首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 14 毫秒
1.
In seed crops of Lolium perenne, yield may be reduced by competition for a limited assimilate supply from sinks other than the ear. This study was undertaken to evaluate the priorities for allocation of assimilate within the crop from all photosynthetic sites on the main reproductive tiller after anthesis. Ear, stem and leaves were fed with 14CO2 on two occasions; the assimilatory efficiency of these sources and the magnitude and pattern of 14C-assimilate export from each was determined. The growth of each part of the main tiller and subtending tillers was also measured. Stem elongation apparently dominated the current assimilate resource and the ear did not become a net importer of assimilate until this process had ceased. Assimilate allocation to the tillers was high throughout. The nature of any competition between these sinks is discussed. When crop growth was contrasted with that in a previous year, environmental factors were implicated as determinants of priority for assimilate allocation to each sink. Sources of carbon for seed filling are also discussed as is the relevance of these findings to seed crop management.  相似文献   

2.
Uptake of [15N]-ammonia was more sensitive to UV-B exposure than the total 14CO2 fixation rate of Lithodesmium variabile Takano. Short-term UV-B radiation (15 min) had practically no effect on the kinetics of [15N]-ammonia, whereas there was an effect on [14C]-bicarbonate uptake rate. A significant reduction was found after 30 and 60 min UV-B stress. The time course of photosynthetic uptake of 15NH4Cl at several wavelengths was markedly depressed at shorter wavelengths (irradiation with WG 280). A short-term (11 min) exposure to ultraviolet radiation had no influence on the [14C]-labeled photosynthetic products. However, the [15N]-label of several amino acids and the ratio of [15N]-glutamine to [15N]-glutamic acid varied after irradiation with different ultraviolet wavebands. The results are discussed with reference to UV damage to the key enzymes of nitrogen metabolism.  相似文献   

3.
The objective of this study was to investigate the behaviour of different legumes against salinity and water stress, thus trying to discover simultaneous adaptations to both stresses. The nitrogen fixation, transpiration, predawn leaf water potential, and stomatal response of Medicago sativa L. (cvs. Tierra de Campos and Aragon), Trifolium repens L. (cv. Aberystwyth S-184) and T. brachycalycinum Katzn. et Morley (= T. subterraneum L. cv. Clare) were compared at three levels of stress (0.05, 0.3 and 0.5 MPa of either NaCl or polyethylene glycol 6000) in nutrient solution. The plants were stressed for three days and then returned to control nutrient solution. The changes in the parameters analyzed were dependent on the proportion of stress treatments and the nature of the species, always being greater in plants from PEG than from NaCl solutions. Transfer of lucerne and subclover plants from NaCl at 0.05 MPa to a non-saline medium resulted in an increase of nitrogen fixation above the level of the non-salinized control plants, especially significant in lucerne. Analysis of possible inorganic impurities in commercial PEG suggest that such type of impurities are not responsible for the toxic effects reported. Plant damage resulting from PEG treatment was apparently due to penetrations of PEG (as determined qualitatively by using the tetraiodinebismuthic acid technique) or low-molecular organic impurities into the plant. – The results are discussed as part of the adaptation of the different species to salinity and water stress. The best performance was given by "Tierra de Campos".  相似文献   

4.
Detached soybean cotyledons fixed CO2 both in the light and dark. Carbon dioxide fixed by the light and dark reactions replaced only a small portion of CO2 lost by respiration up to the 10th day. In the dark most of the 14C label was found in the acidic fraction, while in the light 65 per cent of the activity was found in the neutral and basic fractions.  相似文献   

5.
6.

δ, C isotope composition relative to Pee Dee Belemnite
WSC, water-soluble carbohydrates
N, nitrogen
C, carbon
cv, cultivar
ME, efficiency of mobilized pre-anthesis C utilization in grain filling (g C g–1C)

Significant mobilization of protein and carbohydrates in vegetative plant parts of wheat regularly occurs during grain filling. While this suggests a contribution of reserves to grain filling, the actual efficiency of mobilized assimilate conversion into grain mass (ME) is unknown. In the present study the contribution of pre-anthesis C (C fixed prior to anthesis) to grain filling in main stem ears of two spring wheat (Triticum aestivum L.) cultivars was determined by 13C/12C steady-state labelling. Mobilization of pre-anthesis C in vegetative plant parts between anthesis and maturity, and the contributions of water-soluble carbohydrates (WSC) and protein to pre-anthesis C mobilization were also assessed. Experiments were performed with two levels of N fertilizer supply in each of 2 years. Pre-anthesis reserves contributed 11–29% to the total mass of C in grains at maturity. Pre-anthesis C accumulation in grains was dependent on both the mass of pre-anthesis C mobilized in above-ground vegetative plant parts (r2 = 0·87) and ME (defined as g pre-anthesis C deposited in grains per g pre-anthesis C mobilized in above-ground vegetative plant parts; r2 = 0·40). ME varied between 0·48 and 0·75. The effects of years, N fertilizer treatments and cultivars on ME were all related to differences in the fractional contribution of WSC to pre-anthesis C mobilization. Multiple regression analysis indicated that C from mobilized pre-anthesis WSC may be used more efficiently in grain filling than C present in proteins at anthesis and mobilized during grain filling. Possible causes for variability of ME are discussed.  相似文献   

7.
The growth characterlstlcs, different physlological parameters, photosynthetic activity (^14CO2 fixation), and the translocatlon rate of photoassimllates In different taro (Colocasia esculenta L. Schott) genotypes was studled In order to determlne the posslble use of these parameters as selectlon crlterla for dlfferent wldely used genotypes of taro (Delta No. 9, 15, 20, 21, and balady). The results obtalned suggest that Delta No. 21 shows the most slgnlflcant increase In all parameters tested compared wlth the control (balady), followed by Delta No. 9, 15, and 20, respectively. The results show a positive correlation between photosynthetlc actlvlty, translocatlon efflclency, and total yield. The selected clone Delta No. 21 Is recommended for cultlvatlon In the delta reglon of Egypt.  相似文献   

8.
Inflorescence development in tomato plants ( Lycopersicon esculentum Mill., cv. King Plus) grown under a low-light regime is promoted by exogenous applications of a mixture of N6-benzyladenine (BA) and gibberellins A4+7 (GA) directly on the inflorescence. The photosynthetic rate of the young mature leaf, which feeds the developing inflorescence, and the proportion of 14C-assimilates exported from the source leaf are not affected by the growth substance treatment, but the pattern of 14C-assimilate distribution is altered. Assimilate supply to the treated inflorescence increases concomitantly with a decrease in the 14C import into the apical shoot, reflecting a competition between these two plant parts. The increased assimilate accumulation in the treated inflorescence is apparent 1 day after the first application of BA+GA, and precedes any morphological changes in the reproductive structure. These results are discussed in relation to nutritional hypotheses that regard assimilate supply as limiting for reproductive development.  相似文献   

9.
The Compartmentation of 14CO2 fixation and concomitant metabolism of l4C-iabelled products in a recombined system, composed of isolated intact spinach (Spinacia oleracea) chloroplasls and a ‘cytoplasm’ fraction, has been studied. Addition of ‘cytoplasm’ to chloroplasts fixing 14CO2 increased the label in hexoae monophosphates outside the chloroplasts at the expense of excreted dihydroxyacetone phosphate. The label in ammo acids was increased both inside and outside the chloroplasts. The results support the view that chloroplasls are not able to make 2-oxoacids for amino acid synthesis directly from fixed CO2, but have to co-operate with the cytoplasm and other organelles. The results also show that recombined systems can be useful for studies on the compartmen tation of carbon metabolism in pholosynthesizing plant tissues.  相似文献   

10.
The distribution of assimilates of 14CO2 in ethanol soluble and insoluble fractions was measured at 20-day intervals from 45–135 days after sowing (DAS) in chickpea (Cicer arietinum) grown at two moisture levels. The contribution of pre-flowering assimilates to pods, although very low, was higher under the stress conditions. At the time of harvest, the recovery of 14C in pods was 0.4 and 0.9% of the total 14C fed 45 DAS in soluble and 2.5 and 5.1% in insoluble fractions in control and stressed plants, respectively. The %14C received by nodules continuously decreased with increasing age of plants. Stressed plants diverted more 14C to nodules, compared to control, during vegetative and flowering stages. During active seed filling, stressed plants diverted more 14C to reproductive parts and less to nodules, compared to control. Significant amounts of 14C were retgined by the stem and leaves during the seed-filling period and it appears that there is scope for the remobilisation of pre-flowering, as well as post-flowering assimilates for seed-filling of chickpea.  相似文献   

11.
A method based on simultaneous short-term exposure to 14CO2 and 15N2 is described for studying nitrogen fixation and distribution in legumes relative to carbon assimilation and use. Equipment designed to accomodate experiments under natural conditions with very little disturbance of the N2 fixing association is used. It permits continuous measurement and regulation of variables such as air temperature, humidity and CO2 concentration as well as soil aeration. Measurements of distribution and use of assimilates, respiration of nodulated roots, quantitative N2 fixation and the distribution and fate of fixed N as a function of time lead to a precise estimation of C and N budgets for each labelling period. When experiments are done at several phenological stages they give a new insight into the complex C and N interrelations in legume symbiosis.
A series of trials throughout the growth period of Glycine max (L.) Merr. cv. Hodgson demonstrated the sensitivity of the method. The development of the plants from vegetative to reproductive stages was accompanied by a complete change in the distribution patterns of current assimilates and products of nitrogen fixation. Maximum sink strength moved from the leaves to the pods and seeds which ended up receiving 70% of the incoming C and 35% of the fixed N. The fact that up to 85% of fixed N in the plants was in the reproductive organs at maturity can be accounted for by remobilisation from vegetative parts.
The respiration of nodulated roots utilized 33% of carbon translocated to below-ground plant parts before nitrogen fixation started, but as much as 50% during the period of optimal fixation. The advantages and limitations of the isotopic method described are critically discussed as a prelude to future investigations.  相似文献   

12.
When whole plants were exposed to 14CO2, almost the same amount of radioactivity was taken up initially by each leaf regardless of its position on the stem and of the presence of beans at that node. Thus, although developing beans are a powerful sink for assimilated carbon, they do not increase the CO2 uptake by adjoining leaves.
The distribution of labelled assimilates 6 hours after feeding 14CO2 to a single leaf for 1 hour varied with both the position of the treated leaf and the stage of development of the plant. Before any flowers were set most of the radioactivity from all expanded leaves moved downwards to the roots and the stem below the treated leaf (lower stem). Later, during pod-fill, the upper leaves maintained this supply to the roots and lower stem, whilst most of the carbon translocated from the lower and mid-stem leaves went to the beans. However, we found no exclusive relationship between a leaf and the supply to beans developing on the same node.
The amount of radioactivity moving out of a source leaf at a fruiting node increased over successive samplings up to 48 h; the pattern of distribution of the 14CO2 however remained virtually unchanged.  相似文献   

13.
14.
Fruiting structures of a number of legumes including chickpea are known to carry out photosynthetic CO2 assimilation, but the pathway of CO2 fixation and particularly the role of phosphoenolpyruvate carboxylase (EC 4.1.1.31) in these tissues is not clear. Activities of some key enzymes of the Calvin cycle and C4 metabolism, rates of 14CO2 fixation in light and dark, and initial products of photosynthetic 14CO2 fixation were determined in podwall and seedcoat (fruiting structures) and their subtending leaf in chickpea (Cicer arietinum L.). Compared to activities of ribulose-1,5-bisphosphate carboxylase (EC 4.1.1.39) and other Calvin cycle enzyme, viz. NADP+-glyceraldehyde-3-phosphate dehydrogenase (EC 1.2.1.13), NAD+-glyceraldehyde-3-phosphate dehydrogenase (EC 1.2.1.12) and ribulose-5-phosphate kinase (EC 2.7.1.19), the levels of phosphoenolpyruvate carboxylase and other enzymes of C4 metabolism viz. NADP+-malate dehydrogenase (EC 1.1.1.82), NAD+-malate dehydrogenase (EC 1.1.1.37), NADP+ malic enzyme (EC 1.1.1.40), NAD+-malic enzyme (EC 1.1.1.39), glutamate oxaloacetate transaminase (EC 2.6.1.1) and glutamate pyruvate transaminase (EC 2.6.1.2), were generally much higher in podwall and seedcoat than in the leaf. Podwall and seedcoat fixed 14CO2 in light and dark at much higher rates than the leaf. Short-term assimilation of 14CO2 by illuminated fruiting structures produced malate as the major labelled product with less labelling in 3-phosphoglycerate, whereas the leaf showed a major incorporation into 3-phosphoglycerate. It seems likely that the fruiting structures of chickpea utilize phosphoenolpyruvate carboxylase for recapturing the respired carbon dioxide.  相似文献   

15.
The effects of drought stress and season on both allocation of photosynthates to stems and leaves and potential for stem rubber synthesis were studied in guayule ( Parthenium argentatum Gray USDA line 11604). Two-year-old plants grown under field conditions in the Negev desert of Israel were subjected to different irrigation regimes, and water status was assessed by measuring the relative water content (RWC). Undetached plant tips were exposed to a 1 h pulse of 14CO2, followed by a 24 h chase. 14C fixed and translocated to different plants parts and notably 14C incorporation into rubber and resin fractions was determined. The potential of detached branch slices to incorporate [14C]-acetate into rubber was also studied. A higher percentage of fixed 14C was translocated from shoot tips in winter (28–30%) than in summer (15–18%). The percentage of [14C]-acctate incorporated into the rubber fraction by stem slices was maximal in winter (20%) and minimal in summer (3–5%) in both cases in the absence of drought stress. In summer the translocation of photosynthates into stems was inversely related to plant RWC, dropping from 18% three days after irrigation to 3% 14 days later, and the potential of stems to synthesise rubber was high under drought conditions and low in well irrigated plants.  相似文献   

16.
17.
18.
19.
The photosynthetic rate of Lemna gibba was measured as 14CO2 uptake at the beginning of and after 1 h DCMU treatment during the separate excitation of PS I (703 nm), mainly PS II (662 nm) and the combined excitation of both photosystems (662 + 703 nm) in 2 and 21% oxygen. The results show the Warburg effect. Photosynthesis was significantly reduced by DCMU whenever PS II was excited, at 662 nm and 662 + 703 nm. Photosynthetic enhancement was greater in 21 than in 2% oxygen in both the treated and untreated plants.
Photorespiratory 14CO2 release was only affected by DCMU treatment at 662 + 703 nm. It was significantly decreased in 21% O2 and significantly increased in 2% O2 as compared to the controls without DCMU. The 14C-glycolate remaining in the plant after photosynthesis/photorespiration measurements was reduced whenever the electron supply to PS I was low.
These data support the hypothesis that a relationship exists between glycolate metabolism and photosynthesis via the electron transport chain where electrons from the oxidation of glycolate are donated to PS I when the electron supply from water is low.  相似文献   

20.
Abstract. An apparatus is described to carry out pulse and pulse-chase experiments with 14CO2 on intact, attached leaves with known, steady-state rates of photosynthesis under defined conditions of temperature, vapour pressure deficit and photon flux density. Data are presented which show that the pattern of distribution of 14C between compounds in extracts of such leaves is a true reflection of the pathways of photosynthetic carbon metabolism in the leaf during steady-state photosynthesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号