the assumed model was underparameterized but were unbiased when the assumed model was overparameterized. For the inverse Felsenstein zone, however, both underparameterization and overparameterization led to biased bipartition posterior probabilities, although the bias caused by overparameterization was less pronounced and disappeared with increased sequence length. Model parameter estimates were also affected by model misspecification. Underparameterization caused a bias in some parameter estimates, such as branch lengths and the gamma shape parameter, whereas overparameterization caused a decrease in the precision of some parameter estimates. We caution researchers to assure that the most appropriate model is assumed by employing both a priori model choice methods and a posteriori model adequacy tests.  相似文献   

5.
Hundreds of studies demonstrate human cognitive biases that are both inconsistent with “rational” decision-making and puzzlingly patterned. One such bias, the “endowment effect” (also known as “reluctance to trade”), occurs when people instantly value an item they have just acquired at a much higher price than the maximum they would have paid to acquire it. This bias impedes a vast range of real-world transactions, making it important to understand. Prior studies have documented items that do or do not generate endowment effects, and have noted that the effects vary in magnitude. But none has predicted any of the substantial between-item variation in those magnitudes across a large and novel set of items. Working from evolutionary theory, we derived six factors that predicted 52% of the between-item variation in magnitudes for a novel set of 24 items. These results deepen understanding of both the causes of and patterns in endowment effects. More broadly, they suggest that many other cognitive biases may be similarly approached, and potentially linked by a common theoretical framework.  相似文献   

6.
Perception is often characterized computationally as an inference process in which uncertain or ambiguous sensory inputs are combined with prior expectations. Although behavioral studies have shown that observers can change their prior expectations in the context of a task, robust neural signatures of task-specific priors have been elusive. Here, we analytically derive such signatures under the general assumption that the responses of sensory neurons encode posterior beliefs that combine sensory inputs with task-specific expectations. Specifically, we derive predictions for the task-dependence of correlated neural variability and decision-related signals in sensory neurons. The qualitative aspects of our results are parameter-free and specific to the statistics of each task. The predictions for correlated variability also differ from predictions of classic feedforward models of sensory processing and are therefore a strong test of theories of hierarchical Bayesian inference in the brain. Importantly, we find that Bayesian learning predicts an increase in so-called “differential correlations” as the observer’s internal model learns the stimulus distribution, and the observer’s behavioral performance improves. This stands in contrast to classic feedforward encoding/decoding models of sensory processing, since such correlations are fundamentally information-limiting. We find support for our predictions in data from existing neurophysiological studies across a variety of tasks and brain areas. Finally, we show in simulation how measurements of sensory neural responses can reveal information about a subject’s internal beliefs about the task. Taken together, our results reinterpret task-dependent sources of neural covariability as signatures of Bayesian inference and provide new insights into their cause and their function.  相似文献   

7.
Foll M  Beaumont MA  Gaggiotti O 《Genetics》2008,179(2):927-939
There is great interest in using amplified fragment length polymorphism (AFLP) markers because they are inexpensive and easy to produce. It is, therefore, possible to generate a large number of markers that have a wide coverage of species genomes. Several statistical methods have been proposed to study the genetic structure using AFLPs but they assume Hardy-Weinberg equilibrium and do not estimate the inbreeding coefficient, F(IS). A Bayesian method has been proposed by Holsinger and colleagues that relaxes these simplifying assumptions but we have identified two sources of bias that can influence estimates based on these markers: (i) the use of a uniform prior on ancestral allele frequencies and (ii) the ascertainment bias of AFLP markers. We present a new Bayesian method that avoids these biases by using an implementation based on the approximate Bayesian computation (ABC) algorithm. This new method estimates population-specific F(IS) and F(ST) values and offers users the possibility of taking into account the criteria for selecting the markers that are used in the analyses. The software is available at our web site (http://www-leca.ujf-grenoble.fr/logiciels.htm). Finally, we provide advice on how to avoid the effects of ascertainment bias.  相似文献   

8.
Statistical and biochemical studies of the genetic code have found evidence of nonrandom patterns in the distribution of codon assignments. It has, for example, been shown that the code minimizes the effects of point mutation or mistranslation: erroneous codons are either synonymous or code for an amino acid with chemical properties very similar to those of the one that would have been present had the error not occurred. This work has suggested that the second base of codons is less efficient in this respect, by about three orders of magnitude, than the first and third bases. These results are based on the assumption that all forms of error at all bases are equally likely. We extend this work to investigate (1) the effect of weighting transition errors differently from transversion errors and (2) the effect of weighting each base differently, depending on reported mistranslation biases. We find that if the bias affects all codon positions equally, as might be expected were the code adapted to a mutational environment with transition/transversion bias, then any reasonable transition/transversion bias increases the relative efficiency of the second base by an order of magnitude. In addition, if we employ weightings to allow for biases in translation, then only 1 in every million random alternative codes generated is more efficient than the natural code. We thus conclude not only that the natural genetic code is extremely efficient at minimizing the effects of errors, but also that its structure reflects biases in these errors, as might be expected were the code the product of selection. Received: 25 July 1997 / Accepted: 9 January 1998  相似文献   

9.
The behavioral and cognitive characteristics of dangerous drivers differ significantly from those of safe drivers. However, differences in emotional information processing have seldom been investigated. Previous studies have revealed that drivers with higher anger/anxiety trait scores are more likely to be involved in crashes and that individuals with higher anger traits exhibit stronger negativity biases when processing emotions compared with control groups. However, researchers have not explored the relationship between emotional information processing and driving behavior. In this study, we examined the emotional information processing differences between dangerous drivers and safe drivers. Thirty-eight non-professional drivers were divided into two groups according to the penalty points that they had accrued for traffic violations: 15 drivers with 6 or more points were included in the dangerous driver group, and 23 drivers with 3 or fewer points were included in the safe driver group. The emotional Stroop task was used to measure negativity biases, and both behavioral and electroencephalograph data were recorded. The behavioral results revealed stronger negativity biases in the dangerous drivers than in the safe drivers. The bias score was correlated with self-reported dangerous driving behavior. Drivers with strong negativity biases reported having been involved in mores crashes compared with the less-biased drivers. The event-related potentials (ERPs) revealed that the dangerous drivers exhibited reduced P3 components when responding to negative stimuli, suggesting decreased inhibitory control of information that is task-irrelevant but emotionally salient. The influence of negativity bias provides one possible explanation of the effects of individual differences on dangerous driving behavior and traffic crashes.  相似文献   

10.
Identifying stakeholder beliefs and attitudes is critical for resolving management conflicts. Debate over outdoor cat management is often described as a conflict between two groups, environmental advocates and animal welfare advocates, but little is known about the variables predicting differences among these critical stakeholder groups. We administered a mail survey to randomly selected stakeholders representing both of these groups (n = 1,596) in Florida, where contention over the management of outdoor cats has been widespread. We used a structural equation model to evaluate stakeholder intention to support non-lethal management. The cognitive hierarchy model predicted that values influenced beliefs, which predicted general and specific attitudes, which in turn, influenced behavioral intentions. We posited that specific attitudes would mediate the effect of general attitudes, beliefs, and values on management support. Model fit statistics suggested that the final model fit the data well (CFI = 0.94, RMSEA = 0.062). The final model explained 74% of the variance in management support, and positive attitudes toward lethal management (humaneness) had the largest direct effect on management support. Specific attitudes toward lethal management and general attitudes toward outdoor cats mediated the relationship between positive (p<0.05) and negative cat-related impact beliefs (p<0.05) and support for management. These results supported the specificity hypothesis and the use of the cognitive hierarchy to assess stakeholder intention to support non-lethal cat management. Our findings suggest that stakeholders can simultaneously perceive both positive and negative beliefs about outdoor cats, which influence attitudes toward and support for non-lethal management.  相似文献   

11.
Foraging entails finding multiple targets sequentially. In humans and other animals, a key observation has been a tendency to forage in ‘runs’ of the same target type. This tendency is context-sensitive, and in humans, it is strongest when the targets are difficult to distinguish from the distractors. Many important questions have yet to be addressed about this and other tendencies in human foraging, and a key limitation is a lack of precise measures of foraging behaviour. The standard measures tend to be run statistics, such as the maximum run length and the number of runs. But these measures are not only interdependent, they are also constrained by the number and distribution of targets, making it difficult to make inferences about the effects of these aspects of the environment on foraging. Moreover, run statistics are underspecified about the underlying cognitive processes determining foraging behaviour. We present an alternative approach: modelling foraging as a procedure of generative sampling without replacement, implemented in a Bayesian multilevel model. This allows us to break behaviour down into a number of biases that influence target selection, such as the proximity of targets and a bias for selecting targets in runs, in a way that is not dependent on the number of targets present. Our method thereby facilitates direct comparison of specific foraging tendencies between search environments that differ in theoretically important dimensions. We demonstrate the use of our model with simulation examples and re-analysis of existing data. We believe our model will provide deeper insights into visual foraging and provide a foundation for further modelling work in this area.  相似文献   

12.
Deng et al. have recently proposed that estimates of an upper limit to the rate of spontaneous mutations and their average heterozygous effect can be obtained from the mean and variance of a given fitness trait in naturally segregating populations, provided that allele frequencies are maintained at the balance between mutation and selection. Using simulations they show that this estimation method generally has little bias and is very robust to violations of the mutation-selection balance assumption. Here I show that the particular parameters and models used in these simulations generally reduce the amount of bias that can occur with this estimation method. In particular, the assumption of a large mutation rate in the simulations always implies a low bias of estimates. In addition, the specific model of overdominance used to check the violation of the mutation-selection balance assumption is such that there is not a dramatic decline in mean fitness from overdominant mutations, again implying a low bias of estimates. The assumption of lower mutation rates and/or other models of balancing selection may imply considerably larger biases of the estimates, making the reliability of the proposed method highly questionable.  相似文献   

13.
Biases in the assays of steroids and their binding proteins   总被引:1,自引:0,他引:1  
Many immunoassays exhibit a bias. In such assays, the results are inaccurate, i.e. they deviate from the true value. The biases are mostly due to interfering compounds originating from the biological material assayed and/or from reagents. Sometimes systematic errors in calculation are also involved. The magnitude of the bias should be determined for every assay method, in order to make possible an assessment of reliability of the method. Biases frequently occur also in the measurements of steroid binding proteins, such as receptors, sex hormone binding globulin, corticosteroid binding globulin, etc. These biases are mostly due to the assumption that the measurements are performed under saturation conditions. These biases can be avoided by conducting the measurements at several concentrations of the ligand and by an appropriate correction for non-specific (low affinity) binding. In the assays of "free" steroids, biases are frequently encountered because of the disturbance of equilibrium in the course of the measurement proper. These biases can be minimized by a careful choice of experimental conditions.  相似文献   

14.
Kingsolver et al.'s review of phenotypic selection gradients from natural populations provided a glimpse of the form and strength of selection in nature and how selection on different organisms and traits varies. Because this review's underlying database could be a key tool for answering fundamental questions concerning natural selection, it has spawned discussion of potential biases inherent in the review process. Here, we explicitly test for two commonly discussed sources of bias: sampling error and publication bias. We model the relationship between variance among selection gradients and sample size that sampling error produces by subsampling large empirical data sets containing measurements of traits and fitness. We find that this relationship was not mimicked by the review data set and therefore conclude that sampling error does not bias estimations of the average strength of selection. Using graphical tests, we find evidence for bias against publishing weak estimates of selection only among very small studies (N<38). However, this evidence is counteracted by excess weak estimates in larger studies. Thus, estimates of average strength of selection from the review are less biased than is often assumed. Devising and conducting straightforward tests for different biases allows concern to be focused on the most troublesome factors.  相似文献   

15.
The fossil record provides direct empirical data for understanding macroevolutionary patterns and processes. Inherent biases in the fossil record are well known to confound analyses of this data. Sampling bias proxies have been used as covariates in regression models to test for such biases. Proxies, such as formation count, are associated with paleobiodiversity, but are insufficient for explaining species dispersal owing to a lack of geographic context. Here, we develop a sampling bias proxy that incorporates geographic information and test it with a case study on early tetrapodomorph biogeography. We use recently-developed Bayesian phylogeographic models and a new supertree of early tetrapodomorphs to estimate dispersal rates and ancestral habitat locations. We find strong evidence that geographic sampling bias explains supposed radiations in dispersal rate (potential adaptive radiations). Our study highlights the necessity of accounting for geographic sampling bias in macroevolutionary and phylogenetic analyses and provides an approach to test for its effect.  相似文献   

16.
The God Allusion     
It has previously been suggested that the historically and geographically widespread persistence of religious beliefs occurs because it is a by-product of normal cognitive processes, ones which first evolved to confer survival advantages in the social domain. If this theory holds, then it is likely that inter-individual variation in the same biases may predict corresponding variation in religious thoughts and behaviors. Using an online questionnaire, 298 participants answered questions regarding their tendency to detect agency, the degree to which they displayed schizotypal traits, their ability to understand the emotions and motivations of others (“mentalizing”), and their religious beliefs and behaviors. Path analysis suggests that mentalizing, agency detection, and schizotypal thinking were each independently related to religiosity. Furthermore, schizotypal thinking and agency detection were highly interrelated with one another, whereas mentalizing was not. Although the degree to which an individual engages with religious or spiritual beliefs will be influenced by their cultural and historical context, this paper helps to elucidate the interplay between various cognitive processes that might predispose some individuals but not others toward holding such beliefs in the first place.  相似文献   

17.
The recent Bayesian approaches to language evolution and change seem to suggest that genetic biases can impact on the characteristics of language, but, at the same time, that its cultural transmission can partially free it from these same genetic constraints. One of the current debates centres on the striking differences between sampling and a posteriori maximising Bayesian learners, with the first converging on the prior bias while the latter allows a certain freedom to language evolution. The present paper shows that this difference disappears if populations more complex than a single teacher and a single learner are considered, with the resulting behaviours more similar to the sampler. This suggests that generalisations based on the language produced by Bayesian agents in such homogeneous single agent chains are not warranted. It is not clear which of the assumptions in such models are responsible, but these findings seem to support the rising concerns on the validity of the “acquisitionist” assumption, whereby the locus of language change and evolution is taken to be the first language acquirers (children) as opposed to the competent language users (the adults).  相似文献   

18.
This paper considers goal-directed decision-making in terms of embodied or active inference. We associate bounded rationality with approximate Bayesian inference that optimizes a free energy bound on model evidence. Several constructs such as expected utility, exploration or novelty bonuses, softmax choice rules and optimism bias emerge as natural consequences of free energy minimization. Previous accounts of active inference have focused on predictive coding. In this paper, we consider variational Bayes as a scheme that the brain might use for approximate Bayesian inference. This scheme provides formal constraints on the computational anatomy of inference and action, which appear to be remarkably consistent with neuroanatomy. Active inference contextualizes optimal decision theory within embodied inference, where goals become prior beliefs. For example, expected utility theory emerges as a special case of free energy minimization, where the sensitivity or inverse temperature (associated with softmax functions and quantal response equilibria) has a unique and Bayes-optimal solution. Crucially, this sensitivity corresponds to the precision of beliefs about behaviour. The changes in precision during variational updates are remarkably reminiscent of empirical dopaminergic responses—and they may provide a new perspective on the role of dopamine in assimilating reward prediction errors to optimize decision-making.  相似文献   

19.
This paper lays out an evolutionary theory for the cognitive foundations and cultural emergence of the extravagant displays (e.g., ritual mutilation, animal sacrifice and martyrdom) that have so tantalized social scientists, as well as more mundane actions that influence cultural learning and historical processes. In Part I, I use the logic of natural selection to build a theory for how and why seemingly costly displays influence the cognitive processes associated with cultural learning — why do “actions speak louder than words?” The core idea is that cultural learners can both avoid being manipulated by their models (those they are inclined to learn from) and more accurately assess their belief commitment by attending to displays or actions by the model that would seem costly to the model if he held beliefs different from those he expresses verbally. Part II examines the implications for cultural evolution of this learning bias in a simple evolutionary model. The model reveals the conditions under which this evolved bias can create stable sets of interlocking beliefs and practices, including quite costly practices. Part III explores how cultural evolution, driven by competition among groups or institutions stabilized at alternative sets of these interlocking belief-practice combinations, has led to the association of costly acts, often in the form of rituals, with deeper commitments to group beneficial ideologies, higher levels of cooperation within groups, and greater success in competition with other groups or institutions. I close by discussing the broader implications of these ideas for understanding various aspects of religious phenomena.  相似文献   

20.
Humans share with non-human animals perceptual biases that might form the basis of complex cognitive abilities. One example comes from the principles described by the iambic–trochaic law (ITL). According to the ITL, sequences of sounds varying in duration are grouped as iambs, whereas sequences varying in intensity are grouped as trochees. These grouping biases have gained much attention because they might help pre-lexical infants bootstrap syntactic parameters (such as word order) in their language. Here, we explore how experience triggers the emergence of perceptual grouping biases in a non-human species. We familiarized rats with either long–short or short–long tone pairs. We then trained the animals to discriminate between sequences of alternating and randomly ordered tones. Results showed animals developed a grouping bias coherent with the exposure they had. Together with results observed in human adults and infants, these results suggest that experience modulates perceptual organizing principles that are present across species.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号