首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 359 毫秒
1.
In 2010, EFOMP issued Policy Statement No. 12: “The present status of Medical Physics Education and Training in Europe. New perspectives and EFOMP recommendations” to be applied to education and training in Medical Physics within the context of the developments in the European Higher Education Area arising from the Bologna Declaration and with a view to facilitate the free movement of Medical Physics professionals within Europe. Concurrently, new recommendations regarding qualifications frameworks were published by the European Parliament and Council which introduced new terminology and a new qualifications framework – the European Qualifications Framework (EQF) for lifelong learning. In addition, a new European directive involving the medical use of ionizing radiations and set to replace previous directives in this area was in the process of development. This has now been realized as Council Directive 2013/59/Euratom of 5 December 2013 which has repealed directive 97/43/Euratom. In this regard, a new document was developed in the context of the EC financed project "European Guidelines on the Medical Physics Expert" and published as RP174. Among other items, these guidelines refer to the mission statement, key activities, qualification framework and curricula for the specialty areas of Medical Physics relating to radiological devices and protection from ionizing radiation. These developments have made necessary an update of PS12; this policy statement provides the necessary update.  相似文献   

2.
This EFOMP Policy Statement is an update of Policy Statement No. 6 first published in 1994. The present version takes into account the European Union Parliament and Council Directive 2013/55/EU that amends Directive 2005/36/EU on the recognition of professional qualifications and the European Union Council Directive 2013/59/EURATOM laying down the basic safety standards for protection against the dangers arising from exposure to ionising radiation. The European Commission Radiation Protection Report No. 174, Guidelines on Medical Physics Expert and the EFOMP Policy Statement No. 12.1, Recommendations on Medical Physics Education and Training in Europe 2014, are also taken into consideration.The EFOMP National Member Organisations are encouraged to update their Medical Physics registration schemes where these exist or to develop registration schemes taking into account the present version of this EFOMP Policy Statement (Policy Statement No. 6.1“Recommended Guidelines on National Registration Schemes for Medical Physicists”).  相似文献   

3.
This EFOMP Policy Statement is an amalgamation and an update of the EFOMP Policy Statements No. 2, 4 and 7. It presents guidelines for the roles, responsibilities and status of the medical physicist together with recommended minimum staffing levels. These recommendations take into account the ever-increasing demands for competence, patient safety, specialisation and cost effectiveness of modern healthcare services, the requirements of the European Union Council Directive 2013/59/Euratom laying down the basic safety standards for protection against the dangers arising from exposure to ionising radiation, the European Commission’s Radiation Protection Report No. 174: “Guidelines on medical physics expert”, as well as the relevant publications of the International Atomic Energy Agency. The provided recommendations on minimum staffing levels are in very good agreement with those provided by both the European Commission and the International Atomic Energy Agency.  相似文献   

4.
From its inception, EFOMP has pursued a policy to improve and coordinate education and training of medical physicists across all its participating European countries. Several EFOMP policy statements on education and training have been published and surveys have been held to get an overview of the actual situation. At the beginning of 2020 a new survey was distributed amongst the 36 National Member Organizations (NMOs), in which questions were based on recommendations published in the most recent policy statements. Thirty-three of the NMOs (91%) responded, of which 22 indicated having a National Registration Scheme (NRS) for Medical Physics Experts (MPEs) in place. Another 6 indicated considering such a scheme.Results of the questionnaire showed that there was good correspondence between education and training programmes, i.e. a division between a BSc phase, an MSc phase and a clinical phase after completion of the MSc. Differences between NRSs were primarily seen in the availability and composition of a supervising committee and in the availability of guidelines for handling professional misconduct. In addition, some differences were seen in the topics that were part of the education and training programme.The goal of a universal (registered) MPE accepted by all European countries is still far away despite the progress being made. The new procedure for approving an existing NRS, which fulfils all EFOMP criteria is seen as an important step forward. Exchange of experience, knowledge, ideas and, above all, MPE trainees between European countries is seen as the best approach to achieve this goal.  相似文献   

5.
PurposeTo provide a guideline curriculum covering theoretical and practical aspects of education and training for Medical Physicists in Nuclear Medicine within Europe.Material and methodsNational training programmes of Medical Physics, Radiation Physics and Nuclear Medicine physics from a range of European countries and from North America were reviewed and elements of best practice identified. An independent panel of experts was used to achieve consensus regarding the content of the curriculum.ResultsGuidelines have been developed for the specialist theoretical knowledge and practical experience required to practice as a Medical Physicist in Nuclear Medicine in Europe. It is assumed that the precondition for the beginning of the training is a good initial degree in Medical Physics at master level (or equivalent). The Learning Outcomes are categorised using the Knowledge, Skill and Competence approach along the lines recommended by the European Qualifications Framework. The minimum level expected in each topic in the theoretical knowledge and practical experience sections is intended to bring trainees up to the requirements expected of a Medical Physicist entering the field of Nuclear Medicine.ConclusionsThis new joint EANM/EFOMP European guideline curriculum is a further step to harmonise specialist training of Medical Physicists in Nuclear Medicine within Europe. It provides a common framework for national Medical Physics societies to develop or benchmark their own curricula. The responsibility for the implementation and accreditation of these standards and guidelines resides within national training and regulatory bodies.  相似文献   

6.
According to the European Federation of Organizations for Medical Physics (EFOMP) policy statement No. 13, “The rapid advance in the use of highly sophisticated equipment and procedures in the medical field increasingly depends on information and communication technology. In spite of the fact that the safety and quality of such technology is vigorously tested before it is placed on the market, it often turns out that the safety and quality is not sufficient when used under hospital working conditions. To improve safety and quality for patient and users, additional safeguards and related monitoring, as well as measures to enhance quality, are required. Furthermore a large number of accidents and incidents happen every year in hospitals and as a consequence a number of patients die or are injured. Medical Physicists are well positioned to contribute towards preventing these kinds of events”. The newest developments related to this increasingly important medical speciality were presented during the 8th European Conference of Medical Physics 2014 which was held in Athens, 11–13 September 2014 and hosted by the Hellenic Association of Medical Physicists (HAMP) in collaboration with the EFOMP and are summarized in this issue.  相似文献   

7.
On 5 December 2013 the European Council promulgated Directive 2013/59/EURATOM. This Directive is important for Medical Physicists and Medical Physics Experts as it puts the profession on solid foundations and describes it more comprehensively. Much commentary regarding the role and competences has been developed in the context of the European Commission project “European Guidelines on the Medical Physics Expert” published as Radiation Protection Report RP174. The guidelines elaborate on the role and responsibilities under 2013/59/EURATOM in terms of a mission statement and competence profile in the specialty areas of Medical Physics relating to medical radiological services, namely Diagnostic and Interventional Radiology, Radiation Oncology and Nuclear Medicine. The present policy statement summarises the provisions of Directive 2013/59/EURATOM regarding the role and competences, reiterates the results of the European Guidelines on the Medical Physics Expert document relating to role and competences of the profession and provides additional commentary regarding further issues arising following the publication of the RP174 guidelines.  相似文献   

8.
This European Federation of Organisations for Medical Physics (EFOMP) Policy Statement outlines the way in which a Safety Management System can be developed for MRI units. The Policy Statement can help eliminate or at least minimize accidents or incidents in the magnetic resonance environment and is recommended as a step towards harmonisation of safety of workers, patients, and the general public regarding the use of magnetic resonance imaging systems in diagnostic and interventional procedures.  相似文献   

9.
As medical technology evolves and patient needs increase, the need for well-trained and highly professional medical physicists (MPs) becomes even more urgent. The roles and responsibilities of MPs in various departments within the hospital are diverse and demanding. It is obvious that training, continuing education and professional development of MPs have become essential.One of the ways for an MP to advance his or her knowledge is to participate in conferences and congresses. Last year, the 22nd International Conference of Medical Physics (ICMP 2016) took place in Bangkok, Thailand. The event attracted 584 delegates with most of the participants coming from Asia. It attracted also delegates from 42 countries. The largest delegations were from Thailand, Japan and South Korea. ICMP 2016 included 367 oral presentations and e-posters, most of these being in the fields of Radiation Therapy, Medical Imaging and Radiation Safety. All abstracts were published as an e-book of Abstracts in a supplement to the official IOMP Journal. Many companies had exhibition stands at ICMP2016, thus allowing the participants to see the latest developments in the medical physics-related industry. The conference included 42 mini-symposia, part of the first “IOMP School” activity, covering various topics of importance for the profession and this special issue follows from the success of the conference.  相似文献   

10.
11.
PurposeThough the number of women scientists is increasing over the years, studies show that they are still under-represented in leadership roles. The purpose of this work is to establish the percentage of women Medical Physicists (wMPs) that have participated in European scientific events and evaluate it as an indication of the current position of women in the field of Medical Physics in Europe and to propose possible ways to encourage their participation.Materials and MethodsData regarding the participants in European scientific events of Medical Physics were collected. The participants were divided into categories according to the program of the events and their gender was identified. The percentage of wMPs in each category was evaluated.ResultsThe participation of wMPs attending courses is greater than 50%. The categories with the greatest participation are “Organizing Committees”, “Chairpersons-Moderators” and “Oral Presentations”. The categories with the lower participation of wMPs are “Scientific Committee”, “Symposiums” and “Invited Speakers”. None of wMPs were represented as “Course Directors”.ConclusionsThe attendance of wMPs in courses is slightly greater than average. However, wMPs do not have an equally important recognition in special invited roles in conferences. They are still under-represented in “Scientific Committees”, “Invited Speakers”, “Symposiums” and “Course directors”. wMPs should be encouraged to participate even more actively in European conferences and the organizing committees should invite more wMPs in special roles. More studies concerning the status of female MPs in each country separately should be encouraged as they will help in understanding the position of wMPS in Europe.  相似文献   

12.
Continuing Professional Development (CPD) is vital to the medical physics profession if it is to embrace the pace of change occurring in medical practice. As CPD is the planned acquisition of knowledge, experience and skills required for professional practice throughout one's working life it promotes excellence and protects the profession and public against incompetence. Furthermore, CPD is a recommended prerequisite of registration schemes (Caruana et al. 2014 [1]; [2]) and is implied in the Council Directive 2013/59/EURATOM (EU BSS) [3] and the International Basic Safety Standards (BSS) [4]. It is to be noted that currently not all national registration schemes require CPD to maintain the registration status necessary to practise medical physics. Such schemes should consider adopting CPD as a prerequisite for renewing registration after a set period of time.This EFOMP Policy Statement, which is an amalgamation and an update of the EFOMP Policy Statements No. 8 and No. 10, presents guidelines for the establishment of national schemes for CPD and activities that should be considered for CPD.  相似文献   

13.
PurposeTo present an overview of the status of Medical Physics practice in Mexico, promote the legal recognition of Medical Physics high-end training, and provide information that will potentially improve the Mexican healthcare system.MethodsFor the purpose of this research, the concept of “Medical Physics Professional/s” (MPP) is introduced to refer to any person/s executing the role of a clinical medical physicist (cMP) in whole or in part independent of academic profile, training or experience. A database of MPP in Mexico was built from official sources and personal communication with peers. Database records included the following fields: employer/s, specialty, academic profile, and annual income (when available).Results133 centers in Mexico employ MPP, 49% of which are public institutions. 360 positions involving cMP roles were identified at the National Healthcare System (occupied by 283 MPP), 77% of which corresponded to radiation therapy. Public healthcare services hold 65% of the reported positions. Only 40% of MPP hold a graduate degree in Medical Physics, 46% of whom were located in the most densely populated region of Mexico. Of all MPP, 32% were women.ConclusionsThis work allowed to clearly identify the current challenges of Medical Physics practice in Mexico, such as: insufficiency and uneven geographical distribution of qualified manpower, gender imparity, multishifting and wage gap. The products derived from this work could be used to guide the efforts to improve the Mexican healthcare system.  相似文献   

14.
PurposeTo provide a guideline curriculum related to Artificial Intelligence (AI), for the education and training of European Medical Physicists (MPs).Materials and methodsThe proposed curriculum consists of two levels: Basic (introducing MPs to the pillars of knowledge, development and applications of AI, in the context of medical imaging and radiation therapy) and Advanced. Both are common to the subspecialties (diagnostic and interventional radiology, nuclear medicine, and radiation oncology). The learning outcomes of the training are presented as knowledge, skills and competences (KSC approach).ResultsFor the Basic section, KSCs were stratified in four subsections: (1) Medical imaging analysis and AI Basics; (2) Implementation of AI applications in clinical practice; (3) Big data and enterprise imaging, and (4) Quality, Regulatory and Ethical Issues of AI processes. For the Advanced section instead, a common block was proposed to be further elaborated by each subspecialty core curriculum. The learning outcomes were also translated into a syllabus of a more traditional format, including practical applications.ConclusionsThis AI curriculum is the first attempt to create a guideline expanding the current educational framework for Medical Physicists in Europe. It should be considered as a document to top the sub-specialties’ curriculums and adapted by national training and regulatory bodies. The proposed educational program can be implemented via the European School of Medical Physics Expert (ESMPE) course modules and – to some extent – also by the national competent EFOMP organizations, to reach widely the medical physicist community in Europe.  相似文献   

15.
This article aims to present the protocol on Quality Controls in Digital Mammography published online in 2015 by the European Federation of Organisations for Medical Physics (EFOMP) which was developed by a Task Force under the Mammo Working Group. The main objective of this protocol was to define a minimum set of easily implemented quality control tests on digital mammography systems that can be used to assure the performance of a system within a set and acceptable range. Detailed step-by-step instructions have been provided, limiting as much as possible any misinterpretations or variations by the person performing. It is intended that these tests be implemented as part of the daily routine of medical physicists and system users throughout Europe in a harmonised way so allowing results to be compared. In this paper the main characteristics of the protocol are illustrated, including examples, together with a brief summary of the contents of each chapter. Finally, instructions for the download of the full protocol and of the related software tools are provided.  相似文献   

16.
On occasion of its 50th anniversary, the International Organization for Medical Physics (IOMP) from now on is going to celebrate annually an International Day of Medical Physics for which the 7th November, the birthday of Marie Sklodowska Curie, a most exceptional character in science at all and a pioneer of medical physics, has been chosen. This article briefly outlines her outstanding personality, sketches her fundamental discovery of radioactivity and emphasizes the impact of her various achievements on the development of medical physics at large.  相似文献   

17.
Contact shielding has been in widespread use for the last 60–70 years aiming to protect against genetic effects, cancer, and other detriment. Since 2012, studies have begun to appear in the literature that question the continued use of such shielding, especially when radiographic technology has changed so much over the intervening period This literature has culminated in several professional bodies such as the American Association of Physicists in Medicine (AAPM) and the British Institute of Radiology (BIR) issuing guidance and statements recommending against the continued routine use of patient contact shielding. Many professional societies have also endorsed these statements. National statements on the matter continue to be produced. It is notable however that the major European bodies involved in diagnostic radiology and radiation safety have not to date issued a statement on patient shielding. This commentary looks at reasons for that and argues that it is now time for a European consensus statement on patient shielding.It is the authors belief that there are advantages to building on the work done by the AAPM and BIR, using the opportunity to amplify the statements, propagate the intent of the original statements, refine the message to deal with questions that have arisen since their publication.Α working group, Gonad and Patient Shielding (GAPS) has been formed by members from a) the European Federation of Organisations for Medical Physics (EFOMP), b) the Eurosafe Imaging initiative of the European Society of Radiology (ESR), c) the European Federation of Radiographers Societies (EFRS), d) EURADOS and e) the BIR to produce a joint statement on the proper application of patient shielding in diagnostic and interventional radiology.  相似文献   

18.
This EFOMP Policy Statement outlines the way in which a Safety and Quality Management System can be developed for Medical Physics Departments. The Policy Statement can help Medical Physicists to eliminate or at least minimize accidents or incidences due to improper use or application of medical technology on one hand and on the other to guarantee a safe, effective and efficient usage of new highly complicated and sophisticated technologies and procedures.  相似文献   

19.
AimTo evaluate the state of graduate education in medical physics and progress in radiation oncology (RO) equipment in Mexico since 2000, when conferring degrees from two master’s-degree programs in Medical Physics began.BackgroundMedical physics is a Health Profession and there are international recommendations for education, training, and certification. Both programs follow these education guidelines. The most common clinical occupation of graduates is in RO services. Techniques in Mexican RO include traditional and high-precision procedures.MethodsAcademic and occupational information about the programs and their graduates were obtained from official websites. Graduates were invited to respond to a survey that requested information about their present job. We obtained data on RO equipment and human resources from public databases and estimated staffing requirements of medical physicists (MPs).ResultsMedical physics programs have graduated a total of 225 MPs. Half of them work in a clinical environment and, of these, about 90 work in RO services. MPs with M.Sc. degrees constitute 36% of the current MP workforce in RO, estimated to be 250 individuals. Survey responses pointed out the main merits and limitations of the programs. The number of MPs in RO has increased fivefold and the number of linacs sixfold in 15 years. The present number of MPs is insufficient, according to published guidelines.ConclusionAll MPs in RO services with advanced modalities must be trained following international recommendations for graduate education and post-graduation clinical training. Education and health institutions must find incentives to create more graduate programs and clinical residencies.  相似文献   

20.
Cephalopods are the sole invertebrates included in the list of regulated species following the Directive 2010/63/EU. According to the Directive, achieving competence through adequate training is a requisite for people having a role in the different functions (article 23) as such carrying out procedures on animals, designing procedures and projects, taking care of animals, killing animals. Cephalopod Biology and Care Training Program is specifically designed to comply with the requirements of the “working document on the development of a common education and training framework to fulfil the requirements under the Directive 2010/63/EU”. The training event occurred at the ICM-CSIC in Barcelona (Spain) where people coming from Europe, America and Asia were instructed on how to cope with regulations for the use of cephalopod molluscs for scientific purposes. The training encompasses discussion on the guidelines for the use and care of animals and their welfare with particular reference to procedures that may be of interest for neuroscience. Intensive discussion has been carried out during the training sessions with focus on behavioural studies and paradigms, welfare assessment, levels of severity of scientific procedures, animal care, handling, transport, individual identification and marking, substance administration, anaesthesia, analgesia and humane killing.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号