首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Aims: To investigate the effect of the forage source and feed particle size (FPS) in ruminant rations on the composition of the ruminal Firmicutes community in vitro. Methods and Results: Three diets, varying in maize silage to grass silage ratio and FPS, were incubated in a rumen simulation system. Microbial samples were taken from the liquid fermenter effluents. Microbial community analysis was performed by 16S rRNA‐based techniques. Clostridia‐specific single‐strand conformation polymorphism profiles revealed changes of the community structure in dependence on both factors tested. The coarse grass silage–containing diets seemed to enhance the occurrence of different Roseburia species. As detected by real‐time quantitative PCR, Ruminococcus albus showed a higher abundance with decreasing FPS. A slightly lower proportion of Bacilli was found with increasing grass silage to maize silage ratio by fluorescence in situ hybridization (FISH). In contrast, a slightly higher proportion of bacterial species belonging to the Clostridium‐clusters XIV a and b was detected by FISH with increasing grass silage contents in the diet. Conclusions: The ruminal Firmicutes community is affected by the choice of the forage source and FPS. Significance and Impact of the Study: This study supplies fundamental knowledge about the response of ruminal microbial communities to changing diets. Moreover, the data suggest a standardization of grinding of feeds for in vitro studies to facilitate the comparison of results of different laboratories.  相似文献   

2.
Passage, comminution and digestion rates of large and small particles were estimated using a rumen evacuation technique and total faecal collection with five lactating dairy cows in a 5 × 5 Latin square experiment. Two grass and two red clover silages harvested at early and late primary growth stages and a 1:1 mixture of late harvest grass and early harvest red clover were the dietary treatments. Cows received 9.0 kg supplementary concentrate per day. Ruminal contents and faeces were divided into large (>1.25 mm) and small (1.25–0.038 mm) particles by wet sieving. Indigestible neutral detergent fibre (iNDF) was determined by 12 days ruminal in situ incubation followed by neutral detergent extraction. Plant species did not affect ruminal particle size distribution, whereas advancing forage maturity decreased the proportion of large particles for both grass and red clover silage diets. Ruminal pool size of iNDF was higher (P<0.001) with red clover compared to grass silage diets. Ruminal passage rates of iNDF and potentially digestible NDF (pdNDF) increased with decreasing particle size (P<0.01). Passage rate of iNDF for small particles was slower (P<0.01) when red clover compared to grass silage diets were fed. Particle comminution rate in the rumen was slower (P<0.001) with red clover compared to grass silage diets and it increased (P<0.01) with advancing forage maturity. The contribution of particle comminution to ruminal mean retention time of iNDF in the ruminal large particle pool was smaller (P<0.01) in red clover compared to grass silage diets and it increased (P<0.05) with the mixed silage compared to the separate silages. Passage rate of pdNDF for both large and small particles was not affected by dietary treatments. Digestion rate of pdNDF for large particles was faster (P<0.001) with red clover compared to grass silage diets. Differences in ruminal passage and digestion rates of the large and small particles, in addition to differences in the passage and digestion rates of red clover compared to grass silage diets, emphasize the need to consider particle size and forage type in metabolic models predicting feed intake and fibre digestibility in ruminants.  相似文献   

3.
This study examined ruminal microbial community composition alterations during initial adaption to and following incubation in a rumen simulation system (Rusitec) using grass or corn silage as substrates. Samples were collected from fermenter liquids at 0, 2, 4, 12, 24, and 48 h and from feed residues at 0, 24, and 48 h after initiation of incubation (period 1) and on day 13 (period 2). Microbial DNA was extracted and real-time qPCR was used to quantify differences in the abundance of protozoa, methanogens, total bacteria, Fibrobacter succinogenes, Ruminococcus albus, Ruminobacter amylophilus, Prevotella bryantii, Selenomonas ruminantium, and Clostridium aminophilum. We found that forage source and sampling time significantly influenced the ruminal microbial community. The gene copy numbers of most microbial species (except C. aminophilum) decreased in period 1; however, adaption continued through period 2 for several species. The addition of fresh substrate in period 2 led to increasing copy numbers of all microbial species during the first 2–4 h in the fermenter liquid except protozoa, which showed a postprandial decrease. Corn silage enhanced the growth of R. amylophilus and F. succinogenes, and grass silage enhanced R. albus, P. bryantii, and C. aminophilum. No effect of forage source was detected on total bacteria, protozoa, S. ruminantium, or methanogens or on total gas production, although grass silage enhanced methane production. This study showed that the Rusitec provides a stable system after an adaption phase that should last longer than 48 h, and that the forage source influenced several microbial species.  相似文献   

4.
A dual-flow continuous culture fermenter system was used to investigate ruminal fermentation in response to increased by-product gypsum application rate of three forages. The treatments included 0, 22, 45, and 90 tonnes/ha by-product gypsum applied to grass plots and 0, 22, and 45 tonnes/ha by-product gypsum applied to corn plots. Forage was harvested to represent grass pasture (GP), grass hay (GH), and corn silage (CS), dried, ground, and fed to fermenters at a rate of 60 g dry matter (DM)/day. Organic matter (OM) and neutral detergent fiber (aNDF) digestibilities, rumen pH, total volatile fatty acid (VFA) production, and N metabolism were not affected by gypsum application rate for all forage types. The GH had greater sulfur content than recommended as the maximum tolerable level by the National Research Council (NRC). The results of this study indicate that ruminal fermentation was not compromised when by-product gypsum was applied to GP, GH, or CS at rates up to 90 tonnes/ha. By-product gypsum application to pastures and crops shows promise as an economical soil amendment to reduce dissolved phosphorus loss in runoff, although potential animal health issues should be further evaluated.  相似文献   

5.
This study investigated the performance and instrumental meat quality of finishing beef steers offered grass silage (GS), grass silage:maize silage (GS:MS) and grass silage:lupins/triticale silage (GS:LT). The lupins/triticale silage was grown as either two separate crops in the same field and harvested together (LT1) or grown and harvested as a mixture (LT2). The silages were offered to eighty continental cross beef steers, initial live weight 530 ± 47.7 kg and 18 ± 1.6 months of age and were supplemented with 3 or 6 kg concentrates fresh/head/d. Silage was fed ad libitum with the mixtures offered at a ratio of 60 GS:40 maize silage (MS), LT1 or LT2 on a dry matter (DM) basis and concentrates were offered once (3 kg) or twice (6 kg) daily on top of the silage. Animals were slaughtered in three batches after 100, 117 and 124 d on experiment. The LT1 and LT2 produced yields of 8.7 and 7.5 kg DM/ha and the silages were poorly fermented as demonstrated by high ammonia-N concentration (182 and 173 g/kg total N), low lactic acid (9 g/kg DM) and high pH (5.0 and 4.7). Silage type had no significant effect on slaughter live weight, liveweight gain, carcass gain, forage DM intake (DMI), total DMI or feed efficiency expressed as kg DMI/kg liveweight gain or kg DMI/kg carcass gain. Silage type had no effect on carcass characteristics or instrumental meat quality. The results of this study demonstrate that offering lupins/triticale silage in combination with high quality grass silage (D-value greater than 700) at a ratio of 60 grass silage:40 LT1 or LT2 on a DM basis had no effect on animal performance, carcass characteristics or meat quality parameters relative to high quality grass silage offered alone or in combination with maize silage.  相似文献   

6.
In four parallel experiments, herbage [three harvests of alfalfa (308 to 379 g dry matter (DM)/kg), one of whole-plant corn (331 g DM/kg)] was ensiled with three different treatments: no inoculant (control), Lactobacillus plantarum (LP) or formic acid (FA), in 1-L mini-silos and fermented for 60 d at room temperature (22 °C). Mini-silos were opened and analyzed for fermentation characteristics and soluble N fractions. A subsample of wet silage from each mini-silo was ground to 4 mm and stored at ?20 °C. Silages were thawed and subjected to 9 h ruminal in vitro incubations to measure gas production and volatile fatty acid (VFA) production as well as microbial biomass yield (MBY) and microbial non-ammonia N (MNAN) formation using 15N as a marker. In all four experiments, silage fermentation products and pH indicated good preservation across all treatments. Analysis of data showed that FA- and LP-treated silages had lower concentrations of ammonia-N and free amino acids N than control. The FA treatment was lower in soluble N, but higher in peptide-N, than control. Silage pH was lowest in FA (4.25), followed by LP (4.28), and control (4.38). Ruminal in vitro gas production and VFA concentrations were not different among treatments (P>0.05). Compared to control, FA- and LP-treated silage yielded greater MNAN and MBY. These findings suggested that L. plantarum preserved more true protein during silage fermentation than control, which in turn increased in vitro ruminal microbial growth.  相似文献   

7.
This study was carried out to evaluate intake, digestibility, ruminal fermentation, nitrogen (N) retention and ruminal microbial protein synthesis in lambs fed dwarf elephant grass (Pennisetum purpureum Schum. cv. Mott) hay or hay supplemented with urea and 0, 5, 10 or 15 g/kg of live weight (LW) of cracked corn grain. Ten lambs (mean LW of 28 ± 0.9 kg), housed in metabolic cages, were used in a double 5 × 5 Latin Square experiment. Except fibre intake and digestibility, which was higher, the intake and digestibility of the others feed components, as well as ruminal microbial protein synthesis and N retention were lower in non-supplemented lambs. Corn supplementation increased total dry matter (DM) (P<0.05), organic matter (OM), non-structural carbohydrate (NSC) and energy intake (P<0.01) but decreased total neutral detergent fibre (aNDFom) (P<0.01) intake, as well as OM and aNDFom intake from the hay (P<0.01). Apparent DM, OM and energy digestibility, as well as OM true digestibility (OMTD) increased (P<0.01), and aNDFom digestibility decreased linearly (P<0.01) as corn supplementation increased. Total N intake was not influenced but, apparent and true N digestibility, as well as urinary N excretion decreased (P<0.01), and ruminal microbial N entering the small intestine increased linearly (P<0.01) as corn supplementation increased. However, the efficiency of ruminal microbial protein synthesis was similar for all treatments. Mean ruminal pH values and ammonia N concentrations decreased linearly (P<0.01) with level of corn supplementation. Ammonia N and amino acid, as well as peptide concentrations in ruminal fluid were quadratically related (P<0.01) with the time after feeding. Corn supplementation had a linear additive effect on total dry matter and digestible energy intake, as well as on N retention, but a linear negative effect on hay intake and on fibre digestibility. However, decreased forage digestibility by animals was probably neither related to lower ruminal pH, which values were always higher than 7.0, nor related to ruminal sugar concentrations, which were similar for all treatments.  相似文献   

8.
The purpose of this experiment was to determine if different methods of forage conservation influenced horse preference for conserved forages. Silage, haylage with two different dry matter (DM) levels and hay was produced from the same grass crop at the same botanical maturity stage. Four horses were simultaneously offered the four forages (1 kg DM of each forage) once daily for four consecutive experimental periods, each period consisting of 5 days. On each experimental day, the horses were observed for 2 h and their first choice, eating time and forage consumption was registered for every forage. The number of times each horse depleted individual forages and the number of times each horse tasted or smelled a forage, but left it in favour of another forage, was also recorded. Silage had the highest rate of consumption (0.90 kg DM/day, S.D. 0.14) and longest eating time (28.4 min/day, S.D. 5.16). Hay had the lowest rate of consumption (0.23 kg DM/day, S.D. 0.14) and shortest eating time (6.8 min/day, S.D. 4.08), while the haylages were intermediate. Silage was the first choice 72 of 84 times (85%). Hay was never completely consumed and silage was never left in favour of another forage after smelling or tasting it. We conclude that the forage conservation methods had an impact on horse preference in favour of silage, even if the reason for silage preference remains to be explained.  相似文献   

9.
The objective of this study was to investigate how level of forage and oils in ruminant animals’ diet affect selected strains of ruminal bacteria believed to be involved in biohydrogenation (BH). Four continuous culture fermenters were used in 4 × 4 Latin square design with a 2 × 2 factorial arrangement over four consecutive periods of 10 days each. The experimental diets used in this study were: high forage diet (700:300 g/kg (DM basis) forage to concentrate; HFC), high forage with oil supplement (HFO), high forage diet (300:700 g/kg (DM basis) forage to concentrate; LFC), and high forage with oil supplement (HFO). The oil supplement was a blend of fish oil (FO) and soybean oil (SBO) added at 10 and 20 g/kg DM, respectively. Acetate concentration was greater (P<0.01) with the high forage diets whereas propionate concentration was greater (P<0.02) with the low forage diets and both decreased (P<0.05) with oil supplementation. The concentrations of t11 C18:1 (vaccenic acid, VA) and c9t11 conjugated linoleic acid (CLA) were greater (P<0.01) with the high than the low forage diets and concentrations increased (P<0.01) with oil supplementation particularly when added with the high forage diet. The concentrations of t10 C18:1 and t10c12 CLA were greater (P<0.01) with the low than the high forage diets and concentrations increased (P<0.01) with oil supplementation particularly when added with the low forage diet. The DNA abundance of Butyrivibrio fibrisolvens, Ruminococcus albus, Ruminococcus flavefaciens, Anaerovibrio lipolytica and Butyrivibrio proteoclasticum were greater (P<0.03) with the high than the low forage diets. Oil supplementation reduced (P<0.05) the DNA abundance only for R. flavefaciens, B. fibrisolvens and R. albus especially when added with the high forage diet. Results from this study suggest that the greater trans fatty acids (FA) production seen with the high forage diets may be related to greater activity of B. fibrisolvens, R. flavefaciens and R. albus, and B. proteoclasticum appears to play a minor role in the production of C18:0 from trans C18:1.  相似文献   

10.
《Small Ruminant Research》2001,39(2):145-152
The supplementary values of Verano stylo in a mixed Guinea grass (Panicum maximum cv. Ntchisi)–Verano stylo (Stylosanthes hamata cv. Verano) diet from a sown grass–legume mixture and N fertilized grass were compared in West African dwarf (WAD) goats. Liveweight (LW) gain, feed intake, digestibility and N utilization were determined using 15 goats in two trials lasting for 98 days. Goats were fed Guinea grass–Verano stylo mixture (GSM), N-fertilized (NFG) and unfertilized grass (UFG). The goats were divided into three groups of five animals each and randomly allocated to the dietary treatments in a randomized complete block design. Total DM and OM intakes of the goats did not vary significantly among the forage diets and averaged 55.1 and 50.4 g kg−1 W0.75 per day, respectively. CP intake (g kg−1 W0.75 per day) was highest with NFG (5.6) followed by GSM (4.8) and the UFG (3.5). Total N excreted followed the same trend as the CP intake. There was no significant difference between N-retention of GSM and NFG (28.5 and 26.7%), but goats on UFG had a negative N balance (−9.16%). Animals on GSM had significantly higher liveweight gain (31.9 g per day) than those of NFG (25.1 g per day) and UFG (21.9 g per day) which also differed significantly. The digestibilities of total DM, OM, CP, NDF were higher with GSM than NFG or UFG. It is concluded that growing Verano stylo in mixture with Guinea grass is a better option for improving the feed quality of forage diets for goats than direct application of inorganic fertilizer at 200 kg N ha−1 to the pure grass.  相似文献   

11.
The effect of harvesting time (HT) of timothy-dominated grass silage and level of concentrate on the chemical composition of silage, and on feed intake and milk production by Norwegian dairy goats, were evaluated. The silages were prepared from the primary growth at three stages of maturity: very early (HT 1), early (HT 2) and normal (HT 3). The silages were fed ad libitum to 18 goats of the Norwegian dairy goat breed in early lactation and supplemented with a low (LC; 0.6 kg per goat daily) or normal (NC; 1.2 kg per goat daily) level of concentrate. The experiment was conducted as a cyclic changeover design with four periods of 28 days using three blocks of goats according to their initial body condition (poor, medium or high body condition). Silages contained 771, 696 and 619 g digestible organic matter per kg dry matter in silage (D-value) for HT 1, 2 and 3, respectively. Postponing the harvesting time decreased (P<0.001) silage dry matter intake (DMI) and silage DMI per kg body weight (BW). Increased concentrate allowance decreased silage DMI, with substitution rates (decrease in silage DMI when concentrate dry matter intake is increased, kg/kg) of 0.43, 0.21 and 0.27 at HT 1, HT 2 and HT 3, respectively. Milk yield and yields of milk constituents decreased (P<0.001) with delayed harvesting time and thus reflected the changes in silage D-value. Milk free fatty acids (FFA) concentration was not affected by dietary treatments. The efficiency of nutrient utilization was best when LC was fed and increased with postponed harvesting time. The higher energy efficiency of the HT 3 LC fed goats indicates that these goats canalized a higher proportion of energy intake to milk production, compared to goats fed NC and earlier harvested silage. Marginal ECM production response to increased net energy lactation (NEL) intake were higher when intake was increased due to higher silage digestibility (0.14 kg ECM/MJ NEL) compared with increased NEL intake due to increased concentrate level (0.12 kg ECM/MJ NEL). Improving silage quality by earlier harvesting time resulted in higher feed intake and milk yield than obtained by the same increase in NEL intake by concentrate supplementation.  相似文献   

12.
Buckwheat is of high value in crop rotations and overall agricultural ecology because of strong rooting and intensive flowering properties, but it is rarely cultivated and information on its nutritional value to ruminants is scarce. The contents of net energy for lactation (NEL), as estimated with the Hohenheim Gas Test (n = 3), were 4.3, 4.9 and 7.5 MJ NEL/kg dry matter (DM) for fresh and ensiled whole buckwheat plants and buckwheat grain, respectively. In two experiments with the Rumen Simulation Technique (Rusitec), ruminal fermentation characteristics of buckwheat forages and buckwheat grain (n = 4/diet) were evaluated. In the first experiment, 0, 300 or 600 g/kg of a pure hay diet were replaced by either fresh or ensiled buckwheat to create five diets. Neither form of buckwheat forages had effects on in vitro ruminal degradability and short chain fatty acid (SCFA) concentrations and composition. The use of fresh buckwheat reduced ruminal ammonia concentrations and enhanced estimated microbial N growth efficiency. These differences did not occur with silage, indicating a change in nutritional value by ensiling. Fresh buckwheat reduced the number of bacteria in the incubated fluid, while ensiled buckwheat reduced that of holotrich protozoa. Methane formation was not influenced by the buckwheat forages. In the second experiment, wheat meal (400 g/kg dietary DM), was replaced stepwise (0.5 and 1.0) by buckwheat grain meal. This did not cause differences in parameters of nutrient degradability, relative N efficiency and total amount and composition of SCFA. Holotrich protozoa counts increased, but total gas formation decreased with increasing dietary level of buckwheat grain. In a final experiment, cows yielding about 40 kg milk/day were fed mixed silage-concentrate diets (n = 4). A control diet contained no buckwheat. In a second diet, maize silage was partly substituted by buckwheat silage (98 g/kg dietary DM). In a third group, part of the energy concentrate was substituted by buckwheat grain meal (94 g/kg). There were no effects on feed intake, milk yield and milk composition. Buckwheat proved to be a plant that offers different feeds of a quality sufficient to be considered suitable in ruminant nutrition.  相似文献   

13.
Six non-lactating dairy cows fitted with ruminal cannulas were used in a cross-over design, to investigate the effects of supplemental yeast culture (Saccharomyces cerevisiae) (YC) and interaction of YC by sampling time on ruminal fermentation and in situ fibre degradation. Cows were fed twice daily with a diet composed of 67% corn silage, 32% concentrate and 1% vitamin and mineral mixture, on a dry matter (DM) basis. Concentrates were not mixed with silage. YC (0.5% DM) significantly decreased rumen ammonia from 148.5 mg l−1 to 103.1 mg l−1 3 h post-feeding, and significantly increased by about 20% the concentration of total volatile fatty acids before and 1 h after feeding. YC significantly increased molar percentage of propionate and decreased the acetate : propionate ratio before feeding. No significant effect was observed on ruminal pH and molar percentages of acetate or butyrate. Pattern of degradation of DM, neutral and acid detergent fibre from hay was affected, with a cubic effect of interaction of YC by incubation time. However, magnitude of degradation was not significantly different at any time. These results show that modifications of ruminal fermentation due to YC addition are time dependent when the diet is fed twice daily.  相似文献   

14.
The effects of (i) medium and high feed value (MFV and HFV) maize silages and (ii) MFV and HFV grass silages, each in combination with a range of concentrate feed levels, on the performance of finishing lambs were evaluated using 280 Suffolk-X lambs (initial live weight 36.1 kg). The MFV and HFV maize silages represented crops with dry matter (DM) concentrations of 185 and 250 g/kg, respectively, at harvest, and had starch and metabolisable energy (ME) concentrations of 33 and 277 g/kg DM and 9.6 and 11.0 MJ/kg, respectively. HFV and MFV grass silages had DM and ME concentrations of 216 and 294 g/kg and 11.0 and 11.5 MJ/kg DM, respectively. A total of 13 treatments were involved. The four silages were offered ad libitum with daily concentrate supplements of 0.2, 0.5 or 0.8 kg per lamb. A final treatment consisted of concentrate offered ad libitum with 0.5 kg of the HFV grass silage daily. Increasing the feed value of grass silage increased (P < 0.001) forage intake, daily carcass and live weight gains, final live weight and carcass weight. Increasing maize silage feed value tended to increase (P = 0.07) daily carcass gain. Increasing concentrate feed level increased total food and ME intakes, and live weight and carcass gains. There was a significant interaction between silage feed value and the response to concentrate feed level. Relative to the HFV grass silage, the positive linear response to increasing concentrate feed level was greater with lambs offered the MFV grass silage for daily live weight gain (P < 0.001), daily carcass gain (P < 0.01) and final carcass weight (P < 0.01). Relative to the HFV maize silage, there was a greater response to increasing concentrate feed level from lambs offered the MFV maize silage in terms of daily carcass gain (P < 0.05) and daily live weight gain (P = 0.06). Forage type had no significant effect on the response to increased concentrate feed level. Relative to the MFV grass silage supplemented with 0.2 kg concentrate, the potential concentrate-sparing effect of the HFV grass silage, and the MFV and HFV maize silages was 0.41, 0.09 and 0.25 kg daily per lamb, respectively. It is concluded that increasing forage feed value increased forage intake and animal performance, and maize silage can replace MFV grass silage in the diet of finishing lambs as performance was equal to or better (depending on maturity of maize at harvest) than that for MFV grass silage.  相似文献   

15.
The gas in vitro technique was used to study the effects of six types of chitosans, each having different molecular weights and acetylation degrees, on rumen microbial fermentation. In a first trial, a separate concentration of 750 mg/l of culture fluid for each of the six chitosans (CHI1, CHI2, CHI3, CHI4, CHI5, and CHI6) was incubated for 24 h in diluted ruminal fluid with maize silage as the substrate. The ionophore antibiotic monensin (MON) was used as a positive control, and a negative control with no chitosan (CTR) was also included. Each treatment was tested in triplicate for three different periods. At the end of the trial, samples were collected to determine volatile fatty acid (VFA) and ammonia N concentrations, and pH and gas production values were recorded. Methane concentration was estimated stoichiometrically. In vitro true organic matter digestibility (IVOMD) and partitioning factor (PF, mg OM truly degraded/ml gas produced) were also calculated. In a second trial, a separate concentration of 750 mg/l of each of the six chitosans was incubated for 144 h in diluted ruminal fluid with maize silage as the substrate, to study the effects of these compounds on fermentation kinetics.All six chitosans decreased the IVOMD and PF values. Chitosan inclusion did not affect the fermentation of the substrate's soluble fraction, but did reduce the fermentation kinetics of the insoluble but fermentable fraction. However, only CHI5 and CHI6 decreased total VFA concentration. CHI3 and CHI6 decreased the molar proportion of acetate and increased the molar proportion of propionate, thus increasing the propionate-to-acetate ratio. Chitosan inclusion did not affect molar proportions of butyrate. With the exception of CHI2, the molar proportion of branch-chained VFA was lowered by all of the chitosan treatments. Most of the treatments also decreased methane production, also with the exception of CHI2.In conclusion, chitosan extracts may enable the manipulation of rumen microbial fermentation, but further research is required to elucidate the effect of chitosans on ruminal fermentation parameters in commercial diets as well as the adaptability of rumen microflora to these additives.  相似文献   

16.
Eight dual-flow continuous culture vessels (700 ml) were used to compare in vitro effects of toxic, endophyte-infected (E+), endophyte-free (E−), and non-toxic, endophyte-infected (EN) Jesup tall fescue (vegetative stage) on ruminal fermentation at 4 levels (0, 150, 300, and 450 g kg−1 DM) of concentrate supplementation (ground corn) for a total of 12 experimental diets in a randomized incomplete block design with 2 replicates. Each culture vessel was offered a total of 15 g DM d−1. Forage was fed in four equal portions (fed at 03:00, 09:00, 15:00, and 21:00 h); and corn was fed in two equal portions (fed at 09:00 and 21:00 h). Headspace gas and liquid samples were analyzed for methane, ruminal culture pH, ammonia–N, and volatile fatty acid production. Ammonia–N output (g d−1) varied by grass; EN had lower values compared to those of E+ and E−. Increasing the level of grain linearly decreased ruminal culture pH, ammonia–N, acetate production, and the acetate-to-propionate ratio, whereas propionate and butyrate production increased with higher grain supplementation. Ruminal fermentation was minimally altered by the presence of the endophyte; however, for the highest level of grain fed (450 g kg−1 DM fed) the methane production pattern for all three grasses was altered. In addition to having the lowest ruminal ammonia–N accumulation, the non-toxic, endophyte-infected fescue resulted in the lowest methane production measured.  相似文献   

17.
A randomised design involving 66 continental cross beef steers (initial live weight 523 kg) was undertaken to evaluate the effects of the inclusion of maize or whole-crop wheat silages in grass silage-based diets on animal performance, carcass composition, and meat quality of beef cattle. Grass silage was offered either as the sole forage or in addition to either maize or whole-crop wheat silages at a ratio of 40:60, on a dry matter (DM) basis, alternative forage: grass silage. For the grass, maize, and whole-crop wheat silages, DM concentrations were 192, 276, and 319 g/kg, ammonia-nitrogen concentrations were 110, 90, and 150 g/kg nitrogen, starch concentrations were not determined, 225, and 209 g/kg DM and in vivo DM digestibilities were 0.69, 0.69, and 0.58; respectively. The forages were offered ad libitum following mixing in a paddle type complete diet mixer wagon once per day, supplemented with either 3 or 5 kg concentrates per steer per day, in two equal feeds, for 92 days. For the grass, grass plus maize and grass plus whole-crop wheat silage-based diets food intakes were 8.38, 9.08, and 9.14 kg DM per day, estimated carcass gains were 514, 602, and 496 g/day and carcass weights were 326, 334, and 325 kg; respectively. Altering the silage component of the diet did not influence carcass composition or meat eating quality. Increasing concentrate feed level tended ( P = 0.09) to increase estimated carcass fat concentration and increased sarcomere length ( P < 0.05), and lean a* ( P < 0.01), b* ( P < 0.05), and chroma ( P < 0.01). There were no significant silage type by concentrate feed level interactions for food intake, steer performance, carcass characteristics or meat eating quality. It is concluded that replacing grass silage with maize silage increased carcass gain, and weight due to higher intakes, and improved utilisation of metabolisable energy. Whilst replacing grass silage with whole-crop wheat silage increased live-weight gain, the reduced dressing proportion resulted in no beneficial effect on carcass gain, probably due to increased food intakes of lower digestible forage increasing gut fill. Meat quality or carcass composition were not altered by the inclusion of maize or whole-crop silages in grass silage based diets.  相似文献   

18.
This experiment was conducted to investigate effects of wilting and additives on the fatty acid (FA) composition of grass silage. The crop used was timothy (Phelum pratense L., cv. Grindstad), and the additives were Proens? (formic acid and propionic acid, 60–66 g/100 g and 25–30 g/100 g, respectively), the bacterial inoculant Siloferm® Plus (Pediococcus acidilactici and Lactobacillus plantarum) and water (control). The wilted material reached a dry matter (DM) content of 336 g/kg at the first cut and 350 g/kg at the second cut. Neither wilting nor the additives had any major effect on the FA proportions, with the only differences in the concentrations of C16:0 and C18:3. Silage treated with bacterial inoculant contained a higher proportion of C16:0 (P<0.05) than silage treated with acid, and a lower (P<0.05) concentration of C18:3 than silage treated with either of the other two additives. In the silages, there were lower (P<0.05) proportions of C16:0, C18:0, C18:1 and C18:3, and higher (P<0.05) proportions of C16:1, C18:2 and other identified FAs, than in the fresh material. A wilting process shorter than 24 h, to a DM content of 330–350 g/kg, did not have any effect on the proportions of FAs in P. pratense L., cv. Grindstad. Since the different additives and wilting strategies tested in this study did not affect the proportions of FAs in silage to a major extent, the results indicate that such a process offers a robust means to avoid losses of FAs that can occur during wilting, while retaining the positive effects of wilting, such as reduced losses of nutrients through effluents.  相似文献   

19.
Silages from pineapple peel, sweet corn husk and cob mixed with bagasse and vinasse were evaluated to determine their chemical composition and fermentation characteristics as well as feeding performance in fattening steers. The experiment, which lasted 90 days, involved 48 fattening steers (264 ± 37.4 kg BW) randomly allocated to three diets. Treatments included: a control diet containing rice straw and molasses (T1); diet containing bagasse–vinasse mixture including sweet corn husk and cob silage (BS; T2); and diet containing bagasse–vinasse mixture including pineapple peel silage (BP; T3). All treatments included a commercial concentrate feed (13% CP) and ad libitum rice straw throughout the experiment. Results from chemical analysis showed that dry matter (DM) of BS was higher than BP (P < 0.05), whereas the protein content of BS and BP was similar (P > 0.05). For fermentation characteristics, pH in BP was lower than BS (P < 0.05); in addition, acetic and butyric acids in BS were higher than BP (P < 0.05). Findings from growth trial showed that total DM intake in steers fed T1 was higher compared to the other dietary treatments (P < 0.05), whereas the average BW gain was found to be grater in T3 steers (P < 0.05). As result from our findings, bagasse–vinasse mixture with pineapple peel silage appeared to be a viable feed ingredient in fattening steer diet and moreover it could become an economically feasible agro-industrial by-product for farmers.  相似文献   

20.
Agricultural activities involve daily use of maize silage as feed for livestock, which can be contaminated by mycotoxigenic molds. To evaluate fungal contamination, and the production of mycotoxins in maize silage we propose a multi-disciplinary approach utilizing PCR methods with genes of the aflatoxin (ver-1, omt-1 and apa-2), fumonisin (FUM1) and trichothecene (TRI6) biosynthesis pathways. To detect Aspergillus fumigatus, a 26S/intergenic spacer region of the rDNA complex was amplified. These specific PCR assays allowed three major groups of toxigenic fungi-like aflatoxin-producing Aspergilli, fumonisin and trichothecene-producing Fusaria, and the ubiquitous mold A. fumigatus, to be targeted. A multimycotoxin method is also proposed to simultaneously quantify seven mycotoxins (i.e., aflatoxin B1, citrinin, deoxynivalenol, fumonisin B1, gliotoxin, ochratoxin A, zearalenone) in maize silage by high-performance liquid chromatography coupled to mass spectrometry (HPLC–MS). These microbiological and analytical tools revealed three potentially toxigenic groups of fungi and A. fumigatus grown from mature maize silage (11 month old) that was collected in Normandy (France) and the mycotoxins aflatoxin B1 (7.0–51.3 μg/kg), citrinin (10.1–14.2 μg/kg), deoxynivalenol (128.0–181.0 μg/kg) and gliotoxin (6.6–11.9 μg/kg). Results indicate that the combination of PCR and HPLC–MS can be used to assess fungal quality of maize silages.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号