共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
Interferon gamma (IFN-γ) has important roles in both innate and adaptive immune responses. In this study, the cDNA and genomic sequences of Atlantic cod IFN-γ were cloned and found to encode a putative protein containing 194 amino acids with a 24 amino acid signal peptide sequence. The gene is composed of four exons and three introns similar to IFN-γ genes of other vertebrates. The cod IFN-γ showed only 14–29% amino acid identity with other fish IFN-γ and 9–17% identity with IFN-γ from higher vertebrates. However, cod IFN-γ possesses the typical IFN-γ motifs in the C-terminal end of the protein and displays an alpha-helix structure similar to mammalian IFN-γ. The promoter region contains a putative ISRE element indicating up-regulation by type I IFNs and dsRNA. Real time RT-PCR analysis confirmed that IFN-γ gene expression was up-regulated in organs of cod injected with the dsRNA polyinosinic:polycytidylic acid (poly I:C), which is a strong inducer of type I IFNs. Injection of cod with formalin-killed Vibrio anguillarum also increased IFN-γ expression in head kidney, but to a much lesser extent than poly I:C. The gene expression results thus indicate a role for IFN-γ in innate immune response against both virus and bacteria in Atlantic cod. 相似文献
3.
G. Dahle 《Journal of fish biology》1994,44(6):1089-1092
The human minisatellite probes 33.6 and 33.15 cross–hybridized to Hae III and Hinf I digested cod DNA, revealing complex fragment patterns in both Arctic and coastal cod. The DNA fingerprints were highly polymorphic, individual specific and stable in the germline. The potential applications of multi locus probes in cod research are discussed. 相似文献
4.
5.
The epidermal mucus of fish species has been found to contain antimicrobial proteins and peptides, which is of interest in regard to fish immunity. An acidic extract from the epidermal mucus of the Atlantic cod (Gadus morhua) was found to exhibit antimicrobial activity against Bacillus megaterium, Escherichia coli and Candida albicans. This activity varied significantly when salt was added to the antimicrobial assay, and was eliminated by pepsin digestion. No lysozyme activity was detected in the extract. By using weak cationic exchange chromatography together with reversed-phase chromatography, and monitoring the antimicrobial activity, we have isolated four cationic proteins from the mucus extract. Using N-terminal and C-terminal amino acid sequence analysis, together with MS, the antimicrobial proteins were identified as histone H2B (13 565 Da), ribosomal protein L40 (6397 Da), ribosomal protein L36A (12 340 Da) and ribosomal protein L35 (14 215 Da). The broad spectra of antimicrobial activities in the cod mucus and the characterization of four antimicrobial polypeptides suggest that mucus compounds contribute to the innate host defence of cod. 相似文献
6.
Purification and characterization of pancreatic elastase from Atlantic cod (Gadus morhua) 总被引:2,自引:0,他引:2
A Gildberg K Overb? 《Comparative biochemistry and physiology. B, Comparative biochemistry》1990,97(4):775-782
1. A pancreatic elastase from Atlantic cod (Gadus morhua) has been purified and characterized. 2. The enzyme is a very basic protein with an approximate mol. wt of 28,000. 3. The cod elastase has higher elastin specificity than porcine elastase, and it is inhibited by soybean trypsin inhibitor, which has no effect on porcine elastase. 4. The cod elastase expresses a higher turnover number (kcat) and catalytic efficiency (kcat/Km) than porcine elastase, but it is less thermostable. 相似文献
7.
Catalytic properties and chemical composition of pepsins from Atlantic cod (Gadus morhua) 总被引:1,自引:0,他引:1
A Gildberg R L Olsen J B Bjarnason 《Comparative biochemistry and physiology. B, Comparative biochemistry》1990,96(2):323-330
1. Three pepsins were purified from the gastric mucosa of Atlantic cod (Gadus morhua). 2. The enzymes, called Pepsin I and Pepsin IIa and b, had isoelectric points 6.9, 4.0 and 4.1, respectively, and digested hemoglobin at a maximal rate at a pH of approximately 3. 3. They resembled bovine cathepsin D in being unable to digest the mammalian pepsin substrate N-acetyl-L-phenylalanyl-3,5-diiodo-L-tyrosine. 4. Specificity constants (kcat/Km) for the cod pepsins were lower than for porcine pepsin, and they expressed higher substrate affinity and physiological efficiency at pH 3.5 than at pH 2. 5. The cod pepsins are glycoproteins, and their amino acid composition resembles that of porcine cathepsin D more than that of porcine pepsin. 6. The N-terminal sequence of Atlantic cod pepsins is substantially different from that of porcine pepsin. This indicates a significant evolutionary gap between fish and mammalian pepsins. 相似文献
8.
Wang PA Stenvik J Larsen R Maehre H Olsen RL 《Comparative biochemistry and physiology. Part B, Biochemistry & molecular biology》2007,147(3):504-511
The isolated cathepsin D-like enzyme from Atlantic cod (Gadus morhua L.) liver was shown to be a monomer with a molecular mass of approximately 40 kDa. It was inhibited by Pepstatin A and had an optimum for degradation of haemoglobin at pH 3.0. The purified enzyme had lower temperature stability than bovine cathepsin D. Antibodies raised against the purified enzyme and against two C-terminal peptides of cod cathepsin D recognized a 40 kDa protein in immunoblotting of the samples from the purification process. Both antisera showed cross reactivity with a similar sized protein in liver from cod, saithe (Pollachius virens L.), Atlantic herring (Clupea harengus L.) and Atlantic salmon (Salmo salar L.). A protein of same size was detected in wolffish (Anarhichas lupus L.) liver with the antibody directed against the purified enzyme. This antibody also recognized the native enzyme and detected the presence of cathepsin D in muscle of cod, saithe, herring and salmon. These antibodies may be useful in understanding the mechanisms of post mortem muscle degradation in fish by comparing immunohistochemical localization and enzyme activity, in particular in cod with different rate of muscle degradation. They may also be used for comparing muscle degradation in different fish species. 相似文献
9.
10.
Alkaline phosphatase (AP) from Atlantic cod (Gadus morhua) is a zinc and magnesium containing homodimer that requires the oligomeric state for activity. Its kinetic properties are indicative of cold-adaptation. Here, the effect of urea on the structural stability was studied in order to correlate the activity with metal content, the microenvironment around tryptophan residues, and events at the subunit interface. At the lowest concentrations of urea, the first detected alteration in properties was an increase in the activity of the enzyme. This was followed by inactivation, and the release of half of the zinc content when the amount of urea reached levels of 2 M. Intrinsic tryptophan fluorescence and circular dichroism ellipticity changed in the range 2.5 to 8 M urea, signaling dimer dissociation, followed by one major monomer unfolding transition at 6-8 M urea as indicated by ANS fluorescence and KI fluorescence quenching. Gibbs free energy was estimated by the linear extrapolation method using a three-state model as 8.6 kcal/mol for dimer stability and 11.6 kcal/mol for monomer unfolding giving a total of 31.8 kcal/mol. Dimer association had a very small ionic contribution. Dimers were stable in relatively high concentration of urea, whereas the immediate vicinity around the active site was vulnerable to low concentrations of urea. Thus, inactivation did not coincide with dimer dissociation, suggesting that the active site is the most dynamic part of the molecule and closest related to cold-adaptation of its enzymatic activity. 相似文献
11.
Blier PU Dutil JD Lemieux H Bélanger F Bitetera L 《Comparative biochemistry and physiology. Part A, Molecular & integrative physiology》2007,146(2):174-179
This study examined the restoration of the digestive capacity of Atlantic cod (Gadus morhua Linnaeus) following a long period of food deprivation. Fifty cod (48 cm, 1 kg) were food-deprived for 68 days and then fed in excess with capelin (Mallotus villosus Müller) on alternate days. Ten fish were sampled after 0, 2, 6, 14 and 28 days and the mass of the pyloric caeca, intestine and carcass determined. Two metabolic enzymes (cytochrome c oxidase and citrate synthase) were assayed in white muscle, pyloric caeca and intestine, and trypsin activity was measured in the pyloric caeca. A delay of 14 days was required before body mass started to increase markedly, whereas most of the increase in mass of both the pyloric caeca and intestine relative to fish length occurred earlier in the experiment. By day 14, the activities of trypsin and citrate synthase in the pyloric caeca as well as citrate synthase in the intestine had reached maxima. The growth of the digestive tissues and restoration of their metabolic capacities thus occur early upon refeeding and are likely required for recovery growth to take place. The phenotypic flexibility of the cod digestive system is therefore remarkable: increases in trypsin activity and size of pyloric caeca resulted in a combined 29-fold increase in digestive capacity of the fish during the refeeding period. Our study suggests that Atlantic cod are able to cope with marked fluctuations in food availability in their environment by making a rapid adjustment of their digestive capacity as soon as food availability increases. 相似文献
12.
13.
Y. Tang J. A. Nelson S. P. Reidy S. R. Kerr † R. G. Boutilier 《Journal of fish biology》1994,44(1):1-10
Atlantic cod ( Gadus morhua ) were forced to swim in a swim tunnel respirometer until fatigued; oxygen consumption rate (O2 ) was measured during swimming at incremental speeds until the fish was exhausted and during recovery from exhaustion. Maximal oxygen consumption (O2max ) occurred during maximal activity as has been found for other fish species, but at odds with the current paradigm for Atlantic cod. Earlier experiments had drawn the conclusion that O2max in Atlantic cod occurs during recovery from exhaustive exercise. We found no support for this paradigm in our experiments and we propose that the respiratory physiology of Atlantic cod is not unlike that of other fishes. 相似文献
14.
Rudolfsen G Figenschou L Folstad I Nordeide JT Søreng E 《Journal of evolutionary biology》2005,18(1):172-179
Little evidence of benefits from female mate choice has been found when males provide no parental care or resources. Yet, good genes models of sexual selection suggest that elaborated male sexual characters are reliable signals of mate quality and that the offspring of males with elaborate sexual ornaments will perform better than those of males with less elaborate ornaments. We used cod (Gadus morhua L.), an externally fertilizing species where males provide nothing but sperm, to examine the potential of optimal mate selection with respect to offspring survival. By applying in vitro fertilizations, we crossed eight females with nine males in all possible combinations and reared each of the 72 sib groups. We found that offspring survival was dependent on which female was mated with which male and that optimal mate selection has the potential to increase mean offspring survival from 31.9 to 55.6% (a 74% increase). However, the size of the male sexual ornaments and sperm quality (i.e. sperm velocity and sperm density) could not predict offspring survival. Thus, even if there may be large fitness benefits of mate selection, we might not yet have identified the male characteristics generating high offspring survival. 相似文献
15.
Lanes O Guddal PH Gjellesvik DR Willassen NP 《Comparative biochemistry and physiology. Part B, Biochemistry & molecular biology》2000,127(3):399-410
Uracil-DNA glycosylase (UDG; UNG) has been purified 17000-fold from Atlantic cod liver (Gadus morhua). The enzyme has an apparent molecular mass of 25 kDa, as determined by gel filtration, and an isoelectric point above 9.0. Atlantic cUNG is inhibited by the specific UNG inhibitor (Ugi) from the Bacillus subtilis bacteriophage (PBS2), and has a 2-fold higher activity for single-stranded DNA than for double-stranded DNA. cUNG has an optimum activity between pH 7.0-9.0 and 25-50 mM NaCl, and a temperature optimum of 41 degrees C. Cod UNG was compared with the recombinant human UNG (rhUNG), and was found to have slightly higher relative activity at low temperatures compared with their respective optimum temperatures. Cod UNG is also more pH- and temperature labile than rhUNG. At pH 10.0, the recombinant human UNG had 66% residual activity compared with only 0.4% for the Atlantic cUNG. At 50 degrees C, cUNG had a half-life of 0.5 min compared with 8 min for the rhUNG. These activity and stability experiments reveal cold-adapted features in cUNG. 相似文献
16.
17.
18.
Metal binding and conformational stability characteristics of psychrophilic elastase (ACE) from Atlantic cod (Gadus morhua) has been investigated. Chelation to Ca(2+) was found to be important for maintaining the biologically active conformation and for the thermal stability of the enzyme. However, presence of metal ions such as Zn(2+), Fe(3+) and Cu(2+) was found to inhibit its hydrolytic activity and so did the chelating agent EDTA. Both pH and guanidinium chloride induced denaturation of the enzyme was followed by monitoring the changes in the tryptophan fluorescence. ACE exhibited a simple two-state unfolding pattern in both acidic and basic conditions with the midpoint of transition at pH values 4.08 and 10.29, respectively. Guanidinium chloride and heat induced denaturation of the enzyme was investigated at two pH values, 5.50 and 8.00, wherein the enzyme possesses similar tertiary structure but differ in its hydrolytic activity. Guanidinium chloride induced denaturation indicated that the enzyme unfolds with a C(m) of 1.53 M at pH 8.0 and a DeltaG(H2O) of 6.91 kJ mol(-1) (28.65 J mol(-1) residue(-1)) which is the lowest reported for psychrophilic enzymes investigated till-date. However, at pH 5.50, DeltaG(H2O) value is slightly lowered by 0.65 kJ mol(-1) consistent with the observed increase in the apparent quenching constant obtained with acrylamide. On the other hand, increase in T(m) by 38.45 degrees C was observed for the enzyme at acid pH (5.50) in comparison to the heat induced unfolding at pH 8.0. The increase in the apparent T(m) has been attributed to the possible weak intermolecular association of the enzyme molecules at moderately high temperatures that is favoured by the increase in the accessible surface area / dynamics under acidic conditions. The stability characteristics of ACE have been compared with the available data for mesophilic porcine pancreatic elastase and possible mechanism for the low temperature adaptation of ACE has been proposed. 相似文献
19.
Lurman GJ Koschnick N Pörtner HO Lucassen M 《Comparative biochemistry and physiology. Part A, Molecular & integrative physiology》2007,148(3):681-689
Much previous research has demonstrated the plasticity of myoglobin concentrations in both cardiac and skeletal myocytes in response to hypoxia and training. No study has yet looked at the effect of thermal acclimation on myoglobin in fish. Atlantic cod (Gadus morhua) from two different populations, i.e. the North Sea and the North East Arctic, were acclimated to 10 and 4 degrees C. Both the myoglobin mRNA and myoglobin protein in cod hearts increased significantly by up to 3.7 and 2.3 fold respectively as a result of acclimation to 4 degrees C. These increments were largest in the Arctic population, which in earlier studies have been shown to possess cold compensated metabolic demands at low temperatures. These metabolic demands associated with higher mitochondrial capacities may have driven the increase in cardiac myoglobin concentrations, in order to support diffusive oxygen supply. At the same time the increase in myoglobin levels may serve further functions during cold acclimation, for example, protection of the cell against reactive oxygen species, and scavenging nitric oxide, thereby contributing to the regulation of mitochondrial volume density. 相似文献
20.
Asgeirsson B Nielsen BN Højrup P 《Comparative biochemistry and physiology. Part B, Biochemistry & molecular biology》2003,136(1):45-60
Atlantic cod is a marine fish that lives at low temperatures of 0-10 degrees C and contains a cold-adapted alkaline phosphatase (AP). Preparations of AP from either the lower part of the intestines or the pyloric caeca area were subjected to proteolytic digestion, mass spectrometry and amino acid sequencing by Edman degradation. The primary structure exhibits greatest similarity to human tissue non-specific AP (80%), and approximately 30% similarity to AP from Escherichia coli. The key residues required for catalysis are conserved in the cod AP, except for the third metal binding site, where cod AP has the same variable residues as mammalian APs (His153 and His328 by E. coli AP numbering). General comparison of the amino acid composition with mammalian APs showed that cod AP contains fewer Cys, Leu, Met and Ser, but proportionally more Asn, Asp, Ile, Lys, Trp and Tyr residues. Three N-linked glycosylation sites were found. The glycan structure was determined as complex biantennary in type with fucose and sialic acid attached, although a trace of complex tri-antennary structure was also observed. A three-dimensional model was obtained by homology modelling using the human placental AP scaffold. Cod AP has fewer charged and hydrophobic residues, but more polar residues at the intersubunit surface. The N-terminal helix arm that embraces the second subunit in dimeric APs may be more flexible due to a replaced Pro at its base. One disulfide bridge was found instead of the two present in most other APs. This may invoke greater movement in the structure that together with weaker subunit contacts leads to improved catalytic efficiency. 相似文献