首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 8 毫秒
1.
High calorie intake and high weight gain is one of the worldwide health problems particularly in industrial and developed countries. The subjected individuals are at high risk for developing various disorders such as diabetes and particularly cardiovascular problems. It has been well established that life style modification plays an important role in reducing these problems, particularly weight reduction and caloric restriction (CR) as a non-pharmacological approach. This study sought to examine the possible effect of caloric restriction on nitric oxide production, ACE activity and blood pressure regulation in rat. Two groups of rats were selected as the control (C) and the CR group and a with standard and an every other day diet, respectively, for 4 weeks. At the end of study in the CR group systolic blood pressure was significantly decreased compared to controls. The serum NOx was significantly increased compared to the C group. The serum ACE activity was lower in the CR group. Therefore, it may be concluded that CR could reduce blood pressure by elevating NO production and lowering ACE activity.  相似文献   

2.
The results of experiments designed to show that inhibition of nitric oxide production in rats exposed to low lead levels increases vascular resistance, decreases renal blood flow and glomerular function, and enhances oxidative stress. Forty-five adult male Sprague-Dawley rats were divided into four groups. Group A was used as controls and consisted of rats that received no treatment; group B acted as NO-inhibited controls by receiving L-NAME (N(G)-nitro-l-arginine methyl ester) as the NO inhibitor; group C was injected intraperitoneally with 8 mg/kg lead acetate for 2 wk; and group D receiving lead acetate plus L-NAME. Compared to healthy controls, significant elevation of the mean (p<0.01), systolic (p<0.04), and diastolic (p<0.01) blood pressures was found in the lead-treated rats. The renal blood flow was 1550+/-468 blood per unit (bpu) in the controls, 488+/-220 bpu in the L-NAME controls, 1050+/-458 bpu in the lead-treated group, and 878+/-487 bpu in the Pb plus L-NAME group. Low-level lead exposure did not change the urinary flow rate, creatinine clearance, and the creatinine, potassium, phosphorus, glucose, and protein excretion in 24-h urine. In the lead plus NO-inhibited rats, a significant decrease in sodium ion excretion was observed (p<0.01). The NO levels of the lead exposed, L-NAME-treated controls, and L-NAME plus lead-exposed groups are significantly lower compared to untreated controls: p<0.002, p<0.001, and p<0.01, respectively. When compared to untreated controls, the plasma malondialdehyde levels were not significantly different in the lead exposed, lead plus L-NAME, and L-NAME control groups. These results suggest that lead-induced hypertension might be related to a decrease of NO and consequent vasoconstriction, rather than to a decrease of renal blood flow or to decreases in renal sodium.  相似文献   

3.
While many studies have focused on the detrimental effects of advanced maternal age and harmful prenatal environments on progeny, little is known about the role of beneficial non‐Mendelian maternal inheritance on aging. Here, we report the effects of maternal age and maternal caloric restriction (CR) on the life span and health span of offspring for a clonal culture of the monogonont rotifer Brachionus manjavacas. Mothers on regimens of chronic CR (CCR) or intermittent fasting (IF) had increased life span compared with mothers fed ad libitum (AL). With increasing maternal age, life span and fecundity of female offspring of AL‐fed mothers decreased significantly and life span of male offspring was unchanged, whereas body size of both male and female offspring increased. Maternal CR partially rescued these effects, increasing the mean life span of AL‐fed female offspring but not male offspring and increasing the fecundity of AL‐fed female offspring compared with offspring of mothers of the same age. Both maternal CR regimens decreased male offspring body size, but only maternal IF decreased body size of female offspring, whereas maternal CCR caused a slight increase. Understanding the genetic and biochemical basis of these different maternal effects on aging may guide effective interventions to improve health span and life span.  相似文献   

4.
The mechanisms whereby maternal nutritional manipulation through pregnancy result in altered blood pressure in the offspring may include changes in fetal and newborn and adult renal prostaglandin (PG) synthesis, metabolism, and receptor expression. Since the postnatal effects of nutrient restriction on the renal PG synthesis and receptor system during nephrogenesis in conjunction with nephron numbers and blood pressure have not been evaluated in the rat, the present study examined the effect of reducing maternal food intake by 50% of ad libitum through pregnancy on young male rats. Six control-fed mothers and eight nutrient-restricted pregnant rats with single litter mates were used at each sampling time point, most of which occurred during nephrogenesis. Offspring of nutrient-restricted dams were lighter from birth to 3 days. This was accompanied by reduced PGE2, with smaller kidneys up to 14 days. Nutrient restriction also decreased mRNA expression of the PG synthesis enzyme, had little effect on the PG receptors, and increased mRNA expression of the degradation enzyme during nephrogenesis and the glucocorticoid receptor in the adult kidney. These mRNA changes were normally accompanied by similar changes in protein. Nephron number was also reduced from 7 days up to adulthood when blood pressure (measured by telemetry) did not increase as much as in control offspring during the dark, active period. In conclusion, maternal nutrient restriction suppressed renal PG concentrations in the offspring, and this was associated with suppressed kidney growth and development and decreased blood pressure.  相似文献   

5.
Not much is known about effects of gestational alcohol exposure on maternal and fetal cardiovascular adaptations. This study determined whether maternal binge alcohol exposure and l-glutamine supplementation could affect maternal-fetal hemodynamics and fetal regional brain blood flow during the brain growth spurt period. Pregnant sheep were randomly assigned to one of four groups: saline control, alcohol (1.75–2.5 g/kg body weight), glutamine (100 mg/kg body weight) or alcohol + glutamine. A chronic weekend binge drinking paradigm between gestational days (GD) 99 and 115 was utilized. Fetuses were surgically instrumented on GD 117 ± 1 and studied on GD 120 ± 1. Binge alcohol exposure caused maternal acidemia, hypercapnea, and hypoxemia. Fetuses were acidemic and hypercapnic, but not hypoxemic. Alcohol exposure increased fetal mean arterial pressure, whereas fetal heart rate was unaltered. Alcohol exposure resulted in ~40 % reduction in maternal uterine artery blood flow. Labeled microsphere analyses showed that alcohol induced >2-fold increases in fetal whole brain blood flow. The elevation in fetal brain blood flow was region-specific, particularly affecting the developing cerebellum, brain stem, and olfactory bulb. Maternal l-glutamine supplementation attenuated alcohol-induced maternal hypercapnea, fetal acidemia and increases in fetal brain blood flow. l-Glutamine supplementation did not affect uterine blood flow. Collectively, alcohol exposure alters maternal and fetal acid–base balance, decreases uterine blood flow, and alters fetal regional brain blood flow. Importantly, l-glutamine supplementation mitigates alcohol-induced acid–base imbalances and alterations in fetal regional brain blood flow. Further studies are warranted to elucidate mechanisms responsible for alcohol-induced programming of maternal uterine artery and fetal circulation adaptations in pregnancy.  相似文献   

6.
7.
Aging impairs arterial function through oxidative stress and diminished nitric oxide (NO) bioavailability. Life‐long caloric restriction (CR) reduces oxidative stress, but its impact on arterial aging is incompletely understood. We tested the hypothesis that life‐long CR attenuates key features of arterial aging. Blood pressure, pulse wave velocity (PWV, arterial stiffness), carotid artery wall thickness and endothelium‐dependent dilation (EDD; endothelial function) were assessed in young (Y: 5–7 month), old ad libitum (Old AL: 30–31 month) and life‐long 40% CR old (30–31 month) B6D2F1 mice. Blood pressure was elevated with aging (P < 0.05) and was blunted by CR (P < 0.05 vs. Old AL). PWV was 27% greater in old vs. young AL‐fed mice (P < 0.05), and CR prevented this increase (P < 0.05 vs. Old AL). Carotid wall thickness was greater with age (P < 0.05), and CR reduced this by 30%. CR effects were associated with amelioration of age‐related changes in aortic collagen and elastin. Nitrotyrosine, a marker of cellular oxidative stress, and superoxide production were greater in old AL vs. young (P < 0.05) and CR attenuated these increase. Carotid artery EDD was impaired with age (P < 0.05); CR prevented this by enhancing NO and reducing superoxide‐dependent suppression of EDD (Both P < 0.05 vs. Old AL). This was associated with a blunted age‐related increase in NADPH oxidase activity and p67 expression, with increases in superoxide dismutase (SOD), total SOD, and catalase activities (All P < 0.05 Old CR vs. Old AL). Lastly, CR normalized age‐related changes in the critical nutrient‐sensing pathways SIRT‐1 and mTOR (P < 0.05 vs. Old AL). Our findings demonstrate that CR is an effective strategy for attenuation of arterial aging.  相似文献   

8.
Airway nitric oxide (NO) has been proposed to play a role in the development of high-altitude pulmonary edema. We undertook a study of the effects of acute changes of ambient pressure on exhaled and alveolar NO in the range 0.5-4 atmospheres absolute (ATA, 379-3,040 mmHg) in eight healthy subjects breathing normoxic nitrogen-oxygen mixtures. On the basis of previous work with inhalation of low-density helium-oxygen gas, we expected facilitated backdiffusion and lowered exhaled NO at 0.5 ATA and the opposite at 4 ATA. Instead, the exhaled NO partial pressure (Pe(NO)) did not differ between pressures and averaged 1.21 ± 0.16 (SE) mPa across pressures. As a consequence, exhaled NO fractions varied inversely with pressure. Alveolar estimates of the NO partial pressure differed between pressures and averaged 88 (P = 0.04) and 176 (P = 0.009) percent of control (1 ATA) at 0.5 and 4 ATA, respectively. The airway contribution to exhaled NO was reduced to 79% of control (P = 0.009) at 4 ATA. Our finding of the same Pe(NO) at 0.5 and 1 ATA is at variance with previous findings of a reduced Pe(NO) with inhalation of low-density gas at normal pressure, and this discrepancy may be due to the much longer durations of low-density gas breathing in the present study compared with previous studies with helium-oxygen breathing. The present data are compatible with the notion of an enhanced convective backtransport of NO, compensating for attenuated backdiffusion of NO with increasing pressure. An alternative interpretation is a pressure-induced suppression of NO formation in the airways.  相似文献   

9.
Rassaf T  Kleinbongard P  Kelm M 《Biological chemistry》2006,387(10-11):1347-1349
Endothelial dysfunction is an early stage of atherosclerosis and has been attributed to impaired nitric oxide (NO) bioactivity and enhanced formation of oxygen-derived free radicals. Given that endothelial dysfunction is at least in part reversible, the assessment of altered NO availability is of important diagnostic and prognostic significance. Identification of such alterations may help to target asymptomatic individuals who are at risk for cardiovascular diseases and would likely benefit from preventive measures. Focusing on a single signaling pathway, we present here a multi-level approach for the early diagnosis of cardiovascular diseases by assessing molecular, biochemical, structural, and functional changes in the vascular wall.  相似文献   

10.
Besides its essential role at regulating neural functions through cyclic GMP, nitric oxide is emerging as an endogenous physiological modulator of energy conservation for the brain. Thus, nitric oxide inhibits cytochrome c oxidase activity in neurones and glia, resulting in down-regulation of mitochondrial energy production. The subsequent increase in AMP facilitates the activation of 5'-AMP-dependent protein kinase, which rapidly triggers the activation of 6-phosphofructo-1-kinase--the master regulator of the glycolytic pathway--and Glut1 and Glut3--the main glucose transporters in the brain. In addition, nitric oxide activates glucose-6-phosphate dehydrogenase, the first and rate-limiting step of the pentose-phosphate pathway. Here, we review recent evidences suggesting that nitric oxide exerts a fine control of neuronal energy metabolism by tuning the balance of glucose-6-phosphate consumption between glycolysis and pentose-phosphate pathway. This may have important implications for our understanding of the mechanisms controlling neuronal survival during oxidative stress and bioenergetic crisis.  相似文献   

11.
BackgroundZinc deficiency is associated with adverse effects on maternal health and pregnancy outcomes. These consequences have been reported over the years from zinc supplementation trials and observational studies whereby outcomes of maternal, foetal and infant health were measured. Owing to the importance of zinc in the functions of epigenetic enzymes, pre-clinical studies have shown that its deficiency could disrupt biological activities that involve epigenetic mechanisms in offspring. Thus, this review assessed the link between epigenetics and the effects of maternal zinc deficiency on the offspring’s health in animal studies.MethodsResearch articles were retrieved without date restriction from PubMed, Web of Science, ScienceDirect, and Google Scholar databases, as well as reference lists of relevant articles. The search terms used were “zinc deficiency”, “maternal zinc deficiency”, “epigenetics”, and “offspring.” Six studies met the eligibility criteria and were reviewed.ResultsAll the eligible studies reported maternal zinc deficiency and observed changes in epigenetic markers on the progeny during prenatal and postnatal stages of development. The main epigenetic markers reported were global and gene specific methylation and/ or acetylation. The epigenetic changes led to mortality, disruption in development, and risk of later life diseases.ConclusionMaternal zinc deficiency is associated with epigenetic modifications in offspring, which induce pathologies and increase the risk of later life diseases. More research and insight into the epigenetic mechanisms could spring up new approaches to combat the associated disease conditions.  相似文献   

12.
Recent studies suggest that adipose tissue hormone, leptin, is involved in the pathogenesis of arterial hypertension. However, the mechanism of hypertensive effect of leptin is incompletely understood. We investigated whether antioxidant treatment could prevent leptin-induced hypertension. Hyperleptinemia was induced in male Wistar rats by administration of exogenous leptin (0.25 mg/kg twice daily s.c. for 7 days) and separate groups were simultaneously treated with superoxide scavenger, tempol, or NAD(P)H oxidase inhibitor, apocynin (2 mM in the drinking water). After 7 days, systolic blood pressure was 20.6% higher in leptin-treated than in control animals. Both tempol and apocynin prevented leptin-induced increase in blood pressure. Plasma concentration and urinary excretion of 8-isoprostanes increased in leptin-treated rats by 66.9% and 67.7%, respectively. The level of lipid peroxidation products, malonyldialdehyde + 4-hydroxyalkenals (MDA+4-HNE), was 60.3% higher in the renal cortex and 48.1% higher in the renal medulla of leptin-treated animals. Aconitase activity decreased in these regions of the kidney following leptin administration by 44.8% and 45.1%, respectively. Leptin increased nitrotyrosine concentration in plasma and renal tissue. Urinary excretion of nitric oxide metabolites (NO(x)) was 57.4% lower and cyclic GMP excretion was 32.0% lower in leptin-treated than in control group. Leptin decreased absolute and fractional sodium excretion by 44.5% and 44.7%, respectively. Co-treatment with either tempol or apocynin normalized 8-isoprostanes, MDA+4-HNE, aconitase activity, nitrotyrosine, as well as urinary excretion of NO(x), cGMP and sodium in rats receiving leptin. These results indicate that oxidative stress-induced NO deficiency is involved in the pathogenesis of leptin-induced hypertension.  相似文献   

13.
The rostral ventrolateral medulla (RVLM) plays an important role in the integration of cardiovascular functions. We examined the effect of asphyxia on cardiovascular responses, on sympathetic vertebral nerve activity (VNA) and nitric oxide (NO) formation in the RVLM, on hemodynamics, and on plasma concentrations of catecholamines, blood gas partial pressures and carbohydrate metabolites. Using 16 anesthetized cats we found that the systemic arterial pressure (SAP), VNA, NO formation and the release of plasma catecholamine components of norepinephrine and epinephrine were increased during asphyxia. The onset of NO production was significantly earlier than that of SAP and VNA. The venous partial pressure of O2 decreased, while the partial pressure of CO2 increased. Furthermore, metabolism of glucose and lactate increased, as did the blood concentrations of white and red blood cells, hemoglobin and platelets. Thus, asphyxia increased SAP, VNA and NO formation. It increased the plasma catecholamines, blood gases, carbohydrate metabolites and blood cells.  相似文献   

14.
To determine the role of superoxide (O(2)(-)) formation in the kidney during alterations in the renin-angiotensin system, we evaluated responses to the intra-arterial infusion of an O(2)(-) - scavenging agent, tempol, in the denervated kidney of anesthetized salt-depleted (SD, n=6) dogs and salt-replete (SR, n=6) dogs. As expected, basal plasma renin activity was higher in SD than in SR dogs (8.4 +/- 1.0 vs. 2.3 +/- 0.6 ng angiotensin 1/ml/hr). Interestingly, the basal level of urinary F(2)-isoprostanes excretion (marker for endogenous O(2)(-) activity) relative to creatinine (Cr) excretion was also significantly higher in SD compared to SR dogs (9.1 +/- 2.8 vs. 1.6 +/- 0.4 ng F(2)-isoprostanes/mg of Cr). There was a significant increase in renal blood flow (4.3 +/- 0.5 to 4.9 +/- 0.6 ml/min/g) and decreases in renal vascular resistance (38.2 +/- 5.8 to 33.2 +/- 4.7 mm Hg/ml/min/g) and mean systemic arterial pressure (148 +/- 6 to 112 +/- 10 mm Hg) in SD dogs but not in SR dogs during infusion of tempol at 1 mg/kg/min for 30 mins. Glomerular filtration rate and urinary sodium excretion (U(Na)V) did not change significantly during tempol infusion in both groups of dogs. Administration of the nitric oxide synthase inhibitor nitro-L-arginine (50 mug/kg/min) during tempol infusion caused a reduction in U(Na)V in SR dogs (47% +/- 12%) but did not cause a decrease in SD dogs. These data show that low salt intake enhances O(2)(-) activity that influences renal and systemic hemodynamics and thus may contribute to the regulation of arterial pressure in the salt-restricted state.  相似文献   

15.
Caloric restriction mimetics (CRMs) have been developed to mimic the effects of caloric restriction (CR). However, research reports for the effects of CRMs are often times inconsistent across different research groups. Therefore, in this study, we compared seven identified CRMs which extend the lifespans of various organisms including caffeine, curcumin, dapsone, metformin, rapamycin, resveratrol, and spermidine to CR for mitochondrial function in a single model, Saccharomyces cerevisiae. In this organism, rapamycin extended chronological lifespan (CLS), but other CRMs failed to extend CLS. Rapamycin enhanced mitochondrial function like CR did, but other CRMs did not. Both CR and rapamycin worked on mitochondrial function, but they worked at different windows of time during the chronological aging process.  相似文献   

16.
In addition to its known action on vascular smooth muscle, nitric oxide (NO) has been suggested to have cardiovascular effects via regulation of red blood cell (RBC) deformability. The present study was designed to further explore this possibility. Human RBCs in autologous plasma were incubated for 1 h with NO synthase (NOS) inhibitors [N(omega)-nitro-l-arginine methyl ester (l-NAME) and S-methylisothiourea], NO donors [sodium nitroprusside (SNP) and diethylenetriamine (DETA)-NONOate], an NO precursor (l-arginine), soluble guanylate cyclase inhibitors (1H-[1,2,4]oxadiazolo-[4,3-a]quinoxalin-1-one and methylene blue), and a potassium channel blocker [triethylammonium (TEA)]. After incubation, RBC deformability at various shear stresses was determined by ektacytometry. Both NOS inhibitors significantly reduced RBC deformability above a threshold concentration, whereas the NO donors increased deformability at optimal concentrations. NO donors, as well as the NO precursor l-arginine and the potassium blocker TEA, were able to reverse the effects of NOS inhibitors. Guanylate cyclase inhibition reduced RBC deformation, with both SNP and DETA-NONOate able to reverse this effect. These results thus indicate the importance of NO as a determinant of RBC mechanical behavior and suggest its regulatory role for normal RBC deformability.  相似文献   

17.
The effect of a high linoleic acid diet on blood pressure, renal function, and urinary prostaglandin excretion was studied in rats with decreased renal mass. Subtotally nephrectomized (5/6 nephrectomy) male rats received either a 15% linoleic acid (high linoleic acid, HLA) diet containing 20% safflower oil or a 0.28% linoleic acid (low linoleic acid, LLA) diet containing 20% coconut oil. Sham-operated rats were also placed on either HLA or LLA diet. The subtotal nephrectomized rats developed similar degrees of hypertension during the first 3 weeks after subtotal nephrectomy. However, 4 weeks after subtotal nephrectomy, the rats on HLA diet had significantly lower blood pressure than the rats on LLA diet [HLA 152 +/- 3 (mean +/- SE) mm Hg versus LLA 171 +/- 3 mm Hg]. This difference persisted until termination of the experiment at 7 weeks after subtotal nephrectomy (HLA 159 +/- 7 mm Hg versus LLA 192 +/- 6 mm Hg). The GFR measured 7 weeks after subtotal nephrectomy was significantly lower in both of the subtotally nephrectomized groups. However, the HLA subtotal nephrectomized rats had significantly higher GFR than the LLA-treated rats (HLA 0.23 +/- 0.05 ml/min 100 g versus LLA 0.12 +/- 0.02 ml/min/100 g, P less than 0.05). There was no difference in the GFR or blood pressure in the sham-operated rats treated with HLA or LLA diet. PGE2 excretion was lower in the two groups of subnephrectomized rats, but there was no difference between the HLA and LLA treated rats. Urinary 6-ketoPGF1 alpha was not decreased by subtotal nephrectomy and there was no difference between the dietary groups. However, TXB2 excretion was higher in the groups with subtotal nephrectomy, but there was no difference between the two dietary groups. In conclusion, the HLA diet attenuates the rise in blood pressure after subtotal nephrectomy in the rat and preserves renal function. There was no difference in urinary excretion of PGE2, 6-keto-PFG1 alpha, or thromboxane B2 between the two dietary groups.  相似文献   

18.
Direct effects of vasoactive substances on blood pressure can be examined in individuals with tetraplegia due to disruption of descending spinal pathways to sympathetic preganglionic neurons, as cervical lesions interfere with baroreceptor reflex buffering of sympathetic outflow. In this study, we assessed effects of the nitric oxide synthase inhibitor nitro-L-arginine methyl ester (L-NAME) on mean arterial pressure, heart rate, and plasma norepinephrine concentrations in individuals with tetraplegia vs. effects shown in a neurologically intact control group. Seven individuals with tetraplegia and seven age-matched controls received, on separate visits and in the following order, placebo (30 ml normal saline) and 0.5, 1, 2, and 4 mg/kg L-NAME intravenously over 60 min. Supine hemodynamic data were collected, and blood was sampled at the end of each infusion and at 120, 180, and 240 min thereafter. L-NAME increased mean arterial pressure, and the relative increase was greater in the tetraplegia group than in the control group. Heart rate was reduced after L-NAME administration in both groups. L-NAME decreased plasma norepinephrine in the control group but not in the group with tetraplegia. These findings suggest that reflexive sympathoinhibition normally buffers the pressor response to nitric oxide synthase inhibition, an effect that is not evident in individuals with tetraplegia as a result of decentralized sympathetic vasomotor control.  相似文献   

19.
The effect of caloric restriction (from weaning to old age) on CD3-stimulated CD4+ and CD8+ lymphocyte proliferation and calcium mobilization was examined. Young ad libitum (ad lib) fed, old ad lib fed, old calorically restricted, and old calorically restricted mice which were fed ad lib during the last 6 weeks of their life (restricted/refed) were compared in both BDF1 [(C57BL/6 x DBA/2)F1] and C57BL/6 mice. Proliferation of CD4+ cells was lower in old ad lib animals than in young animals; this difference was not seen in CD8+ cells. Those CD4+ cells which did proliferate in old ad lib animals underwent similar cell cycle progression as young cells. In calorically restricted and calorically restricted/refed animals, CD4+ cell proliferation was similar to the young animals, and CD8+ cells showed a higher proliferative capacity than cells from either young or old ad lib mice. Differences in proliferative capacity were not correlated with alterations in transmembrane signaling efficiency as peak [Ca2+]i was reduced in both T-cell subsets in all groups of old mice relative to young mice. Additionally, reduced [Ca2+]i was observed in the CD8+ subset for which there was no deficit in proliferation, and the enhanced proliferation seen in old restricted and old restricted/refed mice did not manifest as increased [Ca2+]i mobilization. The percentage of CD4+ cells from both mouse strains was reduced in all groups of old mice compared with young mice, while the percentage of CD8+ cells was generally similar in young and all groups of old mice. Our studies would suggest that lifelong caloric restriction of mice prevents the age-associated decrease in T-cell proliferative capacity but that the enhanced proliferation of these cells is not due to increased efficiency of transmembrane signaling.  相似文献   

20.
The purpose of the present study was to examine the role of the T-786C endothelial nitric oxide synthase (eNOS) gene polymorphism on changes in renal hemodynamics and blood pressure due to Na(+) loading. Twenty-eight older (63+/-1 years), moderately obese (39+/-2 % fat) hypertensives had their glomerular filtration rate (GFR), renal plasma flow (RPF), blood pressure (BP) and plasma nitric oxide (NO(x)) levels determined after eight days of low (20 mEq) and high (200 mEq) Na(+) diets. The two Na(+) diets were separated by a 1-week washout period. Subjects were genotyped for the eNOS-786 site and were grouped on whether they were homozygous or heterozygous for the C allele (TC+CC, n=13) or only homozygous for the T allele (TT, n=15). The TC+CC genotype group had a significantly greater increase in diastolic (P=0.021) and mean arterial (P=0.018) BP and a significant decline in both RPF (P=0.007) and GFR (P=0.029) compared to the TT genotype group with Na(+) loading. Furthermore, Na(+) loading resulted in a significant (P=0.036) increase in plasma NO(x) in the TT, but not in the TC+CC genotype group as well as a trend (P=0.051) for an increase in urine NO(x) in TC+CC, but not in the TT genotype group. The increase in BP during Na(+) loading in older hypertensives was associated with the eNOS genotype and may be related to changes in renal hemodynamics due to changes in NO metabolism.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号