首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Vesicular stomatitis virus (VSV)-specific messenger ribonucleic acid (mRNA) species contain sequences of adenylate-rich RNA which are more heterogeneous in their migration through sodium dodecyl sulfate-polyacrylamide gels than the corresponding fractions from HeLa cell mRNA. VSV virion RNA contains no adenylaterich sequences. The possible role of such sequences in the mRNA species of a cytoplasmically replicating virus is discussed.  相似文献   

2.
Plaque-forming B particles of vesicular stomatitis virus (VSV) induce the synthesis of virus-specific ribonucleic acid (RNA) in Chinese hamster ovary cells, whereas defective T particles do not. Infection with low input multiplicities of B results in the formation of four species of RNA. During infection with high multiplicities, RNA synthesis begins with mainly these four species of RNA but gradually shifts to a new pattern of RNA synthesis involving five other species of RNA. The change can also be induced by superinfection with T at 2.5 hr after infection with a low multiplicity of B. T added at the same time as B prevents virtually all RNA synthesis. Synthesis of the first group of RNA species correlates with the formation of B particles, whereas synthesis of the second group correlates with the formation of T particles. The various species of RNA formed after infection with VSV particles include single-stranded RNA, a completely double-stranded RNA, and RNA with partially double-stranded regions. These observations begin to establish a molecular basis for understanding the ability of T particles to interfere with the growth of B particles.  相似文献   

3.
4.
Infection of chicken embryo cells with vesicular stomatitis (VS) virus resulted in variable production of three classes of intracellular viral ribonucleocapsids with sedimentation coefficients of approximately 140S, 110S, and 80S, as well as three corresponding classes of released virions designated B, LT, and T. Intracellular nucleocapsids of each class contained three proteins of which the major N protein was firmly bound, and the minor L and NS1 proteins were readily dissociated with 0.5 m NaCl. The ribonucleic acid (RNA) species extracted from B, LT, and T virions, and from corresponding intracellular nucleocapsids, contained RNA species with approximate molecular weights of 3.2 x 10(6), 2.0 x 10(6), and 10(6), respectively, as determined by polyacrylamide gel electrophoresis. These values are roughly equivalent to sedimentation coefficients of 42S, 28S, and 23S for each of the virion and nucleocapsid RNA species. Cells infected at high multiplicity with undiluted passage VS virus gave rise primarily to virions and nucleocapsids containing 23S RNA, whereas cells productively infected with purified B virions produced predominantly B and LT virions and nucleocapsids. At late stages in the productive cycle of infection, more virions containing 42S RNA were produced, but the intracellular pool of nucleocapsids containing 28S and 23S RNA remained relatively constant. Additional studies by more refined techniques are required to test the hypothesis that nucleocapsids containing 28S and 23S RNA are precursors of the 42S RNA in infectious VS-B virions and that production of defective T and LT virions results from failure of ligation of the RNA precursors.  相似文献   

5.
The cytoplasmic sites of synthesis in L cells of the protein and ribonucleic acid species of vesicular stomatitis virus were studied by polyacrylamide gel electrophoresis after fractionation of membrane and other cytoplasmic components by the Caliguiri-Tamm technique. The viral spike protein (glycoprotein G) was found primarily associated with a smooth membrane fraction which is rich in plasma membrane; the G protein was also present in fractions containing rough endoplasmic reticulum. The nonglycosylated envelope protein S (also called M) was found in the smooth membrane fractions but was more abundant in endoplasmic reticulum-enriched fractions. Longer labeling resulted in detection of nucleoprotein N, as well as other minor nucleocapsid proteins L and NS1, in the cellular membrane fractions. The N protein appeared to be made in membrane-free cytoplasm along with progeny ribonucleic acid and later became associated with membrane containing G and S viral proteins.  相似文献   

6.
7.
A ribonucleic acid (RNA)-dependent RNA polymerase has been demonstrated in Kern Canyon virus (KCV) particles. The RNA product of the KCV polymerase hybridizes to KCV viral RNA. The properties of this viral enzyme have been characterized and compared with those of vesicular stomatitis virus (VSV). RNA polymerases from both viruses require similar conditions of temperature, pH, and detergent and magnesium concentrations for maximal synthesis of RNA. The RNA polymerase contained in the virion of KCV was more dependent on the presence of a sulfhydryl agent than was the VSV enzyme. Under optimal conditions, the specific activity of the VSV polymerase is about twenty-five times as great as that of KCV.  相似文献   

8.
Evidence is presented by use of radiolabeling and pancreatic and T1 ribonuclease digestion that some of the ribonucleic acid specified by herpes simplex virus contains polyadenylic acid sequences. The polyadenylic sequences are not transcribed from viral DNA.  相似文献   

9.
10.
Deoxyribonucleic acid (DNA)-dependent ribonucleic acid (RNA) polymerase activity was assayed on nuclear preparations of chick embryo fibroblast cells at various times after infection with an influenza A virus (fowl plague virus) and was compared with the activity of uninfected cells. Polymerase activity was increased by about 60% by 2 hr after infection, and this increase coincided with an increase in RNA synthesis in infected cells, as determined by pulse-labeling with uridine. No difference could be detected between the polymerases of infected and uninfected cells as to their requirements for DNA primer, divalent cations, and nucleoside triphosphates, and they were equally sensitive to addition of actinomycin D to the reaction mixture. It is possible that host cell DNA-dependent RNA polymerase is involved in the replication of influenza virus RNA.  相似文献   

11.
The time course of vaccinia deoxyribonucleic acid (DNA)-dependent ribonucleic acid (RNA) polymerase synthesis and its intracellular localization were studied with virus-infected HeLa cells. Viral RNA polymerase activity could be meassured shortly after viral infection in the cytoplasmic fraction of infected cells in vitro. However, unless the cells were broken in the presence of the nonionic detergent Triton-X-100, no significant synthesis of new RNA polymerase was detected during the viral growth cycle. When cells were broken in the presence of this detergent, extensive increases in viral RNA polymerase activity were observed late in the infection cycle. The onset of new RNA polymerase synthesis was dependent on prior viral DNA replication. Fluorodeoxyuridine (5 x 10(-5)m) prevented the onset of viral polymerase synthesis. Streptovitacin A, a specific and complete inhibitor of protein synthesis in HeLa cells, prevented the synthesis of RNA polymerase. Thus, the synthesis of RNA polymerase is a "late" function of the virus. The newly synthesized RNA polymerase activity was primarily bound to particles which sedimented during high-speed centrifugation. These particles have been characterized by sucrose gradient centrifugation. A major class of active RNA polymerase particles were considerably "lighter" than whole virus in sucrose gradients. These particles were entirely resistant to the action of added pancreatic deoxyribonuclease, and they were not stimulated by added calf thymus primer DNA. It is concluded that these particles are not active in RNA synthesis in vivo, and that activation occurs as a result of detergent treatment in vitro.  相似文献   

12.
The inhibition of protein synthesis in L cells by vesicular stomatitis virus (VSV) requires the synthesis of new protein subsequent to virus infection. However, two mechanisms may be involved in the inhibition of cell protein synthesis by VSV: an initial, multiplicity-dependent, ultraviolet-insensitive inhibition and a progressive, ultraviolet-sensitive inhibition.  相似文献   

13.
A ribonucleic acid-dependent deoxyribonucleic acid polymerase was found in virions of visna virus. The enzyme product was resistant to ribonuclease and alkaline hydrolysis but susceptible to the digestion of deoxyribonuclease.  相似文献   

14.
Entry of Vesicular Stomatitis Virus into L Cells   总被引:3,自引:10,他引:3       下载免费PDF全文
Early stages of the entry of vesicular stomatitis (VS) virus into L cells were followed by electron microscopy with the aid of ferritin antibody labeling. Cells which were infected at 0 C and incubated for 10 min at 37 C were reacted first with antiviral-antiferritin hybrid antibody and then with ferritin or fluorescein-labeled apoferritin. Extensive ferritin labeling of the cell surface was detected by both electron and fluorescence microscopy. The labeled regions of the cell surface were continuous with and indistinguishable from the rest of the host cell membrane, suggesting incorporation of viral antigens into the cell surface during viral penetration. Fusion of parental viral membrane with host cell membrane was further demonstrated by examining the localization of (3)H-labeled viral structural proteins in cells infected at 0 C and incubated for short periods at 37 C. Viral nucleoprotein was found in a soluble fraction of the cells which was derived primarily from the cytoplasm, whereas a particulate fraction from the cells was enriched in viral envelope proteins. Cytoplasmic membrane was isolated from these cells, and this membrane contained viral envelope proteins. These results suggest that penetration by VS virus occurs by fusion of the viral and cellular membranes followed by release of nucleo-protein into the cytoplasm.  相似文献   

15.
The requirement of the presence of a nucleus for the replication of vesicular stomatitis virus and influenza virus has been examined by following the growth and development of these viruses in enucleate BS-C-1 cells. Vesicular stomatitis virus replicates normally in enucleate cells with the rate of production of infectious virus, the amount of virus-specific protein synthesis, and the type of proteins produced being essentially the same in nucleate and enucleate cells. Influenza virus does not replicate in enucleate cells, no virus gene products can be detected, and there is no inhibition of cellular protein synthesis.  相似文献   

16.
17.
Virus-specific ribonucleic acid (RNA), synthesized in influenza virus-infected cells from 3.5 to 7.5 hr after infection, was studied. After velocity centrifugation in sucrose, three peaks of virus-specific RNA could be identified: 34S, 18S, and 11S. These RNA species are predominantly single-stranded and consist of 90% viral (plus) and 10% complementary (minus) RNA strands. Most (75%) of the complementary RNA is single-stranded, i.e., not part of RNA duplexes or replicative intermediates. The 34S RNA species is an aggregate of 18S and 14S RNA species. Both 18S and 11S RNA species are relatively heterogenous compared to 18S ribosomal RNA, and these species probably contain different RNA molecules having closely related sedimentation coefficients.  相似文献   

18.
19.
Infection of L cells with wild-type (L(1)) vesicular stomatitis virus at high or low multiplicities does not result in the production of interferon; however, infection of L cells with low multiplicities of a small-plaque mutant (S(2)) results in the synthesis of large amounts of interferon. In chick embryo (CE) cells, both viruses induce synthesis of interferon; there is no significant multiplicity effect in CE cells. The rate and efficiency of shutoff of macromolecular synthesis in the different host cells is a critical factor in determining the ability of the viruses to induce interferon synthesis. If host ribonucleic acid or protein synthesis is shut off by the virus before the required new ribonucleic acid is transcribed or translated, interferon production does not occur. The relative yield of the two viruses in CE and L cells is not related to the effects of interferon produced during the course of infection.  相似文献   

20.
A new type of temperature-sensitive deoxyribonucleic acid (DNA) synthesis mutant, which can divide without a completion of DNA replication, was isolated from a thymidine-requiring Escherichia coli strain by means of photo-bromouracil selection after nitrosoguanidine mutagenesis. In this mutant, in spite of the fact that DNA synthesis stopped immediately after the temperature shift from 30 to 41 C, cells could continue to divide, though at a reduced rate. This cell division without DNA synthesis at 41 C is further supported by the following results. (i) Cell division took place at high temperature without addition of thymidine but not at all at 30 C. The parent strain of the mutant did not divide at 41 C without thymidine. (ii) Smaller cells isolated from the culture grown at 41 C did not contain DNA. This was shown by chemical analysis of the smaller cells and on electron micrographs. Ability of cells to divide was examined according to sizes of cells. By using the culture at 30 C, cells of various sizes were separated by means of sucrose-density gradient centrifugation. It was found that all cell fractions, including the smallest one, could divide at high temperature. These results suggest that in this mutant the completion of DNA replication is not required for triggering cell division at high temperature. Heat sensitivity of a factor which links cell division with DNA replication appears to be responsible. Some possible mechanisms of the coordination between cell division and DNA replication are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号