首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 484 毫秒
1.
The diversity of clinical (n = 92) and oral and digestive commensal (n = 120) isolates of Streptococcus salivarius was analyzed by multilocus sequence typing (MLST). No clustering of clinical or commensal strains can be observed in the phylogenetic tree. Selected strains (92 clinical and 46 commensal strains) were then examined for their susceptibilities to tetracyclines, macrolides, lincosamides, aminoglycosides, and phenicol antibiotics. The presence of resistance genes tet(M), tet(O), erm(A), erm(B), mef(A/E), and catQ and associated genetic elements was investigated by PCR, as was the genetic linkage of resistance genes. High rates of erythromycin and tetracycline resistance were observed among the strains. Clinical strains displayed either the erm(B) (macrolide-lincosamide-streptogramin B [MLSB] phenotype) or mef(A/E) (M phenotype) resistance determinant, whereas almost all the commensal strains harbored the mef(A/E) resistance gene, carried by a macrolide efflux genetic assembly (MEGA) element. A genetic linkage between a macrolide resistance gene and genes of Tn916 was detected in 23 clinical strains and 5 commensal strains, with a predominance of Tn3872 elements (n = 13), followed by Tn6002 (n = 11) and Tn2009 (n = 4) elements. Four strains harboring a mef(A/E) gene were also resistant to chloramphenicol and carried a catQ gene. Sequencing of the genome of one of these strains revealed that these genes colocalized on an IQ-like element, as already described for other viridans group streptococci. ICESt3-related elements were also detected in half of the isolates. This work highlights the potential role of S. salivarius in the spread of antibiotic resistance genes both in the oral sphere and in the gut.  相似文献   

2.
Aims: To characterize the erm(B)‐ and mef(E)‐mediated erythromycin‐resistant Streptococcus pneumoniae clinical isolates obtained from ten hospitals located different cities in China. Methods and Results: Totally 83 S. pneumoniae were collected, and eighteen representative strains of 66 strains that exhibited erythromycin resistance were used for further characterization by antibiograms, serotyping, PFGE, MLST, DNA sequencing of the macrolide‐resistance elements and mapping of the elements on the chromosome. Twelve isolates showed a high‐level resistance to erythromycin, and six other isolates showed a low‐level resistance to erythromycin. Thirteen isolates harboured a Tn2010 transposon (26·4 kbp) encoding the erm(B), tet(M) and mef(E) genes and were classified into three types by Tn2010 structures. The remaining five isolates harboured a Tn6002 transposon (20·9 kbp) encoding the erm(B) and tet(M) genes and were classified into three types by Tn6002 locations on the chromosome. Three of the Tn6002 elements were located within the Tn5252‐like element, implying that these composed a large mobile element. The MLST analyses showed that several clones had been disseminated and that the CC271 strains carrying the Tn2010 element expressing the high‐level resistance to erythromycin were predominant in China. Four new MLST strains, which were designated as ST3262, ST3263, ST3397 and ST3398 were also identified. Conclusions: The erythromycin resistance determinant of S. pneumoniae that had been isolated in China was located in Tn2010 or the Tn6002 element and several clones had been disseminated, and the CC271 strains carrying the Tn2010 element expressing the high‐level resistance to erythromycin were predominant in China. Significance and Impact of the Study: This is the first molecular analysis of erythromycin‐resistant Streptococcus pneumoniae clinical isolates in China, and the first report of the complete nucleotide sequence of Tn2010 (26 390 bp).  相似文献   

3.
Antibiotic susceptibilities of Propionibacterium acnes in Japan were determined. Erythromycin‐resistance was found in 10.4% (5/48) of the strains, and four of these were cross‐resistance to clindamycin. Although the erythromycin ribosome methylase gene erm(X) was looked for, no strain carrying erm(X) was found. Sequencing analysis revealed that all of the erythromycin‐resistant strains had a mutation in the peptidyl transferase region of the 23S rRNA gene: G2057A, A2058G, or A2059G. Consequently, our results show that P. acnes resistance to macrolides is caused by a mutation in the 23S rRNA gene, and has been increasing in Japan.  相似文献   

4.
In spite of a global concern on the transfer of antibiotic resistances (AR) via the food chain, limited information exists on this issue in species of Leuconostoc and Weissella, adjunct cultures used as aroma producers in fermented foods. In this work, the minimum inhibitory concentration was determined for 16 antibiotics in 34 strains of dairy origin, belonging to Leuconostoc mesenteroides (18), Leuconostoc citreum (11), Leuconostoc lactis (2), Weissella hellenica (2), and Leuconostoc carnosum (1). Atypical resistances were found for kanamycin (17 strains), tetracycline and chloramphenicol (two strains each), and erythromycin, clindamycin, virginiamycin, ciprofloxacin, and rifampicin (one strain each). Surprisingly, L. mesenteroides subsp. mesenteroides LbE16, showed resistance to four antibiotics, kanamycin, streptomycin, tetracycline and virginiamycin. PCR analysis identified tet(S) as responsible for tetracycline resistance in LbE16, but no gene was detected in a second tetracycline-resistant strain, L. mesenteroides subsp. cremoris LbT16. In Leuconostoc mesenteroides subsp. dextranicum LbE15, erythromycin and clindamycin resistant, an erm(B) gene was amplified. Hybridization experiments proved erm(B) and tet(S) to be associated to a plasmid of ≈35 kbp and to the chromosome of LbE15 and LbE16, respectively. The complete genome sequence of LbE15 and LbE16 was used to get further insights on the makeup and genetic organization of AR genes. Genome analysis confirmed the presence and location of erm(B) and tet(S), but genes providing tetracycline resistance in LbT16 were again not identified. In the genome of the multi-resistant strain LbE16, genes that might be involved in aminoglycoside (aadE, aphA-3, sat4) and virginiamycin [vat(E)] resistance were further found. The erm(B) gene but not tet(S) was transferred from Leuconostoc to Enterococcus faecalis both under laboratory conditions and in cheese. This study contributes to the characterization of AR in the Leuconostoc-Weissella group, provides evidence of the genetic basis of atypical resistances, and demonstrates the inter-species transfer of erythromycin resistance.  相似文献   

5.
Fifty-nine erm(B)-positive Enterococcus faecium strains isolated from pigs, broilers, and humans were typed using multilocus sequence typing (MLST), and the coding sequence of the erm(B) gene was determined. Identical erm(B) gene sequences were detected in genetically unrelated isolates. Furthermore, genetically indistinguishable strains were found to contain different erm(B) alleles. This may suggest that horizontal exchange of the erm(B) gene between animal and human E. faecium strains or the existence of a common reservoir of erm(B) genes might be more important than direct transmission of resistant strains.  相似文献   

6.
The mechanism of resistance to macrolides, lincosamides, and streptogramins B was studied in four Bacillus clausii strains that are mixed in a probiotic administered to humans for prevention of gastrointestinal side effects due to oral antibiotic chemotherapy and in three reference strains of B. clausii, DSM8716, ATCC 21536, and ATCC 21537. An 846-bp gene called erm(34), which is related to the erm genes conferring resistance to these antibiotics by ribosomal methylation, was cloned from total DNA of B. clausii DSM8716 into Escherichia coli. The deduced amino acid sequence presented 61% identity with that of Erm(D) from B. licheniformis, B. halodurans, and B. anthracis. Pulsed-field gel electrophoresis of total DNA digested by I-CeuI, followed by hybridization with an erm(34)-specific probe, indicated a chromosomal location of the gene in all B. clausii strains. Repeated attempts to transfer resistance to macrolides by conjugation from B. clausii strains to Enterococcus faecalis JH2-2, E. faecium HM1070, and B. subtilis UCN19 were unsuccessful.  相似文献   

7.
The use of mass antimicrobial treatment has been linked to the emergence of antimicrobial resistance in human and animal pathogens. Using whole-genome single-molecule real-time (SMRT) sequencing, we characterized genomic variability of multidrug-resistant Rhodococcus equi isolated from soil samples from 100 farms endemic for R. equi infections in Kentucky. We discovered the novel erm(51)-encoding resistance to MLSB in R. equi isolates from soil of horse-breeding farms. Erm(51) is inserted in a transposon (TnErm51) that is associated with a putative conjugative plasmid (pRErm51), a mobilizable plasmid (pMobErm51), or both enabling horizontal gene transfer to susceptible organisms and conferring high levels of resistance against MLSB in vitro. This new resistant genotype also carries a previously unidentified rpoB mutation conferring resistance to rifampicin. Isolates carrying both vapA and erm(51) were rarely found, indicating either a recent acquisition of erm(51) and/or impaired survival when isolates carry both genes. Isolates carrying erm(51) are closely related genetically and were likely selected by antimicrobial exposure in the environment.  相似文献   

8.
Mechanisms for the intercellular transfer of VanB-type vancomycin resistance determinants and for the almost universal association of these determinants with those for high-level ampicillin resistance remain poorly defined. We report the discovery of Tn5382, a ca. 27-kb putative transposon encoding VanB-type glycopeptide resistance in Enterococcus faecium. Open reading frames internal to the right end of Tn5382 and downstream of the vanXB dipeptidase gene exhibit significant homology to genes encoding the excisase and integrase of conjugative transposon Tn916. The ends of Tn5382 are also homologous to the ends of Tn916, especially in regions bound by the integrase enzyme. PCR amplification experiments indicate that Tn5382 excises to form a circular intermediate in E. faecium. Integration of Tn5382 in the chromosome of E. faecium C68 has occurred 113 bp downstream of the stop codon for the pbp5 gene, which encodes high-level ampicillin resistance in this clinical isolate. Transfer of vancomycin, ampicillin, and tetracycline resistance from C68 to an E. faecium recipient strain occurs at low frequency in vitro and is associated with acquisition of a 130- to 160-kb segment of DNA that contains Tn5382, the pbp5 gene, and its putative repressor gene, psr. The interenterococcal transfer of this large chromosomal element appears to be the primary mechanism for vanB operon spread in northeast Ohio. These results expand the known family of Tn916-related transposons, suggest a mechanism for vanB operon entry into and dissemination among enterococci, and provide an explanation for the nearly universal association of vancomycin and high-level ampicillin resistance in clinical E. faecium strains.  相似文献   

9.
Multidrug-resistant enterococci are considered crucial drivers for the dissemination of antimicrobial resistance determinants within and beyond a genus. These organisms may pass numerous resistance determinants to other harmful pathogens, whose multiple resistances would cause adverse consequences. Therefore, an understanding of the coexistence epidemiology of resistance genes is critical, but such information remains limited. In this study, our first objective was to determine the prevalence of principal resistance phenotypes and genes among Enterococcus faecalis isolated from retail chicken domestic products collected throughout Japan. Subsequent analysis of these data by using an additive Bayesian network (ABN) model revealed the co-appearance patterns of resistance genes and identified the associations between resistance genes and phenotypes. The common phenotypes observed among E. faecalis isolated from the domestic products were the resistances to oxytetracycline (58.4%), dihydrostreptomycin (50.4%), and erythromycin (37.2%), and the gene tet(L) was detected in 46.0% of the isolates. The ABN model identified statistically significant associations between tet(L) and erm(B), tet(L) and ant(6)-Ia, ant(6)-Ia and aph(3’)-IIIa, and aph(3’)-IIIa and erm(B), which indicated that a multiple-resistance profile of tetracycline, erythromycin, streptomycin, and kanamycin is systematic rather than random. Conversely, the presence of tet(O) was only negatively associated with that of erm(B) and tet(M), which suggested that in the presence of tet(O), the aforementioned multiple resistance is unlikely to be observed. Such heterogeneity in linkages among genes that confer the same phenotypic resistance highlights the importance of incorporating genetic information when investigating the risk factors for the spread of resistance. The epidemiological factors that underlie the persistence of systematic multiple-resistance patterns warrant further investigations with appropriate adjustments for ecological and bacteriological factors.  相似文献   

10.
In this project, enterococci from the digestive tracts of 260 houseflies (Musca domestica L.) collected from five restaurants were characterized. Houseflies frequently (97% of the flies were positive) carried enterococci (mean, 3.1 × 103 CFU/fly). Using multiplex PCR, 205 of 355 randomly selected enterococcal isolates were identified and characterized. The majority of these isolates were Enterococcus faecalis (88.2%); in addition, 6.8% were E. faecium, and 4.9% were E. casseliflavus. E. faecalis isolates were phenotypically resistant to tetracycline (66.3%), erythromycin (23.8%), streptomycin (11.6%), ciprofloxacin (9.9%), and kanamycin (8.3%). Tetracycline resistance in E. faecalis was encoded by tet(M) (65.8%), tet(O) (1.7%), and tet(W) (0.8%). The majority (78.3%) of the erythromycin-resistant E. faecalis isolates carried erm(B). The conjugative transposon Tn916 and members of the Tn916/Tn1545 family were detected in 30.2% and 34.6% of the identified isolates, respectively. E. faecalis carried virulence genes, including a gelatinase gene (gelE; 70.7%), an aggregation substance gene (asa1; 33.2%), an enterococcus surface protein gene (esp; 8.8%), and a cytolysin gene (cylA; 8.8%). Phenotypic assays showed that 91.4% of the isolates with the gelE gene were gelatinolytic and that 46.7% of the isolates with the asa1 gene aggregated. All isolates with the cylA gene were hemolytic on human blood. This study showed that houseflies in food-handling and -serving facilities carry antibiotic-resistant and potentially virulent enterococci that have the capacity for horizontal transfer of antibiotic resistance genes to other bacteria.  相似文献   

11.
Transfer of antibiotic resistance genes by conjugation is thought to play an important role in the spread of resistance. Yet virtually no information is available about the extent to which such horizontal transfers occur in natural settings. In this paper, we show that conjugal gene transfer has made a major contribution to increased antibiotic resistance in Bacteroides species, a numerically predominant group of human colonic bacteria. Over the past 3 decades, carriage of the tetracycline resistance gene, tetQ, has increased from about 30% to more than 80% of strains. Alleles of tetQ in different Bacteroides species, with one exception, were 96 to 100% identical at the DNA sequence level, as expected if horizontal gene transfer was responsible for their spread. Southern blot analyses showed further that transfer of tetQ was mediated by a conjugative transposon (CTn) of the CTnDOT type. Carriage of two erythromycin resistance genes, ermF and ermG, rose from <2 to 23% and accounted for about 70% of the total erythromycin resistances observed. Carriage of tetQ and the erm genes was the same in isolates taken from healthy people with no recent history of antibiotic use as in isolates obtained from patients with Bacteroides infections. This finding indicates that resistance transfer is occurring in the community and not just in clinical environments. The high percentage of strains that are carrying these resistance genes in people who are not taking antibiotics is consistent with the hypothesis that once acquired, these resistance genes are stably maintained in the absence of antibiotic selection. Six recently isolated strains carried ermB genes. Two were identical to erm(B)-P from Clostridium perfringens, and the other four had only one to three mismatches. The nine strains with ermG genes had DNA sequences that were more than 99% identical to the ermG of Bacillus sphaericus. Evidently, there is a genetic conduit open between gram-positive bacteria, including bacteria that only pass through the human colon, and the gram-negative Bacteroides species. Our results support the hypothesis that extensive gene transfer occurs among bacteria in the human colon, both within the genus Bacteroides and among Bacteroides species and gram-positive bacteria.  相似文献   

12.
Susceptibility to five antimicrobials was determined for Bacteroides spp. (n = 52) and Parabacteroides distasonis (n = 8). All isolates were susceptible to metronidazole. The resistance rates to ampicillin, cefoxitin, tetracycline and clindamycin were 98%, 9.6%, 65.3% and 19.2% of the Bacteroides strains, respectively. The genes cepA, cfiA, cfxA, tetQ, ermF and nim were found in 69.2%, 17.3% 9.6%, 50%, 7.7% and 3.8% for these strains respectively. All P. distasonis strains were resistant to ampicilin. Cefoxitin, tetracycline and clindamycin resistance rates were 75%, 87.5% and 50%, respectively. The ermF and nim genes were absent and 37.5%, 12.5%, 12.5% and 87.5% of this strains possessed cepA, cfiA, cfxA and tetQ genes, respectively. Ten cfiA gene positive strains of Bacteroides and Parabacteroides were submitted to E-test with imipenem and amoxicillin–clavulanate. The resistance rate to imipenem was 4.1% and 8.3% to amoxicillin–clavulanate. This feature is for the first time described in Brazil.  相似文献   

13.
Tn4371, a 55-kb transposable element involved in the degradation and biphenyl or 4-chlorobiphenyl identified in Ralstonia eutropha A5, displays a modular structure including a phage-like integrase gene (int), a Pseudomonas-like (chloro)biphenyl catabolic gene cluster (bph), and RP4- and Ti-plasmid-like transfer genes (trb) (C. Merlin, D. Springael, and A. Toussaint, Plasmid 41:40–54, 1999). Southern blot hybridization was used to examine the presence of different regions of Tn4371 in a collection of (chloro)biphenyl-degrading bacteria originating from different habitats and belonging to different bacterial genera. Tn4371-related sequences were never detected on endogenous plasmids. Although the gene probes containing only bph sequences hybridized to genomic DNA from most strains tested, a limited selection of strains, all β-proteobacteria, displayed hybridization patterns similar to the Tn4371 bph cluster. Homology between Tn4371 and DNA of two of those strains, originating from the same area as strain A5, extended outside the catabolic genes and covered the putative transfer region of Tn4371. On the other hand, none of the (chloro)biphenyl degraders hybridized with the outer left part of Tn4371 containing the int gene. The bph catabolic determinant of the two strains displaying homology to the Tn4371 transfer genes and a third strain isolated from the A5 area could be mobilized to a R. eutropha recipient, after insertion into an endogenous or introduced IncP1 plasmid. The mobilized DNA of those strains included all Tn4371 homologous sequences previously identified in their genome. Our observations show that the bph genes present on Tn4371 are highly conserved between different (chloro)biphenyl-degrading hosts, isolated globally but belonging mainly to the β-proteobacteria. On the other hand, Tn4371-related mobile elements carrying bph genes are apparently only found in isolates from the environment that provided the Tn4371-bearing isolate A5.  相似文献   

14.
Fourty-one bacterial strains isolated from infected dental root canals and identified by 16S rRNA gene sequence were screened for the presence of 14 genes encoding resistance to beta-lactams, tetracycline and macrolides. Thirteen isolates (32%) were positive for at least one of the target antibiotic resistance genes. These strains carrying at least one antibiotic resistance gene belonged to 11 of the 26 (42%) infected root canals sampled. Two of these positive cases had two strains carrying resistance genes. Six out of 7 Fusobacterium strains harbored at least one of the target resistance genes. One Dialister invisus strain was positive for 3 resistance genes, and 4 other strains carried two of the target genes. Of the 6 antibiotic resistance genes detected in root canal strains, the most prevalent were blaTEM (17% of the strains), tetW (10%), and ermC (10%). Some as-yet-uncharacterized Fusobacterium and Prevotella isolates were positive for blaTEM, cfxA and tetM. Findings demonstrated that an unexpectedly large proportion of dental root canal isolates, including as-yet-uncharacterized strains previously regarded as uncultivated phylotypes, can carry antibiotic resistance genes.  相似文献   

15.
R388rep(Ts)::Tn5 a thermosensitive, Tn5 vector (pCHR81) developed by Sasakawa and Yoshikawa [12], was found to be compatible with two strains ofErwinia carotovora and a strain ofRhizobium meliloti. pCHR81 was introduced into these organisms at lower temperatures and rendered suicidal at higher temperatures, giving rise to Tn5 transposed. To the transconjugants ofE. carotovora, which were cured of the R388 moiety and carrying Tn5 transposed, another Tn5 vector R388rep(Ts)::Tn5-Tcl (pCHR82) was re-introduced; this is a derivative of R388rep(Ts)::Tn5 with a tetracycline resistance marked instead of the original antibiotic resistances of Tn5. Gua+ gene ofE. carotovora was transferred by the cultures carrying only R388rep(Ts)::Tn5 or by those carrying R388rep(Ts)::Tn5-Tc and transposed Tn5. Though one strain of each ofAgrobacterium tumefaciens andA. radiobacter showed restriction to R388rep(Ts)::Tn5 plasmid maintenance, derivatives devoid of R388 and carrying Tn5 transposed were obtained. Streptomycin resistance gene on Tn5 was expressed in the cultures of all four species.  相似文献   

16.
Results of a recent study of antibiotic resistance genes in human colonic Bacteroides strains suggested that gene transfer events between members of this genus are fairly common. The identification of Bacteroides isolates that carried an erythromycin resistance gene, ermG, whose DNA sequence was 99% identical to that of an ermG gene found previously only in gram-positive bacteria raised the further possibility that conjugal elements were moving into Bacteroides species from other genera. Six of seven ermG-containing Bacteroides strains tested were able to transfer ermG by conjugation. One of these strains was chosen for further investigation. Results of pulsed-field gel electrophoresis experiments showed that the conjugal element carrying ermG in this strain is an integrated element about 75 kb in size. Thus, the element appears to be a conjugative transposon (CTn) and was designated CTnGERM1. CTnGERM1 proved to be unrelated to the predominant type of CTn found in Bacteroides isolates—CTns of the CTnERL/CTnDOT family—which sometimes carry another type of erm gene, ermF. A 19-kbp segment of DNA from CTnGERM1 was cloned and sequenced. A 10-kbp portion of this segment hybridized not only to DNA from all the ermG-containing strains but also to DNA from strains that did not carry ermG. Thus, CTnGERM1 seems to be part of a family of CTns, some of which have acquired ermG. The percentage of G+C content of the ermG region was significantly lower than that of the chromosome of Bacteroides species—an indication that CTnGERM1 may have entered Bacteroides strains from some other bacterial genus. A survey of strains isolated before 1970 and after 1990 suggests that the CTnGERM1 type of CTn entered Bacteroides species relatively recently. One of the genes located upstream of ermG encoded a protein that had 85% amino acid sequence identity with a macrolide efflux pump, MefA, from Streptococcus pyogenes. Our having found >90% sequence identity of two upstream genes, including mefA, and the remnants of two transposon-carried genes downstream of ermG with genes found previously only in gram-positive bacteria raises the possibility that gram-positive bacteria could have been the origin of CTnGERM1.  相似文献   

17.
We sought to study antibiotic resistance and molecular epidemiology of methicillin-resistant Staphylococcus aureus (MRSA) from lower respiratory tracts of patients in Shanghai Pulmonary Hospital. Hundred and seven strains of MRSA were isolated from the patients of nine wards. The tests for antibiotic resistance (Kirby–Bauer paper dispersion method), the Panton–Valentine Leukocidin (PVL) and Staphyloccoccal Cassette Chromosome mec (SCCmec) genes (PCR), and homology analysis (32 randomly selected MRSA strains; pulsed-field gel electrophoresis) were carried out. All 107 strains were susceptible to vancomycin, teicoplanin, and linezolid, but highly or completely resistant to tetracycline, gentamicin, clindamycin, levofloxacin, azithromycin, erythromycin, trimethoprim/sulphamethoxazole, and ciprofloxacin. All 107 strains were negative for PVL gene. Most of the strains (81.3 %) were SCCmec III type, while the SCCmec II and IV types were less frequent (15.9 and 2.8 %, respectively). No SCCmec I or V types were detected. The homology analysis test showed that 32 MRSA strains could be divided into 4 groups: type A (25 strains), type B (5 strains), type C (1 strain), and type D (1 strain). The type A included 3 subtypes: A1 (17 strains), A2 (1 strain), and A3 (7 strains). Further, most of the strains were isolated from the same wards or units (e.g., intensive care unit or tuberculosis wards) within a short period of time, indicating an outbreak status. In conclusion, the observed MRSA from low respiratory tracts from patients at Shanghai Pulmonary Hospital were multiple-resistant, with the SCCmec III being the main documented genotype.  相似文献   

18.
Animal manure from modern animal agriculture constitutes the single largest source of antibiotic resistance (AR) owing to the use of large quantities of antibiotics. After animal manure enters the environment, the AR disseminates into the environment and can pose a potentially serious threat to the health and well-being of both humans and animals. In this study, we evaluated the efficiency of three different on-farm waste treatment systems in reducing AR. Three classes of erythromycin resistance genes (erm) genes (B, F, and X) conferring resistances to macrolide–lincosamides–streptogramin B (MLSB) and one class of tetracycline resistance genes (tet) gene (G) conferring resistance to tetracyclines were used as models. Real-time polymerase chain reaction assays were used to determine the reservoir sizes of these AR genes present in the entire microbiome. These classes of AR genes varied considerably in abundance, with erm(B) being more predominant than erm(F), erm(X), and tet(G). These AR genes also varied in persistence in different waste treatment systems. Aerobic biofiltration reduced erm(X) more effectively than other AR genes, while mesophilic anaerobic digestion and lagoon storage did not appreciably reduce any of these AR genes. Unlike chemical pollutants, some AR genes could increase after reduction in a preceding stage of the treatment processes. Season might also affect the persistence of AR. These results indicate that AR arising from swine-feeding operations can survive typical swine waste treatment processes and thus treatments that are more effective in destructing AR on farms are required.  相似文献   

19.
Sodergren E  Cheng Y  Avery L  Kaiser D 《Genetics》1983,105(2):281-291
To test genetic recombination in the vicinity of insertions of the transposon Tn5, crosses were performed by transduction between M. xanthus strains carrying different insertions of Tn5. One member of each pair carried resistance to kanamycin (Tn5-Km); the other carried resistance to tetracycline (Tn5-Tc). The distance between each pair of Tn5 insertions was also measured by restriction mapping. The physical distance corresponding to each recombination frequency was calculated from the transductional linkage and compared with distance on the restriction map. A good correspondence between the two measures of distance was obtained for a pair of Tn5 insertions near the cglB locus and for another pair near the mgl locus. Correspondence between the two measurements of distance, the observed allelic behavior of Tn5-Km and Tn5 -Tc at the same locus and the finding of the same frequencies of recombinants in reciprocal crosses implied that recombination in the vicinity of Tn 5 was normal.  相似文献   

20.
The likelihood that products prepared from raw meat and milk may act as vehicles for antibiotic-resistant bacteria is currently of great concern in food safety issues. In this study, a collection of 94 tetracycline-resistant (Tcr) lactic acid bacteria recovered from nine different fermented dry sausage types were subjected to a polyphasic molecular study with the aim of characterizing the host organisms and the tet genes, conferring tetracycline resistance, that they carry. With the (GTG)5-PCR DNA fingerprinting technique, the Tcr lactic acid bacterial isolates were identified as Lactobacillus plantarum, L. sakei subsp. carnosus, L. sakei subsp. sakei, L. curvatus, and L. alimentarius and typed to the intraspecies level. For a selection of 24 Tcr lactic acid bacterial isolates displaying unique (GTG)5-PCR fingerprints, tet genes were determined by means of PCR, and only tet(M) was detected. Restriction enzyme analysis with AccI and ScaI revealed two different tet(M) allele types. This grouping was confirmed by partial sequencing of the tet(M) open reading frame, which indicated that the two allele types displayed high sequence similarities (>99.6%) with tet(M) genes previously reported in Staphylococcus aureus MRSA 101 and in Neisseria meningitidis, respectively. Southern hybridization with plasmid profiles revealed that the isolates contained tet(M)-carrying plasmids. In addition to the tet(M) gene, one isolate also contained an erm(B) gene on a different plasmid from the one encoding the tetracycline resistance. Furthermore, it was also shown by PCR that the tet(M) genes were not located on transposons of the Tn916/Tn1545 family. To our knowledge, this is the first detailed molecular study demonstrating that taxonomically and genotypically diverse Lactobacillus strains from different types of fermented meat products can be a host for plasmid-borne tet genes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号