首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Efflux of excess cellular cholesterol mediated by lipid-poor apolipoproteins occurs by an active mechanism distinct from passive diffusion and is controlled by the ATP-binding cassette transporter ABCA1. Here we examined whether ABCA1-mediated lipid efflux involves the selective removal of lipids associated with membrane rafts, plasma membrane domains enriched in cholesterol and sphingomyelin. ABCA1 was not associated with cholesterol and sphingolipid-rich membrane raft domains based on detergent solubility and lack of colocalization with marker proteins associated with raft domains. Lipid efflux to apoA-I was accounted for by decreases in cellular lipids not associated with cholesterol/sphingomyelin-rich membranes. Treating cells with filipin, to disrupt raft structure, or with sphingomyelinase, to digest plasma membrane sphingomyelin, did not impair apoA-I-mediated cholesterol or phosphatidylcholine efflux. In contrast, efflux of cholesterol to high density lipoproteins (HDL) or plasma was partially accounted for by depletion of cholesterol from membrane rafts. Additionally, HDL-mediated cholesterol efflux was partially inhibited by filipin and sphingomyelinase treatment. Apo-A-I-mediated cholesterol efflux was absent from fibroblasts with nonfunctional ABCA1 (Tangier disease cells), despite near normal amounts of cholesterol associated with raft domains and normal abilities of plasma and HDL to deplete cholesterol from these domains. Thus, the involvement of membrane rafts in cholesterol efflux applies to lipidated HDL particles but not to lipid-free apoA-I. We conclude that cholesterol and sphingomyelin-rich membrane rafts do not provide lipid for efflux promoted by apolipoproteins through the ABCA1-mediated lipid secretory pathway and that ABCA1 is not associated with these domains.  相似文献   

2.
Lipid rafts, defined as cholesterol- and sphingolipid-rich domains, provide specialized lipid environments understood to regulate the organization and function of many plasma membrane proteins. Growing evidence of their existence, protein cargo, and regulation is based largely on the study of isolated lipid rafts; however, the consistency and validity of common isolation methods is controversial. Here, we provide a detailed and direct comparison of the lipid and protein composition of plasma membrane "rafts" prepared from human macrophages by different methods, including several detergent-based isolations and a detergent-free method. We find that detergent-based and detergent-free methods can generate raft fractions with similar lipid contents and a biophysical structure close to that previously found on living cells, even in cells not expressing caveolin-1, such as primary human macrophages. However, important differences between isolation methods are demonstrated. Triton X-100-resistant rafts are less sensitive to cholesterol or sphingomyelin depletion than those prepared by detergent-free methods. Moreover, we show that detergent-based methods can scramble membrane lipids during the isolation process, reorganizing lipids previously in sonication-derived nonraft domains to generate new detergent-resistant rafts. The role of rafts in regulating the biological activities of macrophage plasma membrane proteins may require careful reevaluation using multiple isolation procedures, analyses of lipids, and microscopic techniques.  相似文献   

3.
Although reverse cholesterol transport from peripheral cell types is mediated through plasma membrane microdomains termed lipid rafts, almost nothing is known regarding the existence, protein/lipid composition, or structure of these putative domains in liver hepatocytes, cells responsible for the net removal of cholesterol from the body. Lipid rafts purified from hepatocyte plasma membranes by a nondetergent affinity chromatography method were: i) present at 33 +/- 3% of total plasma membrane protein; ii) enriched in key proteins of the reverse cholesterol pathway [scavenger receptor class B type I (SR-B1), ABCA1, P-glycoprotein (P-gp), sterol carrier protein-2 (SCP-2)]; iii) devoid of caveolin-1; iv) enriched in cholesterol, sphingomyelin, GM1, and phospholipids low in polyunsaturated fatty acid and double bond index; and v) exhibited an intermediate liquid-ordered lipid phase with significant transbilayer fluidity gradient. Ablation of the gene encoding SCP-2 significantly altered lipid rafts to: i) increase the proportion of lipid rafts present, thereby increasing raft total content of ABCA1, P-gp, and SR-B1; ii) increase total phospholipids while decreasing GM1 in lipid rafts; iii) decrease the fluidity of lipid rafts, consistent with the increased intermediate liquid-ordered phase; and iv) abolish the lipid raft transbilayer fluidity gradient. Thus, despite the absence of caveolin-1 in liver hepatocytes, lipid rafts represented nearly one-third of the mouse hepatocyte plasma membrane proteins and displayed unique protein, lipid, and biophysical properties that were differentially regulated by SCP-2 expression.  相似文献   

4.
To assess intestinal lipid rafts functions through the characterization of their protein markers, we have isolated lipid rafts of rat mucosa either from the total membrane or purified brush-border membrane (BBM) by sucrose gradient fractionation after detergent treatment. In both membrane preparations, the floating fractions (4-5) were enriched in cholesterol, ganglioside GM1, and N aminopeptidase (NAP) known as intestinal lipid rafts markers. Based on MALDI-TOF/MS identification and simultaneous detection by immunoblotting, 12 proteins from BBM cleared from contaminants were selected as rafts markers. These proteins include several signaling/trafficking proteins belonging to the G protein family and the annexins as well as GPI-anchored proteins. Remarkably GP2, previously described as the pancreatic granule GPI-anchored protein, was found in intestinal lipid rafts. The proteomic strategy assayed on the intestine leads to the characterization of known (NAP, alkaline phosphatase, dipeptidyl aminopeptidase, annexin II, and galectin-4) and new (GP2, annexin IV, XIIIb, Galpha(q), Galpha(11), glutamate receptor, and GPCR 7) lipid rafts markers. Together our results indicate that some digestive enzymes, trafficking and signaling proteins may be functionally distributed in the intestine lipid rafts.  相似文献   

5.
Lipid rafts in plasma membranes are hypothesized to play key roles in many cellular processes including signal transduction, membrane trafficking and entry of pathogens. We recently documented the biochemical characterization of lipid rafts, isolated as detergent-insoluble membranes, from Medicago truncatula root plasma membranes. We evidenced that the plant-specific lipid steryl-conjugates are among the main lipids of rafts together with free sterols and sphingolipids. An extensive proteomic analysis showed the presence of a specific set of proteins common to other lipid rafts, plus the presence of a redox system around a cytochrome b561 not previously identified in lipid rafts of either plants or animals. Here, we discuss the similarities and differences between the lipids and proteins of plant and animal lipid rafts. Moreover we describe the potential biochemical functioning of the M. truncatula root lipid raft redox proteins and question whether they may play a physiological role in legume-symbiont interactions.Key Words: plasma membrane, Medicago, root, legume-Rhizobium symbiosis, redox, sterol, sphingolipid  相似文献   

6.
Pike LJ  Han X  Chung KN  Gross RW 《Biochemistry》2002,41(6):2075-2088
Lipid rafts are specialized cholesterol-enriched membrane domains that participate in cellular signaling processes. Caveolae are related domains that become invaginated due to the presence of the structural protein, caveolin-1. In this paper, we use electrospray ionization mass spectrometry (ESI/MS) to quantitatively compare the phospholipids present in plasma membranes and nondetergent lipid rafts from caveolin-1-expressing and nonexpressing cells. Lipid rafts are enriched in cholesterol and sphingomyelin as compared to the plasma membrane fraction. Expression of caveolin-1 increases the amount of cholesterol recovered in the lipid raft fraction but does not affect the relative proportions of the various phospholipid classes. Surprisingly, ESI/MS demonstrated that lipid rafts are enriched in plasmenylethanolamines, particularly those containing arachidonic acid. While the total content of anionic phospholipids was similar in plasma membranes and nondetergent lipid rafts, the latter were highly enriched in phosphatidylserine but relatively depleted in phosphatidylinositol. Detergent-resistant membranes made from the same cells showed a higher cholesterol content than nondetergent lipid rafts but were depleted in anionic phospholipids. In addition, these detergent-resistant membranes were not enriched in arachidonic acid-containing ethanolamine plasmalogens. These data provide insight into the structure of lipid rafts and identify potential new roles for these domains in signal transduction.  相似文献   

7.
Several studies suggest that the plasma membrane is composed of micro-domains of saturated lipids that segregate together to form lipid rafts. Lipid rafts have been operationally defined as cholesterol- and sphingolipid-enriched membrane micro-domains resistant to solubilization by non-ionic detergents at low temperatures. Here we report a biophysical approach aimed at investigating lipid rafts of MDA-MB-231 human breast cancer cells by coupling an atomic force microscopy (AFM) study to biochemical assays namely Western blotting and high performance thin layer chromatography. Lipid rafts were purified by ultracentrifugation on discontinuous sucrose gradient using extraction with Triton X-100. Biochemical analyses proved that the fractions isolated at the 5% and 30% sucrose interface (fractions 5 and 6) have a higher content of cholesterol, sphingomyelin and flotillin-1 with respect to the other purified fractions. Tapping mode AFM imaging of fraction 5 showed membrane patches whose height corresponds to the one awaited for a single lipid bilayer as well as the presence of micro-domains with lateral dimensions in the order of a few hundreds of nanometers. In addition, an AFM study using specific antibodies suggests the presence, in these micro-domains, of a characteristic marker of lipid rafts, the protein flotillin-1.  相似文献   

8.
Lipid rafts are involved in many cell biology events, yet the molecular mechanisms on how rafts are formed are poorly understood. In this study we probed the possible requirement of reactive oxygen species (ROS) for T-cell receptor (TCR)-induced lipid raft formation. Microscopy and biochemical analyses illustrated that blockage of ROS production, by superoxide dismutase-mimic MnTBAP, significantly reduced partitioning of LAT, phospho-LAT, and PLC-gamma in lipid rafts. Another antioxidant N-acetylcysteine (NAC) displayed a similar suppressive effect on the entry of phospho-LAT into raft microdomains. The involvement of ROS in TCR-mediated raft assembly was observed in T-cell hybridomas, T leukemia cells, and normal T cells. Removal of ROS was accompanied by an attenuated activation of LAT and PKCtheta, with reduced production of IL-2. Consistently, treating T cells with the ROS-producer tert-butyl hydrogen peroxide (TBHP) greatly enhanced membrane raft formation, distribution of phospho-LAT into lipid rafts, and increased IL-2 production. Our results indicate for the first time that ROS contribute to TCR-induced membrane raft formation.  相似文献   

9.
Triglyceride-rich lipoprotein (TGRL) lipolysis may provide a proinflammatory stimulus to endothelium. Detergent-resistant plasma membrane microdomains (lipid rafts) have a number of functions in endothelial cell inflammation. The mechanisms of TGRL lipolysis-induced endothelial cell injury were investigated by examining endothelial cell lipid rafts and production of reactive oxygen species (ROS). Lipid raft microdomains in human aortic endothelial cells were visualized by confocal microscopy with fluorescein isothiocyanate-labeled cholera toxin B as a lipid raft marker. Incubation of Atto565-labeled TGRL with lipid raft-labeled endothelial cells showed that TGRL colocalized with the lipid rafts, TGRL lipolysis caused clustering and aggregation of lipid rafts, and colocalization of TGRL remnant particles on the endothelial cells aggregated lipid rafts. Furthermore, TGRL lipolysis caused translocation of low-density lipoprotein receptor-related protein, endothelial nitric oxide synthase, and caveolin-1 from raft regions to nonraft regions of the membrane 3 h after treatment with TGRL lipolysis. TGRL lipolysis significantly increased the production of ROS in endothelial cells, and both NADPH oxidase and cytochrome P-450 inhibitors reduced production of ROS. Our studies suggest that alteration of lipid raft morphology and composition and ROS production could contribute to TGRL lipolysis-mediated endothelial cell injury.  相似文献   

10.
Lipid rafts (glycosphingolipid/cholesterol-enriched membrane microdomains) have been isolated as low temperature, detergent-resistant membranes from many cell types, but despite their presumed importance as lateral sorting and signaling platforms, fundamental questions persist concerning raft function and even existence in vivo. The nonionic detergent Brij 98 was used to isolate lipid rafts from microvillar membrane vesicles of intestinal brush borders at physiological temperature to compare with rafts, obtained by "conventional" extraction using Triton X-100 at low temperature. Microvillar rafts prepared by the two protocols were morphologically different but had essentially similar profiles of protein- and lipid components, showing that raft microdomains do exist at 37 degrees C and are not "low temperature artifacts." We also employed a novel method of sequential detergent extraction at increasing temperature to define a fraction of highly detergent-resistant "superrafts." These were enriched in galectin-4, a beta-galactoside-recognizing lectin residing on the extracellular side of the membrane. Superrafts also harbored the glycosylphosphatidylinositol-linked alkaline phosphatase and the transmembrane aminopeptidase N, whereas the peripheral lipid raft protein annexin 2 was essentially absent. In conclusion, in the microvillar membrane, galectin-4, functions as a core raft stabilizer/organizer for other, more loosely raft-associated proteins. The superraft analysis might be applicable to other membrane microdomain systems.  相似文献   

11.
"Lipid rafts" enriched in glycosphingolipids (GSL), GPI-anchored proteins, and cholesterol have been proposed as functional microdomains in cell membranes. However, evidence supporting their existence has been indirect and controversial. In the past year, two studies used fluorescence resonance energy transfer (FRET) microscopy to probe for the presence of lipid rafts; rafts here would be defined as membrane domains containing clustered GPI-anchored proteins at the cell surface. The results of these studies, each based on a single protein, gave conflicting views of rafts. To address the source of this discrepancy, we have now used FRET to study three different GPI-anchored proteins and a GSL endogenous to several different cell types. FRET was detected between molecules of the GSL GM1 labeled with cholera toxin B-subunit and between antibody-labeled GPI-anchored proteins, showing these raft markers are in submicrometer proximity in the plasma membrane. However, in most cases FRET correlated with the surface density of the lipid raft marker, a result inconsistent with significant clustering in microdomains. We conclude that in the plasma membrane, lipid rafts either exist only as transiently stabilized structures or, if stable, comprise at most a minor fraction of the cell surface.  相似文献   

12.
Glycosyl-phosphatidylinositol (GPI)-anchored proteins are enriched in cholesterol- and sphingolipid-rich lipid rafts within the membrane. Rafts are known to have roles in cellular organization and function, but little is understood about the factors controlling the distribution of proteins in rafts. We have used atomic force microscopy to directly visualize proteins in supported lipid bilayers composed of equimolar sphingomyelin, dioleoyl-sn-glycero-3-phosphocholine and cholesterol. The transmembrane anchored angiotensin converting enzyme (TM-ACE) was excluded from the liquid ordered raft domains. Replacement of the transmembrane and cytoplasmic domains of TM-ACE with a GPI anchor (GPI-ACE) promoted the association of the protein with rafts in the bilayers formed with brain sphingomyelin (mainly C18:0). Association with the rafts did not occur if the shorter chain egg sphingomyelin (mainly C16:0) was used. The distribution of GPI-anchored proteins in supported lipid bilayers was investigated further using membrane dipeptidase (MDP) whose GPI anchor contains distearoyl phosphatidylinositol. MDP was also excluded from rafts when egg sphingomyelin was used but associated with raft domains formed using brain sphingomyelin. The effect of sphingomyelin chain length on the distribution of GPI-anchored proteins in rafts was verified using synthetic palmitoyl or stearoyl sphingomyelin. Both GPI-ACE and MDP only associated with the longer chain stearoyl sphingomyelin rafts. These data obtained using supported lipid bilayers provide the first direct evidence that the nature of the membrane-anchoring domain influences the association of a protein with lipid rafts and that acyl chain length hydrophobic mismatch influences the distribution of GPI-anchored proteins in rafts.  相似文献   

13.
ABSTRACT

Introduction: Phase separation as a biophysical principle drives the formation of liquid-ordered ‘lipid raft’ membrane microdomains in cellular membranes, including organelles. Given the critical role of cellular membranes in both compartmentalization and signaling, clarifying the roles of membrane microdomains and their mutual regulation of/by membrane proteins is important in understanding the fundamentals of biology, and has implications for health.

Areas covered: This article will consider the evidence for lateral membrane phase separation in model membranes and organellar membranes, critically evaluate the current methods for lipid raft proteomics and discuss the biomedical implications of lipid rafts.

Expert commentary: Lipid raft homeostasis is perturbed in numerous chronic conditions; hence, understanding the precise roles and regulation of the lipid raft proteome is important for health and medicine. The current technical challenges in performing lipid raft proteomics can be overcome through well-controlled experimental design and careful interpretation. Together with technical developments in mass spectrometry and microscopy, our understanding of lipid raft biology and function will improve through recognition of the similarity between organelle and plasma membrane lipid rafts and considered integration of published lipid raft proteomics data.  相似文献   

14.
An emerging alternative to the use of detergents in biochemical studies on membrane proteins is apparently the use styrene-maleic acid (SMA) amphipathic copolymers. These cut the membrane into nanodiscs (SMA-lipid particles, SMALPs), which contain membrane proteins possibly surrounded by their native lipid environment. We examined this approach for studies on several types of T cell membrane proteins, previously defined as raft or non-raft associated, to see whether the properties of the raft derived SMALPs differ from non-raft SMALPs. Our results indicate that two types of raft proteins, GPI-anchored proteins and two Src family kinases, are markedly present in membrane fragments much larger (>250?nm) than those containing non-raft proteins (<20?nm). Lipid probes sensitive to membrane fluidity (membrane order) indicate that the lipid environment in the large SMALPs is less fluid (more ordered) than in the small ones which may indicate the presence of a more ordered lipid Lo phase which is characteristic of membrane rafts. Also the lipid composition of the small vs. large SMALPs is markedly different – the large ones are enriched in cholesterol and lipids containing saturated fatty acids. In addition, we confirm that T cell membrane proteins present in SMALPs can be readily immunoisolated. Our results support the use of SMA as a potentially better (less artifact prone) alternative to detergents for studies on membrane proteins and their complexes, including membrane rafts.  相似文献   

15.
Lipid rafts are plasma membrane microdomains enriched in sphingolipids and cholesterol. These domains have been suggested to serve as platforms for various cellular events, such as signaling and membrane trafficking. However, little is known about the distribution and dynamics of lipids in these microdomains. Here we report investigations carried out using recently developed probes for the lipid components of lipid rafts: lysenin, a sphingomyelin-binding protein obtained from the coelomic fluid of the earthworm Eisenia foetida; and the fluorescein ester of poly(ethyleneglycol) cholesteryl ether (fPEG-Chol), which partitions into cholesterol-rich membranes. Lysenin reveals that the organization of sphingomyelin differs between different cell types and even between different membrane domains within the same cell. When added to live cells, fPEG-Chol is distributed exclusively on the outer leaflet of the plasma membrane and is clustered dynamically upon activation of receptor signaling. The surface-bound fPEG-Chol is slowly internalized via a clathrin-independent pathway into endosomes with lipid raft markers.  相似文献   

16.
Glycosyl-phosphatidylinositol (GPI)-anchored proteins are enriched in cholesterol- and sphingolipid-rich lipid rafts within the membrane. Rafts are known to have roles in cellular organization and function, but little is understood about the factors controlling the distribution of proteins in rafts. We have used atomic force microscopy to directly visualize proteins in supported lipid bilayers composed of equimolar sphingomyelin, dioleoyl-sn-glycero-3-phosphocholine and cholesterol. The transmembrane anchored angiotensin converting enzyme (TM-ACE) was excluded from the liquid ordered raft domains. Replacement of the transmembrane and cytoplasmic domains of TM-ACE with a GPI anchor (GPI-ACE) promoted the association of the protein with rafts in the bilayers formed with brain sphingomyelin (mainly C18:0). Association with the rafts did not occur if the shorter chain egg sphingomyelin (mainly C16:0) was used. The distribution of GPI-anchored proteins in supported lipid bilayers was investigated further using membrane dipeptidase (MDP) whose GPI anchor contains distearoyl phosphatidylinositol. MDP was also excluded from rafts when egg sphingomyelin was used but associated with raft domains formed using brain sphingomyelin. The effect of sphingomyelin chain length on the distribution of GPI-anchored proteins in rafts was verified using synthetic palmitoyl or stearoyl sphingomyelin. Both GPI-ACE and MDP only associated with the longer chain stearoyl sphingomyelin rafts. These data obtained using supported lipid bilayers provide the first direct evidence that the nature of the membrane-anchoring domain influences the association of a protein with lipid rafts and that acyl chain length hydrophobic mismatch influences the distribution of GPI-anchored proteins in rafts.  相似文献   

17.
Abstract

Free fatty acids released during intralumenal digestion of dietary fat must pass through the enterocyte brush border membrane before triacylglycerol reassembly and subsequent chylomicron delivery to the lymph system. In the present work fluorescent BODIPY fatty acid analogs were used to study this membrane passage in organ cultured intestinal mucosal explants. We found that in addition to a rapid uptake into the cytoplasm, a fraction of the fatty acid analogs were inserted directly into the brush border membrane. Furthermore, a brief exposure of microvillar membrane vesicles to a fat mixture mimicking a physiological solution of dietary mixed micelles, rearranged the lipid raft microdomain organization of the membranes. Thus, the fat mixture generated a low-density subpopulation of microvillar detergent resistant membranes (DRMs) highly enriched in alkaline phosphatase (AP). Since this GPI-linked enzyme is the membrane protein in the brush border with the highest affinity for lipid rafts, this implies that free fatty acids selectively insert stably into these membrane microdomains. We have previously shown that absorption of dietary lipids transiently induce a selective endocytosis of AP from the brush border, and from work by others it is known that fat absorption is accompanied by a rise in serum AP and secretion of surfactant-like particles from enterocytes. We propose that these physiological processes may be triggered by the sequestering of dietary free fatty acids in lipid raft microdomains of the brush border.  相似文献   

18.
The lipid composition and structure of detergent-resistant membrane rafts from human, goat, and sheep erythrocytes is investigated. While the sphingomyelin:cholesterol ratio varied from about 1:5 in human to 1:1 in sheep erythrocytes a ratio of 1:1 was found in all raft preparations insoluble in Triton X-100 at 4 degrees C. Excess cholesterol is excluded from rafts and saturated molecular species of sphingomyelin assayed by gas chromatography-mass spectrometry determines the solubility of cholesterol in the detergent. Freeze-fracture electron microscopy shows that vesicles and multilamellar structures formed by membrane rafts have undergone considerable rearrangement from the original membrane. No membrane-associated particles are observed. Synchrotron X-ray diffraction studies showed that d spacings of vesicle preparations of rafts cannot be distinguished from ghost membranes from which they are derived. Dispersions of total polar lipid extracts of sheep rafts show phase separation of inverted hexagonal structure upon heating and this phase coexists with multilamellar structures at 37 degrees C.  相似文献   

19.
The Bordetella type III secretion system (T3SS) effector protein BteA is necessary and sufficient for rapid cytotoxicity in a wide range of mammalian cells. We show that BteA is highly conserved and functionally interchangeable between Bordetella bronchiseptica, Bordetella pertussis and Bordetella parapertussis . The identification of BteA sequences required for cytotoxicity allowed the construction of non-cytotoxic mutants for localization studies. BteA derivatives were targeted to lipid rafts and showed clear colocalization with cortical actin, ezrin and the lipid raft marker GM1. We hypothesized that BteA associates with the cytoplasmic face of lipid rafts to locally modulate host cell responses to Bordetella attachment. B. bronchiseptica adhered to host cells almost exclusively to GM1-enriched lipid raft microdomains and BteA colocalized to these same sites following T3SS-mediated translocation. Disruption of lipid rafts with methyl-β-cyclodextrin protected cells from T3SS-induced cytotoxicity. Localization to lipid rafts was mediated by a 130-amino-acid lipid raft targeting domain at the N-terminus of BteA, and homologous domains were identified in virulence factors from other bacterial species. Lipid raft targeting sequences from a T3SS effector (Plu4750) and an RTX-type toxin (Plu3217) from Photorhabdus luminescens directed fusion proteins to lipid rafts in a manner identical to the N-terminus of BteA.  相似文献   

20.
A simple method for preparation of brush border membranes (BBM) from rat kidney using polyethylene glycol (PEG) precipitation has been described. This method avoids the use of cations for the preparation, which might alter membrane lipid composition. These preparations were assessed for enrichment of marker enzymes, contamination by subcellular structures, lipid composition and transport function. An enrichment of 11.8910-fold of alkaline phosphatase, 13.9500-fold of amino peptidase and 13.6500-fold of gamma-glutamyl transpeptidase and an approximate yield of 60% were seen in the final membrane preparation as compared to the homogenate. There was very little contamination of basolateral membranes, peroxisomes, microsomes or lysosomes in the final membrane preparation. Analysis of sugars indicated high content of fucose and sailic acid as compared to hexoses. Isolated membranes appeared as vesicles as seen by electron microscopy. Lipid analysis indicated the presence of various neutral and phospholipids with a high content of sphingomyelin along with a cholesterol/phospholipid ratio of 0.4850. The isolated membrane vesicles were able to transport glucose. This study has shown a simple method of renal brush border membrane preparation, which is comparatively pure and functionally active.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号