首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Summary The present study was done to elucidate the biological significance of the Weibel-Palade body of human umbilical vein endothelial cells. Quantitative determinations of these endothelial-specific granules throughout pregnancy revealed that their numbers and size per cell profile were maintained at low levels from 12 to 19 weeks of gestation; then both rapidly increased from 33 weeks to full term. This increase coincided with the development of the rough endoplasmic reticulum and an increase in the number of endothelial cell pinocytotic vesicles. Light-microscopic peroxidase anti-peroxidase and electron-microscopic protein A-gold techniques provided evidence that factor VIII-related antigen was localized in the Weibel-Palade bodies. Furthermore, in vitro treatment of incubated umbilical vein tissue with compound 48/80, a histamine releaser, induced degranulation of Weibel-Palade bodies from the endothelium. The present study indicates that Weibel-Palade bodies are storage sites of both histamine and factor VIII-related antigen and have an important role in the obliteration of this vessel.  相似文献   

2.
Culture and characterization of bovine mesenteric lymphatic endothelium   总被引:5,自引:0,他引:5  
Summary Lymphatic endothelial cells isolated from bovine mesenteric lymphatic vessels were cultured and characterized. Lymphatic endothelial cells grew as a monolayer displaying an elongated morphology in preconfluent primary cultures. When confluent, the cells exhibited a polygonal morphology to form a “cobblestone” pattern previously described for cultured vascular endothelium. All culture lymphatic endothelial cells expressed Factor VIII-related antigen and boundUlex europaeus I lectin. Ultrastructurally, cultured lymphatic endothelium was characterized by the presence of Weibel-Palade bodies as well as the usual cytoplasmic organelles.  相似文献   

3.
Summary A long-term culture of a spontaneously transformed endothelial cell line derived from the choroid-retina of a rhesus macaque fetus is reported. It has been carried in vitro by serial propagation more than 548 passages in 17 yr. Cells were identified as being of endothelial origin by cellular morphology, growth pattern, ultrastructure, immunocytochemistry (immunofluorescence and immunoperoxidase), and immunodiffusion. The transformants are characterized by (a) an infinite life span, (b) a changed expression of Factor VIII-related antigen, and (c) chromosomal aberrations. Throughout long-term serial passages and after repeated freeze-storage, thawing, and reculture the cells retain the specific organelles, Weibel-Palade bodies, and most of the other characteristic morphologic features. For this long-term cultured endothelial cell line, Weibel-Palade bodies seem to be a more reliable marker than Factor VIII-related antigen. This is publication No. 1475 of the Oregon Regional Primate Research Center. Research was supported by grant RR-00163 from Animal Resources Branch, Division of Research Resources, National Institutes of Health; by NIH grant EY02086, basic research support grant from the Oregon Regional Primate Research Center, and the Collins Medical Trust.  相似文献   

4.
5.
Summary An endothelial cell line derived from a massive recurrent chyle-containing retroperitoneal lymphangioma was isolated in monolayer culture. Scanning and transmission electron microscopy and immunohistochemistry confirmed a close resemblance to blood vascular endothelium with typical cobblestone morphology, positive immunofluorescence staining for endothelial marker Factor VIII-associated antigen and fibronectin, and prominent Weibel-Palade bodies. The endothelial cells also exhibited other ultrastructural features characteristic of lymphatic endothelium, including sparse microvillous surface projections, overlapping intercellular junctions, and abundant intermediate filaments. This endothelial cell line represents a new source of proliferating lymphatic endothelium for future study, including structural and functional comparison to blood vascular endothelium. Supported in part by Arizona Disease Control Research Commission contracts 8277-000000-1-1-AT-6625 and ZB-7492. Presented in part at the 10th International Congress of Lymphology in Adelaide, Australia, August 1985.  相似文献   

6.
Cultured human endothelial cells synthesize and secrete both fibronectin and factor VIII-related antigen (VIIIR:Ag). In immunofluorescence microscopy, intracellular fibronectin was seen diffusely perinuclearly whereas VIIIR:Ag was located both diffusely in the perinuclear cytoplasm and in distinct rod-shaped granules. These granules could, moreover, be visualized with fluorochrome-coupled Ricinus communis agglutinin I (RCA), which also stained the Golgi apparatus as a reticular juxtanuclear structure, and they were identified as Weibel-Palade bodies by immunoelectron microscopy. Puromycin treatment depleted intracellular fibronectin but did not affect the granular localization of VIIIR:Ag. A short exposure of the cells to monensin caused a juxtanuclear accumulation of fibronectin at the Golgi region whereas VIIIR:Ag only was seen in rounded cytoplasmic granules. A prolonged monensin treatment brought about a cytoplasmic accumulation of fibronectin-containing vesicles whereas VIIIR:Ag showed no accumulation and there was no codistribution between granules containing fibronectin or VIIIR:Ag. Type IV procollagen, on the other hand, was distinctly co-localized with fibronectin. In monensin-treated cells RCA mainly stained the VIIIR:Ag-containing vesicles whereas Concanavalin A (Con A) appeared to label the fibronectin-containing vesicles. Immunoelectron microscopy of these cells revealed VIIIR:Ag in some vacuolar structures and typical Weibel-Palade bodies could not be identified. Exposure of the cells to tunicamycin, on the other hand, caused a prominent cytoplasmic accumulation of VIIIR:Ag and, within 96 h, led to the disappearance of most of the VIIIR:Ag-positive granules but did not affect the intracellular distribution of fibronectin. These results, which show that metabolical inhibitors affect differently the intracellular compartmentalization of fibronectin and VIIIR:Ag, indicate, that the two glycoproteins have divergent intracellular pathways in cultured human endothelial cells.  相似文献   

7.
Spontaneous transformation and immortalization of human endothelial cells   总被引:37,自引:0,他引:37  
Summary A new cell line from the human umbilical vein has been established and maintained for more than 5 yr (180 generations; 900 population doublings). This strain, designated ECV304, is characterized by a cobblestone monolayer growth pattern, high proliferative potential without any specific growth factor requirement, and anchorage dependency with contact inhibition. Karyotype analysis of this cell line reveals it to be of human chromosomal constitution with a high trisomic karyotype (mode 80). Ultrastructurally, endothelium-specific Weibel-Palade bodies were identified. Although one of the endothelial cell markers, Factor VIII-related antigen (VIIIR:Ag) was negative in this cell line, immunocytochemical staining for the lectin Ulex europaeus I (UEA-I), and PHM5 (anti-human endothelium as well as glomerular epithelium monoclonal antibody) was positive, and angiotensin-converting enzyme (ACE) activity was also demonstrated. In addition, ECV304 displayed negativity for alkaline and acid phosphatase and for the epithelial marker keratin. All of these findings suggest that ECV304 cells originated from umbilical vein endothelial cells by spontaneous transformation. Ultrastructurally, no viruslike particles have been detected intracellularly. Nude mouse tumorigenicity and rabbit cornea tests were both positive. This is a report on a novel case of phenotypic alteration of normal venous endothelial cells of human origin in vitro, and generation of a transformant with indefinite life spans. This line may be useful in studies of some physiologically active factors available for medical use.  相似文献   

8.
Summary The evaluation of vascular grafts seeded with autologous endothelial cells requires a reliable method of endothelial cell identification. Previous attempts to identify positively tissue Factor VIII-related antigen, found in relatively large amounts in vascular endothelial cells, proved to be inconsistent when immunoperoxidase and immunofluorescent staining techniques were tried. Because the Factor VIII antigen is very labile, this study was performed to determine an optimal fixation technique for demonstrating this antigen in frozen sections of endothelial tissue. Unfixed, acetone-fixed, and formalin-fixed sections of canine carotid artery as well as vascular grafts fixed in 1-ethyl-3-(3-diaminopropyl)-carbodiimide were examined by an indirect immunofluorescence technique. Also, the immunoperoxidase method of Factor VIII identification was applied to unfixed, acetone-fixed, and carbodiimide-fixed endothelial cell seeded vascular grafts. Acetone was the preferred fixative, resulting in excellent antigen preservation with minimal background staining. The immunoperoxidase technique of Factor VIII-related antigen identification was found to be the method of choice because of its sensitivity.  相似文献   

9.
Summary Weibel-Palade bodies are ultrastructurally defined organelles found only in vascular endothelial cells. Because endothelium in corpo is very dispersed, isolation and further characterization of this organelle has been dependent on increasing the number of cells in culture. However, primary isolates of endothelial cells have a limited replication potential and tend to senesce in culture. In this report, EA.hy926, a continuously replicating cell line derived from human endothelium, is shown to contain Weibel-Palade bodies. Electron micrographs demonstrate the ultrastructural characteristics of these tissue-specific organelles and their cytoplasmic distribution in EA.hy926 cells. Von Willebrand factor, which has been shown to exist in Weibel Palade bodies, is demonstrated by immunofluorescence in discrete rod-shaped organelles whose size, shape, and distribution are consistent with that of Weibel-Palade bodies in primary endothelial cell cultures. Rapid release of von Willebrand factor can be induced by calcium ionophore, and large multimeric forms of the protein are found in EA.hy926 cells. These two properties are consistent with the function currently ascribed to Weibel Palade bodies: storage of multimerized von Willebrand factor. Thus ultrastructural, immunologic, and functional data establish the existence of this as yet poorly understood tissue-specific organelle in a continuous, vigorously replicating human cell line.  相似文献   

10.
Cells derived from the endothelium of human iliac arteries were cultured in vivo. The cells were isolated, grown, and subcultured in HEPES buffered Medium 199 supplemented with 20% heat inactivated human whole blood serum, human alpha-thrombin, and commercial endothelial cell growth supplement derived from bovine brain. The cells were viable in culture for 8 to 10 passages at a split ratio of 1:3. After the 10th passage, the cells began to enlarge and their growth rate was reduced. No cultures were viable after the 12th passage. The cells were determined to be of endothelial origin by their morphology at confluence; their ultrastructural characteristics, including the presence of Weibel-Palade bodies; the production and release of factor VIII-related antigen; and by their maintenance of a surface that prevented platelet attachment. The cultured arterial endothelial cells released prostacyclin in response to challenge with thrombin and protamine sulfate but not in response to bradykinin or the platelet-derived growth factor. Although the cultures described in this report were derived from patients with varying degrees of atherosclerotic disease, there were no significant differences in morphological or physiological parameters among these cultures or in comparison with commonly studied cells derived from human umbilical veins.  相似文献   

11.
Cultured endothelial cells derived from the human iliac arteries   总被引:1,自引:0,他引:1  
Summary Cells derived from the endothelium of human iliac arteries were cultured in vivo. The cells were isolated, grown, and subcultured in HEPES buffered Medium 199 supplemented with 20% heat inactivated human whole blood serum, human alpha-thrombin, and commercial endothelial cell growth supplement derived from bovine brain. The cells were viable in culture for 8 to 10 passages at a split ratio of 1:3. After the 10th passage, the cells began to enlarge and their growth rate was reduced. No cultures were viable after the 12th passage. The cells were determined to be of endothelial origin by their morphology at confluence; their ultrastructural characteristics, including the presence of Weibel-Palade bodies; the production and release of factor VIII-related antigen; and by their maintenance of a surface that prevented platelet attachment. The cultured arterial endothelial cells released prostacyclin in response to challenge with thrombin and protamine sulfate but not in response to bradykinin or the platelet-derived growth factor. Although the cultures described in this report were derived from patients with varying degrees of atherosclerotic disease, there were no significant differences in morphological or physiological parameters among these cultures or in comparison with commonly studied cells derived from human umbilical veins. The above work was supported by Grant CA28540 from the National Institutes of Health and by a grant from The Council for Tobacco Research, USA.  相似文献   

12.
Summary We describe here a modified nonenzymatic method for the isolation of rat aortic endothelial cells with vasoformative properties. Aortic rings placed on plastic or gelatin-coated surfaces generated outgrowths primarily composed of endothelial cells. Prompt removal of aortic explants after endothelial migration minimized fibroblast contamination. However, fibroblasts, because of their high proliferative rate tended to overgrow the endothelial cells even when present in small numbers. This potential pitfall was avoided by weeding out fibroblasts with the rounded tip of a bent glass pipette. Primary endothelial colonies free of fibroblasts were segregated in cloning rings, trypsin-treated, and transferred to gelatin-coated dishes. Endothelial cells were cultured in MCDB 131 growth medium containing 10% fetal bovine serum, endothelial cell growth supplement, and heparin. Using this technique, pure endothelial cell strains were obtained from single aortic rings. Confluent endothelial cells formed a contact-inhibited monolayer with typical cobblestone pattern. The endothelial cells were positive for Factor VIII-related antigen, took up DiI-Ac-LDL, and bound the Griffonia Simplicifolia-isolectin-B4. Endothelial cells cultured on collagen gel formed a polarized monolayer, produced basement membrane, displayed Weibel-Palade bodies and caveolae, and were connected by tight junctions. In addition, they reorganized into a network of microvascular cords and tubes when overlaid with a second layer of collagen and formed microvascular sprouts in response to fibroblast-conditioned medium. This isolation procedure yields stable strains of vasoformative endothelial cells, which can be used to study aortic endothelium-related angiogenesis and its mechanisms.  相似文献   

13.
Biogenesis and exocytosis of Weibel-Palade bodies   总被引:8,自引:2,他引:6  
Vascular endothelial cells contain typical, elongated vesicles, the so-called Weibel-Palade bodies, which serve as a storage compartment for von Willebrand factor (VWF), a plasma protein that plays an essential role in controlling the adhesion and aggregation of platelets at sites of vascular injury. Upon activation of endothelial cells by agonists such as thrombin, epinephrine or histamine, the Weibel-Palade bodies fuse with the plasma membrane and release their contents into the blood circulation. This process provides an adequate means by which endothelial cells can actively participate in controlling the arrest of bleeding upon vascular damage. Besides VWF, Weibel-Palade bodies contain a subset of other proteins, including interleukin-8 (IL-8), P-selectin and endothelin. Similar to VWF, these proteins are transported to the outside of the cell upon stimulation and may control local or systemic biological effects, including inflammatory and vasoactive responses. Apparently, endothelial cells are able to create a storage pool for a variety of bioactive molecules which can be mobilised upon demand. Endothelial cells that are deficient of VWF synthesis are not only unable to form Weibel-Palade bodies, but also lack the ability to store IL-8 or P-selectin or release these proteins in a regulated manner. It thus appears that VWF not only plays a prominent role in controlling primary haemostasis, but also may modulate inflammatory processes through its ability to target inflammatory mediators to the regulated secretion pathway of the endothelium.  相似文献   

14.
It was recently reported that factor H, a regulatory component of the alternative complement pathway, is stored with von Willebrand factor (VWF) in the Weibel-Palade bodies of endothelial cells. If this were to be the case, it would have therapeutic importance for patients with the atypical hemolytic-uremic syndrome that can be caused either by a heterozygous defect in the factor H gene or by the presence of an autoantibody against factor H. The in vivo Weibel-Palade body secretagogue, des-amino-D-arginine vasopressin (DDAVP), would be expected to increase transiently the circulating factor H levels, in addition to increasing the circulating levels of VWF. We describe experiments demonstrating that factor H is released from endothelial cell cytoplasm without a secondary storage site. These experiments showed that factor H is not stored with VWF in endothelial cell Weibel-Palade bodies, and is not secreted in response in vitro in response to the Weibel-Palade body secretagogue, histamine. Furthermore, the in vivo Weibel-Palade body secretagogue, DDAVP does not increase the circulating factor H levels concomitantly with DDAVP-induced increased VWF. Factor I, a regulatory component of the alternative complement pathway that is functionally related to factor H, is also located in endothelial cell cytoplasm, and is also not present in endothelial cell Weibel-Palade bodies. Our data demonstrate that the factor H and factor I regulatory proteins of the alternative complement pathway are not stored in Weibel-Palade bodies. DDAVP induces the secretion into human plasma of VWF —- but not factor H.  相似文献   

15.
Rat aortic endothelial cells have been isolated by the explantation technique and grown in culture. They have been identified morphologically using standard staining techniques, biochemically by identification of angiotensin convertase and have been positively stained for Factor VIII-related antigen by immunofluorescence using both anti-human and anti-rat Factor VIII antibodies. The explantation technique is a successful alternative to enzyme digestion which is not applicable to rat aortic endothelial cells because of the nature of their attachment to the subendothelial layer.  相似文献   

16.
BACKGROUND: Papillary endothelial hyperplasia is an intravascular or rarely extravascular proliferation of endothelial cells. It is considered an unusual form of thrombus organization. CASE: A 41-year-old, healthy male presented with a neck mass, which was aspirated. The cytomorphologic features were interpreted as consistent with squamous cell carcinoma. Subsequent workup failed to reveal a primary lesion, and the mass was surgically excised. Histopathology showed papillary endothelial hyperplasia associated with a hematoma. Immunocytochemical staining for factor VIII-related antigen on a destained, alcohol-fixed smear from the fine needle aspirate confirmed the endothelial nature of the cells. CONCLUSION: A vascular lesion should be considered in a fine needle aspiration biopsy of a head and neck mass, in particular when the clinical features are not consistent with a metastatic malignancy. The absence of cytoplasmic orangeophilia and immunoreactivity for factor VIII-related antigen may be helpful in establishing the diagnosis.  相似文献   

17.
MRL/1pr mice demonstrate anatomic specificity in their development of vasculitis including the small- and medium-sized muscular arteries of the mesentery. To define the functional role of endothelium in vasculitis, we have cloned endothelial cells derived from inflamed small- and medium-sized arteries. Primary cells were derived by enzymatic dispersement and endothelial cells were selected by utilizing a combination of specific culture conditions. Cloned endothelium were developed utilizing limiting dilution cultures supplemented by endothelial cell growth factor. The cloned endothelial cells express many structural features of mature endothelial cells including Factor VIII-RA, non-muscle-specific actin, and Weibel-Palade bodies. Functionally, the clones express functional receptors for the scavenger pathway for LDL metabolism. The cells do not express Class I MHC antigens; however, IFN-beta and IFN-gamma stimulate Class I MHC expression after 24 h, which induces lysis of virus-infected cloned endothelium by Class I-restricted virus-primed T cells. In direct contrast to site-identical vascular smooth muscle cells (VSMCs), endothelial cells do not spontaneously express Class II MHC antigens, nor do they secrete biologically relevant levels of IL-1 unless triggered by lipopolysaccharide. The availability of site-specific cloned endothelium along with cloned VSMCs from autoimmune mice should resolve major experimental controversies involving the pathophysiology of inflammatory vascular disease.  相似文献   

18.
Originally described in vascular endothelial cells, Weibel-Palade bodies were considered as specific of this cellular type, as they have never been reported elsewhere. Weibel-Palade bodies serve as storage granules for von Willebrand factor which is stored in microtubular form. Besides endothelial cells von Willebrand factor is also synthetized by bone marrow megakaryocytes. Von Willebrand factor has been located in alpha-granules of megakaryocytes and blood platelets. We describe true Weibel-Palade bodies in pig megakaryocytes, and also alpha-granules which look like an evolutionary form of Weibel-Palade bodies. Von Willebrand Factor is most likely stored in microtubular form in these two types of structure. This is supported by the absence of microtubules in these granules in cells obtained from pigs homozygous for the von Willebrand disease (lacking totally this protein).  相似文献   

19.
Summary A strain of cerebral endothelial cells was established from isolated cortical microvessels of caprine brain. These cells, which are referred to as ECl cells, can be routinely subcultured to 32 passages without the loss of differentiated morphologic and immunologic traits. The ability to routinely subculture ECl cells is an important asset, given that isolated cerebral endothelial cells in mammals generally lose their differentiated traits after only 2 to 3 passages. ECl cells were shown to contain Factor VIII-related antigen, which is a specific marker for cells of endothelial origin. ECl cells morphologically demonstrated a scarcity of pinocytotic vesicles on their apical surfaces, a lack of trans-cytoplasmic vesicles, and the ability to form in culture confluent monolayers with tight junctional complexes. Therefore, ECl cells possess specific antigenic and ultrastructural features which classify them as being small vessel endothelial cells of the blood-brain barrier type. Cytogenetic evaluation of ECl cells demonstrated a normal female goat 60,XX karyotype and confirmed the apparent non-transformed nature of ECl cells due to the lack of chromosome abnormalities or rearrangements. Using scanning electron microscopy, ECl cells were also shown to form confluent monolayers on mixed nitrocellulose filters, a feature that will enable the development of an in vitro system to study trans-endothelial transport. Given that ECl cells are readily subcultured and grow well on nitrocellulose filters, and that they resemble cerebral endothelium in vivo, it seems evident that ECl cells can be used as a versatile model for the study of blood-brain barrier function, regulation, and pathology.  相似文献   

20.
The importance of intact microtubules in the processing, storage and regulated secretion of von Willebrand factor (vWf) from Weibel-Palade bodies in endothelial cells was investigated. Human umbilical vein endothelial cells treated for 1 h with colchicine (10(-6) M) or nocodozole (10(-6) M) lost their organized microtubular network. Stimulation of these cells with secretagogues (A23187, thrombin) produced only 30% release of vWf in comparison to control cells containing intact microtubules. The nocodazole treatment was reversible. One-hour incubation in the absence of the drug was sufficient for microtubules to reform and restore the full capacity of the cells to release vWf. Long-term incubation (24 h) of endothelial cells with microtubule-destabilizing agents had a profound effect on vWf distribution. In control cells, vWf was localized to organelles in the perinuclear region (i.e., endoplasmic reticulum and Golgi apparatus) and to Weibel-Palade bodies. In drug-treated cells vWf staining was dispersed throughout the cytoplasm, and Weibel-Palade bodies were absent. The vWf synthesized in the absence of microtubules contained significantly less large multimers than that produced by control cells. Since Weibel-Palade bodies specifically contain the large multimers, we hypothesize that the structural defect in vWf secreted by cells in the absence of microtubules is due to the lack of Weibel-Palade bodies in these cultures.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号