首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
《Fungal Ecology》2008,1(2-3):78-88
The negative aspects of traditional pest control have led to the investigation of alternative methods such as biological control. Metarhizium anisopliae, well known as an entomopathogenic fungus capable of actively invading and killing its hosts and thus a candidate biopesticide, is here tested against two agricultural pests of economic/social importance and also evaluated for its chitinolytic secretion and capacity to grow and sporulate at different temperatures. None of the isolates was able to grow below 4 °C or above 37 °C. Chitinolytic activity under artificial growth conditions revealed that Rhipicephalus (Boophilus) microplus cuticle induces N-acetyl-β-d-glucosaminidase and endochitinase activities more efficiently than Dysdercus peruvianus cuticle and that glucose did not repress those activities. Bioassays were carried out with R. microplus females and fourth instar D. peruvianus. Six isolates of M. anisopliae were pathogenic to the engorged female cattle ticks. E6, GC47 and CG97 were the most virulent isolates for both arthropod models although differences were seen among them. M. anisopliae strains caused 90–100 % mortality on the fourth post-infection day in R. microplus. D. peruvianus females were more sensitive to fungal infection than males, and the most virulent strains caused 50 % mortality on the third to fourth day post-infection. Our studies suggest that M. anisopliae strain CG47 is a candidate for commercial pesticide formulations due to its capacity to kill both hosts and its ability to sporulate at higher temperatures.  相似文献   

2.
《Journal of Asia》2014,17(3):237-241
The aim of this study was to investigate the molecular identification and virulence of the entomopathogenic fungus Metarhizium anisopliae. Initially, the alignments of nucleotide sequences of the internal transcribed spacer (ITS) 1-5.8S-ITS4 regions of six isolates–TFFH1, TFFH3, PR1, MAP, GT3, and GT2–were investigated using GenBank ITS sequences for the same region and species of fungus. Thereafter, the in vitro (germination, vegetative growth, and sporulation) and the in vivo (%mortality of Bemisia tabaci) virulence of the fungus were investigated. A BLAST search of the ITS1 region revealed a match to a sequence registered under the accession number for M. anisopliae. The submitted sequence data were registered and provided with the accession numbers JX041507 to JX0415012, which were released in August 2012 (GenBank). In the virulence experiments, the highest germination percentage, vegetative growth, and sporulation of M. anisopliae were observed in the isolate PR1, with mean values of 97.2%, 4.6 cm, and 7.2 × 106 conidia/ml, respectively; while the highest mortality percentage of B. tabaci was observed in the isolate GT3, with an mean value of 84.3%. This study concludes that all the six tested isolates–TFFH1, TFFH3, PR1, MAP, GT3, and GT2–are M. anisopliae and the isolates PR1 and GT3 are more virulent to B. tabaci than that by the other four isolates.  相似文献   

3.
Characterization of pathogenesis genes of Metarhizium anisopliae, will provide better understanding of the role of these genes during pathogenesis. The expression profiles of pathogenesis-related genes encoding for a subtilisin-like protease (PR1), two types of chitinases (CHI2 and CHI3), and a peptide synthetase (PES) were studied during the different stages of M. anisopliae infection in Spodoptera exigua larvae using quantitative real-time RT-PCR. Sampling were at 0, 2, 12, and 24 h after infection, when the infected larvae reached the moribund stage (36 h), when mycelia emerged from the cadavers, when few conidia had formed on the mycelia, and when the cadavers were covered by conidia. For comparison, conidia and mycelial samples harvested from culture media were also included. Among the studied genes, PR1 expression was detected early at 2 h after infection and increased as the infection progressed. CHI2 and CHI3 expressions were detected 12 h after infection and when the mycelia emerged from cadavers, respectively. The expression levels of PR1, CHI2 and CHI3 genes increased significantly at the beginning of conidiogenesis on cadavers, but decreased at later stages. As expected, their expressions in pure fungal propagules were at very low levels. For PES gene, fold changes were not significant between different samples (less than onefold), indicating it might not have a major role in infecting stages. High expression levels of PR1, CHI2, and CHI3 genes during the post-mortem hyphal growth and conidiation stages of M. anisopliae clearly indicate the importance of these genes during the saprophytic phase of this fungus on host insect.  相似文献   

4.
Alkyl hydroperoxide reductase (AhpC) is known to detoxify peroxides and reactive sulfur species (RSS). However, the relationship between its expression and combating of abiotic stresses is still not clear. To investigate this relationship, the genes encoding the alkyl hydroperoxide reductase (ahpC) from Anabaena sp. PCC 7120 were introduced into E. coli using pGEX-5X-2 vector and their possible functions against heat, salt, carbofuron, cadmium, copper and UV-B were analyzed. The transformed E. coli cells registered significantly increase in growth than the control cells under temperature (47 °C), NaCl (6% w/v), carbofuron (0.025 mg ml?1), CdCl2 (4 mM), CuCl2 (1 mM), and UV-B (10 min) exposure. Enhanced expression of ahpC gene as measured by semi-quantitative RT-PCR under aforementioned stresses at different time points demonstrated its role in offering tolerance against multiple abiotic stresses.  相似文献   

5.
All entomopathogenic fungi infect insects by direct penetration through the cuticle rather than per os through the gut. Genetic transformation can confer fungi with per os virulence. However, unless the recipient isolate is nonpathogenic to the target insect, mortality caused by a transgenic isolate cannot be attributed solely to oral virulence due to the potential for some simultaneous cuticular infection. Here, a Metarhizium anisopliae wild-type isolate (MaWT) nonpathogenic to Spodoptera litura was genetically engineered to provide a transformed isolate (MaVipT31) expressing the insect midgut-specific toxin Vip3Aa1. Toxin expression was confirmed in MaVipT31 hyphae and conidia using Western blotting. Mortality, leaf consumption and body weight of S. litura larvae (instars I–IV) exposed to a range of concentrations of MaWT conidia were not significantly different to controls although the number of conidia ingested by surviving larvae during the bioassay ranged from 2.3 × 105 (instar I) to 8.1 × 106 (instar IV). In contrast, consumption of MaVipT31 conidia caused high mortalities, reduced leaf consumption rates and decreased body weights in all instars evaluated, demonstrating that oral virulence had been acquired by MaVipT31. Larval mortalities were much more dependent on the number of MaVipT31 conidia ingested than the duration of time spent feeding on conidia-treated leaves (r2: 0.83–0.94 for instars I–IV). LC50 and LT50 trends for MaVipT31 estimated by time-concentration-mortality modeling analyses differed greatly amongst the instars. For 50% kill to be achieved, instar I larvae required 3, 4 and 5 days feeding on the leaves bearing 103, 28 and 8 conidia/mm2 respectively; instar IV larvae required 6, 7 and 8 days feeding on leaves bearing 1760, 730 and 410 conidia/mm2 respectively. Our results provide a deeper insight into the high oral virulence acquired by an engineered isolate and highlight its great potential for biological control.  相似文献   

6.
7.
《Biological Control》2011,56(3):166-173
Termites adjust their response to entomopathogenic fungi according to the profile of fungal volatile organic compounds (VOCs). This study demonstrates the pathogenicity of Metarhizium anisopliae, Beauveria bassiana and Isaria fumosorosea (=Paecilomyces fumosoroseus) towards the Formosan subterranean termite, Coptotermes formosanus Shiraki (Isoptera: Rhinotermitidae). Using no-choice assays, M. anisopliae was found to be highly virulent (LT50 3.10 d) when compared to B. bassiana (LT50 6.62 d) and I. fumosorosea (LT50 12.39 d). Also using choice assays, the foraging behavior of C. formosanus was determined in the presence of pathogenic fungi. The highly pathogenic fungi (M. anisopliae) elicited a repellent response, causing most of the termites to forage in a safe zone farthest from the fungal source. This repellency resulted in relatively low mortality similar to the controls. The repellency of M. anisopliae conidia can be used to protect human belongings and timber from termites. While I. fumosorosea cultures were not repellent to C. formosanus workers, the termites were highly susceptible to infection. Electroantennographic responses of workers showed approximately 47% and 78% lower level of response to conidia of B. bassiana and I. fumosorosea, respectively, as compared to M. anisopliae. The VOC profile of repellent cultures of M. anisopliae mainly consisted of paraffins (60.97%), while the major proportion of the I. fumosorosea profile consisted of branched and cyclic alkanes (84.41%). From the above findings, we conclude that the incorporation of I. fumosorosea may increase the control potential of bait.  相似文献   

8.
《Microbiological research》2014,169(4):279-286
Fatty acids as components of cuticular lipids of insects play a significant role in antifungal in protection against fungal infection. The chemical composition of cuticular and internal extracts obtained from all developmental stages of flesh flies Sarcophaga carnaria was identified. The fatty acids were detected using gas chromatography coupled with mass spectrometry and the most abundant for all examined stages were: 18:1 > 16:0 > 16:1 > 18:0 > 18:2. Polyunsaturated fatty acids (PUFA) C20 were found in both, cuticular and internal extracts. GC–MS analysis showed higher relative content of PUFA in adults than in preimaginal stages.Fatty acids alone as well as their cuticular and internal extracts obtained from larvae, pupae male and female of S. carnaria were tested according to their potential antimicrobial activity against entomopathogenic fungi: Paecilomyces lilacinus, Paecilomyces fumosoroseus, Lecanicillium lecanii, Metarhizium anisopliae, Beauveria bassiana (Tve-N39) and B. bassiana (Dv-1/07). FA presented diverse antimicrobial activity depending on the length of the chain and the presence of unsaturated bonds. Short chain and unsaturated FA (6:0, 11:0, 13:0) have shown significantly stronger activity against fungi but they were detected in lower concentrations. PUFA inhibit fungal growth more effectively than unsaturated long chain fatty acids. Cuticular and internal extracts of all living forms of S. carnaria exhibited approximately equal activity against tested entomopathogenic fungi. We presumed that the most abundant saturated long chain FA and additionally PUFA founded in our analysis are involved in protecting the flies against fungal infection.  相似文献   

9.
Human Cathelicidin antimicrobial peptide LL-37 is known to have antiviral activity against many viruses. In the present study, we investigated the in-vitro effect of LL-37 on dengue virus type 2 (DENV-2) infection and replication in Vero E6 cells. To study the effect of pretreatment of virus or cells with LL-37, the virus was pretreated with different concentrations of LL-37 (2.5 μM–15 μM) or scrambled (Scr) LL-37(5 μM–15 μM) and used for infection or the cells were first treated with LL-37 and infected. To study the effect of LL-37 post infection (PI), the cells were infected first followed by addition of LL-37 to the culture medium 24 h after infection. In all conditions, after the incubation, the culture supernatant was assessed for viral RNA copy number by real time RT-PCR, infectious virus particles by focus forming unit assay (FFU) and non structural protein 1 (NS1) antigen levels by ELISA. Percentage of infection was assessed using immunoflourescence assay (IFA). The results revealed that pretreatment of virus with 10–15 μM LL-37 significantly reduced its infectivity as compared to virus control (P < 0.0001). Moreover, pretreatment of virus with 10–15 μM LL-37 significantly reduced the levels of viral genomic RNA and NS1 antigen (P < 0.0001). Treatment of virus with 10–15 μM LL-37 resulted in two to three log reduction of mean log10 FFU/ml as compared to virus control (P < 0.0001). Treatment of the virus with scrambled LL-37 had no effect on percentage of infection and viral load as compared to virus control cultures (P > 0.05). Pretreatment of cells before infection or addition of LL-37 to the culture 24 h PI had no effect on viral load. Molecular docking studies revealed possible binding of LL-37 to both the units of DENV envelope (E) protein dimer. Together, the in-vitro experiments and in-silico analyses suggest that LL-37 inhibits DENV-2 at the stage of entry into the cells by binding to the E protein. The results might have implications for prophylaxis against DENV infections and need further in-vivo studies.  相似文献   

10.
Salinity is one of the serious abiotic stresses adversely affecting the majority of arable lands worldwide, limiting the crop productivity of most of the economically important crops. Sweet basil (Osmium basilicum) plants were grown in a non-saline soil (EC = 0.64 dS m−1), in low saline soil (EC = 5 dS m−1), and in a high saline soil (EC = 10 dS m−1). There were differences between arbuscular mycorrhizal (Glomus deserticola) colonized plants (+AMF) and non-colonized plants (−AMF). Mycorrhiza mitigated the reduction of K, P and Ca uptake due to salinity. The balance between K/Na and between Ca/Na was improved in +AMF plants. Growth enhancement by mycorrhiza was independent from plant phosphorus content under high salinity levels. Different growth parameters, salt stress tolerance and accumulation of proline content were investigated, these results showed that the use of mycorrhizal inoculum (AMF) was able to enhance the productivity of sweet basil plants under salinity conditions. Mycorrhizal inoculation significantly increased chlorophyll content and water use efficiency under salinity stress. The sweet basil plants appeared to have high dependency on AMF which improved plant growth, photosynthetic efficiency, gas exchange and water use efficiency under salinity stress. In this study, there was evidence that colonization with AMF can alleviate the detrimental salinity stress influence on the growth and productivity of sweet basil plants.  相似文献   

11.
Mycosin protease-1 (MycP1) cleaves ESX secretion-associated protein B (EspB) that is a virulence factor of Mycobacterium tuberculosis, and accommodates an octapeptide, AVKAASLG, as a short peptide substrate. Because peptidoboronic acids are known inhibitors of serine proteases, the synthesis and binding of a boronic acid analog of the pentapeptide cleavage product, AVKAA, was studied using MycP1 variants from Mycobacterium thermoresistible (MycP1mth), Mycobacterium smegmatis (MycP1msm) and M. tuberculosis (MycP1mtu). We synthesized the boropentapeptide, HAlaValLysAlaAlaB(OH)2 (1) and the analogous pinanediol PD-protected HAlaValLysAlaAlaBO2(PD) (2) using an Fmoc/Boc peptide strategy. The pinanediol boropentapeptide 2 displayed IC50 values 121.6 ± 25.3 μM for MycP1mth, 93.2 ± 37.3 μM for MycP1msm and 37.9 ± 5.2 μM for MycP1mtu. Such relatively strong binding creates a chance for crystalizing the complex with 2 and finding the structure of the unknown MycP1 catalytic site that would potentially facilitate the development of new anti-tuberculosis drugs.  相似文献   

12.
The effect of fungal infection by Metarhizium anisopliae on feeding and oviposition of adult Liriomyza huidobrensis was examined on three host plants, faba bean (Vicia faba), French bean (Phaseolus vuklgaris) and snow pea (Pisum sativum) in the laboratory. Flies were contaminated with dry conidia and allowed to feed and oviposit on the different host plants. Mortality in L. huidobrensis varied between 14% and 20% in the controls and between 77% and 100% in fungal treatments 120 h post-infection for the three host plants. L. huidobrensis made more punctures (47.3–52.6 cm?2) in the control than in the fungal treatments (23.1–26.9 cm?2) for the three host plants. The cumulative average number of punctures cm?2/female by L. huidobrensis was higher in the controls than in fungal treatments from 72 h post-treatment in faba bean (12.2 vs. 8.2) and French bean (14.8 vs. 8.9), and from 48 h post-inoculation in snow pea (8.5 vs. 5.7). Female L. huidobrensis laid more eggs in the control (0.6–6.1) than in fungal treatments (0.2–1.5) across the host plants tested. The cumulative mean number of eggs cm?2/female was significantly higher in the controls than in fungal treatments from 48 h post-treatment in faba bean (0.4 vs. 0.2) and French bean (0.1 vs. 0), and 96 h post-inoculation in snow pea (0.2 vs. 0.1). The host plant did not affect the average total number of punctures but had a significant effect on egg laying, with faba bean harboring greater number of eggs in both control and fungal treatments. A proper timeline application of the fungus before onset of feeding and oviposition peaks will be crucial in field suppression of the pest using M. anisopliae. In addition, a great consideration must be given to the target host plants prior to application of the fungus.  相似文献   

13.
In the present study, the hypothesis was tested as to whether silicon supplied via the nutrient solution is capable of enhancing the tolerance of hydroponically grown zucchini squash (Cucurbita pepo L. cv. ‘Rival’) to salinity and powdery mildew infections. Two experiments were conducted involving a low (2.2 dS m?1, 0.8 mM NaCl) and a high salinity level (6.2 dS m?1, 35 mM NaCl) in combination with a low (0.1 mM) and a high (1.0 mM) Si level in the nutrient solution supplied to the crop. The exposure of the plants to high external salinity restricted significantly the vegetative growth as well as the fruit yield of zucchini due to a reduction of both the number of fruits per plant and the mean fruit weight. However, the inclusion of 1 mM of Si in the salinized nutrient solution mitigated the salinity-associated suppression of both growth and yield. Part of the growth and fruit yield suppression at high salinity was due to restriction of net photosynthesis. The stomatal conductance was also restricted by salinity, whereas the substomatal CO2 concentration was not affected by the NaCl or Si treatments. The supply of 1 mM of Si via the nutrient solution mitigated the inhibitory effect of salinity on net photosynthesis and this effect was associated with lower Na and Cl translocation to the epigeous plant tissues. Furthermore, the supply of Si via the nutrient solution suppressed appreciably the expansion of a powdery mildew (Podosphaera xanthii) infection in the leaves at both salinity levels. These results indicate that the supply of at least 1 mM of Si via the nutrient solution is capable of enhancing both tolerance to salinity and resistance to powdery mildew in soilless cultivations of zucchini squash.  相似文献   

14.
Plants typically respond to environmental stresses by inducing antioxidants as a defense mechanism. As a number of these are also phytochemicals with health-promoting qualities in the human diet, we have used mild environmental stresses to enhance the phytochemical content of lettuce, a common leafy vegetable. Five-week-old lettuce (Lactuca sativa L.) plants grown in growth chambers were exposed to mild stresses such as heat shock (40 °C for 10 min), chilling (4 °C for 1 d) or high light intensity (800 μmol m?2 s?1 for 1 d). In response to these stresses, there was a two to threefold increase in the total phenolic content and a significant increase in the antioxidant capacity. The concentrations of two major phenolic compounds in lettuce, chicoric acid and chlorogenic acid, increased significantly in response to all the stresses. Quercetin-3-O-glucoside and luteolin-7-O-glucoside were not detected in the control plants, but showed marked accumulations following the stress treatments. The results suggest that certain phenolic compounds can be induced in lettuce by environmental stresses. Of all the stress treatments, high light produced the greatest accumulation of phenolic compounds, especially following the stress treatments during the recovery. In addition, key genes such as phenylalanine ammonia-lyase (PAL), l-galactose dehydrogenase (l-GalDH), and γ-tocopherol methyltransferase (γ-TMT) involved in the biosynthesis of phenolic compounds, ascorbic acid, and α-tocopherol, respectively, were rapidly activated by chilling stress while heat shock and high light did not appear to have an effect on the expression of PAL and γ-TMT. However, l-GalDH was consistently activated in response to all the stresses. The results also show that these mild environmental stresses had no adverse effects on the overall growth of lettuce, suggesting that it is possible to use mild environmental stresses to successfully improve the phytochemical content and hence the health-promoting quality of lettuce with little or no adverse effect on its growth or yield.  相似文献   

15.
The fecal Escherichia coli population structure may influence the occurrence and etiology of extraintestinal infection, but is poorly understood. Accordingly, fecal E. coli from 39 healthy women (30 putative colonies per subject) were characterized for clonal identity, urinary tract infection-associated virulence traits, and phylogenetic background. The 120 unique E. coli clones (mean, three per sample) were distributed by phylogenetic group as follows: A (33%), D (31%), B1 (19%), and B2 (17%). However, 36% of women carried ≥1 clone from group B2, and 87% had clones from groups B2 and/or D. Of the B2 clones, 90% were from pauciclonal fecal samples (≤4 clones), compared with 47% and 52% of A and B1 clones (P = .001 and P = .007, respectively). Group B2 and D clones more often were dominant within the source sample than group A and B1 clones (60% vs. 41%: P = .05). Dominant clones exhibited higher virulence scores than non-dominant clones (mean 4.4 vs. 3.1: P = .015). In multilevel regression models, pauciclonal sample, B2, and clonal prevalence significantly predicted virulence score. In conclusion, within the intestinal E. coli population, virulence-associated traits, clonal prevalence, and low fecal clonal diversity are related. Virulence-associated traits of group B2/D E. coli may enhance fitness within the gut, thereby increasing strains’ likelihood of causing extraintestinal infection.  相似文献   

16.
A putative porin function has been assigned to VCA1008 of Vibrio cholerae. Its coding gene, vca1008, is expressed upon colonization of the small intestine in infant mice and human volunteers, and is essential for infection. In vitro, vca1008 is expressed under inorganic phosphate limitation and, in this condition, VCA1008 is the major outer membrane protein of the bacterium. Here, we provide the first functional characterization of VCA1008 reconstituted into planar lipid bilayers. Our main findings were: 1) VCA1008 forms an ion channel that, at high voltage (~ ± 100mV), presents a voltage-dependent activity and displays closures typical of trimeric porins, with a conductance of 4.28 ± 0.04 nS (n = 164) in 1M KCl; 2) It has a preferred selectivity for anions over cations; 3) Its conductance saturates with increasing inorganic phosphate concentration, suggesting VCA1008 contains binding site(s) for this anion; 4) Its ion selectivity is controlled by both fixed charged residues within the channel and diffusion along the pore; 5) Partitioning of poly (ethylene glycol)s (PEGs) of different molecular mass suggests that VCA1008 channel has a pore exclusion limit of 0.9 nm.  相似文献   

17.
The effect of temperature (26 °C, 28 °C, 30 °C and 35 °C) on the growth of native CAAT-3-2005 Microcystis aeruginosa and the production of Chlorophyll-a (Chl-a) and Microcystin-LR (MC-LR) were examined through laboratory studies. Kinetic parameters such as specific growth rate (μ), lag phase duration (LPD) and maximum population density (MPD) were determined by fitting the modified Gompertz equation to the M. aeruginosa strain cell count (cells mL−1). A 4.8-fold increase in μ values and a 10.8-fold decrease in the LPD values were found for M. aeruginosa growth when the temperature changed from 15 °C to 35 °C. The activation energy of the specific growth rate (Eμ) and of the adaptation rate (E1/LPD) were significantly correlated (R2 = 0.86). The cardinal temperatures estimated by the modified Ratkowsky model were minimum temperature = 8.58 ± 2.34 °C, maximum temperature = 45.04 ± 1.35 °C and optimum temperature = 33.39 ± 0.55 °C.Maximum MC-LR production decreased 9.5-fold when the temperature was increased from 26 °C to 35 °C. The maximum production values were obtained at 26° C and the maximum depletion rate of intracellular MC-LR was observed at 30–35 °C. The MC-LR cell quota was higher at 26 and 28 °C (83 and 80 fg cell−1, respectively) and the MC-LR Chl-a quota was similar at all the different temperatures (0.5–1.5 fg ng−1).The Gompertz equation and dynamic model were found to be the most appropriate approaches to calculate M. aeruginosa growth and production of MC-LR, respectively. Given that toxin production decreased with increasing temperatures but growth increased, this study demonstrates that growth and toxin production processes are uncoupled in M. aeruginosa. These data and models may be useful to predict M. aeruginosa bloom formation in the environment.  相似文献   

18.
Protoporphyrinogen oxidase (PPO, E.C. 1.3.3.4) is the action target for several structurally diverse herbicides. A series of novel 4-(difluoromethyl)-1-(6-halo-2-substituted-benzothiazol-5-yl)-3-methyl-1H-1,2,4-triazol-5(4H)-ones 2az were designed and synthesized via the ring-closure of two ortho-substituents. The in vitro bioassay results indicated that the 26 newly synthesized compounds exhibited good PPO inhibition effects with Ki values ranging from 0.06 to 17.79 μM. Compound 2e, ethyl 2-{[5-(4-(difluoromethyl)-3-methyl-5-oxo-4,5-dihydro-1H-1,2,4-triazol-1-yl)-6-fluorobenzo-thiazol-2-yl]thio}acetate, was the most potent inhibitor with Ki value of 0.06 μM against mtPPO, comparable to (Ki = 0.03 μM) sulfentrazone. Further green house assays showed that compound 2f (Ki = 0.24 μM, mtPPO), ethyl 2-{[5-(4-(difluoromethyl)-3-methyl-5-oxo-4,5-dihydro-1H-1,2,4-triazol-1-yl)-6-fluorobenzothiazol-2-yl]thio}propanoate, showed the most promising post-emergence herbicidal activity with broad spectrum even at concentrations as low as 37.5 g ai/ha. Soybean exhibited tolerance to compound 2f at the dosages of 150 g ai/ha, whereas they are susceptible to sulfentrazone even at 75 g ai/ha. Thus, compound 2f might be a potential candidate as a new herbicide for soybean fields.  相似文献   

19.
In vitro micropropagation and acclimatization for the ornamental Agapanthus praecox, are reported. The influence of different growth regulators on shoot multiplication from shoot-tip explants of A. praecox was investigated. Prolific shoot multiplication (47.3 ± 1.96 shoots per explant) was achieved on Murashige and Skoog (MS) medium supplemented with 22.2 μM benzyladenine (BA), 2.9 μM indole-3-acetic acid (IAA), and 4.5 μM thidiazuron (TDZ). Shoots were rooted on half-strength MS basal medium supplemented with 5.7 μM IAA and 2.5 μM 2-isopentenyladenine (2iP) with 11.3 ± 0.78 roots per shoot. The in vitro-raised plants were established successfully in a 1:1 (v/v) vermiculite:sand mixture when maintained in a greenhouse with 100% survival. The elongated shoots (more than 5 cm in length) were treated for rooting and acclimatization in a moistened (5.7 μM IAA and 2.5 μM 2iP) vermiculite:sand (1:1 v/v) mixture, first in the misthouse and then in the greenhouse. Rooting and acclimatization was achieved simultaneously (100%) in the misthouse which was followed by greenhouse cultivation. This system can be used for rapid mass clonal propagation of A. praecox, for conservation strategies, commercial production, gene transformation studies and to produce phytomedicines.  相似文献   

20.
The host-defense peptide, esculentin-2CHa (GFSSIFRGVA10KFASKGLGK D20LAKLGVDLVA30 CKISKQC) shows potent (MIC  6 μM) growth inhibitory activity against clinical isolates of multidrug-resistant strains of Staphylococcus aureus, Acinetobacter baumannii, and Stenotrophomonas maltophilia and differential cytotoxic activity against human erythrocytes (LC50 = 150 μM) and human non-small cell lung adenocarcinoma A549 cells (LC50 = 10 μM). Esculentin-2CHa significantly (P < 0.01) stimulates the release of the anti-inflammatory cytokine IL-10 by mouse lymphoid cells and elevates its production after stimulation with concanavalin A and significantly (P < 0.05) stimulates TNF-α production by peritoneal macrophages. Effects on IL-6 and IL-1β production were not significant. Removal of the hydrophobic N-terminal hexapeptide (GFSSIF) from esculentin-2CHa results in abolition of growth inhibitory activity against S. aureus and cytotoxic activity against erythrocytes and A549 cells as well as a marked (≥16-fold) reduction in potency against A. baumannii and S. maltophilia. The primary structure of esculentin-2 has been poorly conserved between frog species but evolutionary pressure has acted to maintain the hydrophobic character of this N-terminal hexapeptide sequence. Removal of the cyclic C-terminal domain (CKISKQC) and replacement of the Cys31 and Cys37 residues by serine resulted in appreciable decreases in cytotoxicity against all microorganisms and against mammalian cells. The more cationic [D20K, D27K] analog showed a modest increase in potency against all microorganisms (up to 4-fold) but a marked increase in cytotoxicity against erythrocytes (LC50 = 11 μM) and A549 cells (LC50 = 3 μM).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号