首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.

Introduction

Previous studies have shown that cysteine-rich secretory protein containing LCCL domain 2 (CRISPLD2) is a novel lipopolysaccharide (LPS)-binding protein, and the upregulation of CRISPLD2 expression protects mice against LPS-induced lethality. The aim of this study was to examine the expression of CRISPLD2 in patients with sepsis and characterize the association of this protein with procalcitonin.

Methods

The expression of CRISPLD2 was determined in100 healthy volunteers and 119 septic patients. According to the definition of sepsis, patients were divided into three groups sepsis, severe sepsis, and septic shock. The relationship between CRISPLD2 levels and procalcitonin was also examined and statistically analyzed.

Results

The CRISPLD2 levels in healthy individuals were 219.3±69.1 µg/ml. Patients with sepsis exhibited higher CRISPLD2 levels than observed in healthy individuals (p = 0.001), but CRISPLD2 expression was not upregulated in patients with septic shock. No significant differences were observed between the levels of CRISPLD2 in surviving and non-surviving spesis patients. CRISPLD2 levels were negatively correlated with procalcitonin levels(r = −0.334, p<0.001).

Conclusions

The present study is the first to demonstrate the decreased expression of CRISPLD2 in septic shock and its association with PCT in sepsis. Further studies are needed to clarify the potential association between CRISPLD2 expression and clinical outcomes to determine if it could be used as a novel sepsis biomarker.  相似文献   

2.
Methyl CpG binding protein 2 (MeCP2) is a chromosomal protein of the brain, very abundant especially in neurons, where it plays an important role in the regulation of gene expression. Hence it has the potential to be affected by the mammalian circadian cycle. We performed expression analyses of mice brain frontal cortices obtained at different time points and we found that the levels of MeCP2 are altered circadianly, affecting overall organization of brain chromatin and resulting in a circadian-dependent regulation of well-stablished MeCP2 target genes. Furthermore, this data suggests that alterations of MeCP2 can be responsible for the sleeping disorders arising from pathological stages, such as in autism and Rett syndrome.  相似文献   

3.
The pannexins (Panx1, -2, and -3) are a mammalian family of putative single membrane channels discovered through homology to invertebrate gap junction-forming proteins, the innexins. Because connexin gap junction proteins are known regulators of neural stem and progenitor cell proliferation, migration, and specification, we asked whether pannexins, specifically Panx2, play a similar role in the postnatal hippocampus. We show that Panx2 protein is differentially expressed by multipotential progenitor cells and mature neurons. Both in vivo and in vitro, Type I and IIa stem-like neural progenitor cells express an S-palmitoylated Panx2 species localizing to Golgi and endoplasmic reticulum membranes. Protein expression is down-regulated during neurogenesis in neuronally committed Type IIb and III progenitor cells and immature neurons. Panx2 is re-expressed by neurons following maturation. Protein expressed by mature neurons is not palmitoylated and localizes to the plasma membrane. To assess the impact of Panx2 on neuronal differentiation, we used short hairpin RNA to suppress Panx2 expression in Neuro2a cells. Knockdown significantly accelerated the rate of neuronal differentiation. Neuritic extension and the expression of antigenic markers of mature neurons occurred earlier in stable lines expressing Panx2 short hairpin RNA than in controls. Together, these findings describe an endogenous post-translational regulation of Panx2, specific to early neural progenitor cells, and demonstrate that this expression plays a role in modulating the timing of their commitment to a neuronal lineage.  相似文献   

4.
5.
Acetyl-CoA carboxylases ACC1 and ACC2 catalyze the carboxylation of acetyl-CoA to malonyl-CoA, regulating fatty-acid synthesis and oxidation, and are potential targets for treatment of metabolic syndrome. Expression of ACC1 in rodent lipogenic tissues and ACC2 in rodent oxidative tissues, coupled with the predicted localization of ACC2 to the mitochondrial membrane, have suggested separate functional roles for ACC1 in lipogenesis and ACC2 in fatty acid oxidation. We find, however, that human adipose tissue, unlike rodent adipose, expresses more ACC2 mRNA relative to the oxidative tissues muscle and heart. Human adipose, along with human liver, expresses more ACC2 than ACC1. Using RT-PCR, real-time PCR, and immunoprecipitation we report a novel isoform of ACC2 (ACC2.v2) that is expressed at significant levels in human adipose. The protein generated by this isoform has enzymatic activity, is endogenously expressed in adipose, and lacks the N-terminal sequence. Both ACC2 isoforms are capable of de novo lipogenesis, suggesting that ACC2, in addition to ACC1, may play a role in lipogenesis. The results demonstrate a significant difference in ACC expression between human and rodents, which may introduce difficulties for the use of rodent models for development of ACC inhibitors.  相似文献   

6.
Nischarin is a protein known to inhibit breast cancer cell motility by regulating the signaling of the Rho GTPase family. However, little is known about its location and function in the nervous system. The aim of the present study was to investigate the regional and cellular expression and functions of Nischarin in the adult rodent brain. As assessed by real-time PCR, Western blot analysis and immunostaining, we found that Nischarin was widely distributed throughout the brain, with a higher expression in the cerebral cortex and hippocampus. Double-labeling showed that Nischarin was expressed in neurons and was mainly located in the perinuclear region and F-actin-rich protrusions. The expression pattern of Nischarin in the brain was thought to be closely associated with its function. This was verified by our findings from cell migration assays that Nischarin regulated neuronal migration. These results provide a preliminary survey of the distribution of Nischarin in different regions and cell types in the rat brain. This might help to elucidate its physiological roles, and to evaluate its potential clinical implications.  相似文献   

7.
8.
9.
10.
11.
12.
13.
14.
15.
Under physiological conditions, transferrin receptor 2 (TfR2) is expressed in the liver and its balance is related to the cell cycle rather than to intracellular iron levels. We recently showed that TfR2 is highly expressed in glioblastoma cell lines. Here, we demonstrate that, in these cells, TfR2 appears to localize in lipid rafts, induces extracellular signal-regulated kinase 1/2 phosphorylation after transferrin binding, and contributes to cell proliferation, as shown by RNA silencing experiments. In vitro hypoxic conditions induce a significant TfR2 up-regulation, suggesting a role in tumor angiogenesis. As assessed by immunohistochemistry, the level of TfR2 expression in astrocytic tumors is related to histologic grade, with the highest expression observed in glioblastomas. The level of TfR2 expression represents a favorable prognostic factor, which is associated with the higher sensitivity to temozolomide of TfR2-positive tumor cells in vitro. The endothelial cells of glioblastoma vasculature also stain for TfR2, whereas those of the normal brain vessels do not. Importantly, TfR2 is expressed by the subpopulation of glioblastoma cells with properties of cancer-initiating cells. TfR2-positive glioblastoma cells retain their TfR2 expression on xenografting in immunodeficient mice. In conclusion, our observations demonstrate that TfR2 is a neoantigen for astrocytomas that seems attractive for developing target therapies.  相似文献   

16.
17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号