首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Most studies of the sexual behaviour of the Mediterranean fruit fly Ceratitis capitata Wiedemann 1824 (Tephritidae: Ceratitidini) have concentrated on determining which male characteristics influence their copulatory success and little is known about the female’s influence on this process. The present study investigated the influence of female size on the selection of different sized males. The experiments were undertaken using a colony maintained under laboratory conditions for 15 years with the frequent introduction of wild flies. Adults of different sizes (‘larger’ and ‘smaller’) were obtained by providing two groups of larvae with different concentrations of protein (7.0 g of yeast/100 ml of water = high protein content, 3.0 g of yeast/100 ml of water = low protein content). Mate choice tests were performed in a laboratory environment as well as in a field cage, with larger or smaller females being simultaneously exposed to larger and smaller males. The results indicated that in both the laboratory and field cage tests both larger and smaller females preferred mating with larger males. The data is discussed in terms of the possible advantages to the females associated with their choice of males with large body sizes.  相似文献   

2.
3.
Group displays in flamingos have been presumed to play a role in stimulating synchronous nesting and in facilitating pair formation. This study compares the group displays and breeding success of a captive flock of Caribbean flamingos (Phoenicopterus ruber ruber) at the National Zoological Park between 2 years: the frequency and synchrony of group displays were measured for a flock of 17 in 1988 and then again in 1989 after flock size was increased to 21. In 1989 the rate of occurrence of display activity increased 48%, the synchrony of group displays increased 100%, the frequency of mounts and copulations almost doubled, and for the first time in the flock's history two fertile eggs were produced. The use of sprinklers to simulate rain had no effect on the group displays. The amount of naturally occurring rainfall in 1989 was almost twice that in 1988. The increased frequency and synchrony of group displays could be attributed to increased flock size, change in sex ratio, addition of strange individuals, or increased rainfall. This study, however, provides evidence for a relationship between behavioral stimulation from group displays and components of breeding success in flamingos.  相似文献   

4.
Social interactions in animal groups can buffer environmental stress and may enhance survival under unfavourable conditions. In the present study, the impact on starvation endurance of social group, access to larvae and cold shock is studied in the ant Temnothorax nylanderi Förster. Resource sharing is expected to lead to grouped workers surviving longer than isolated ones. Access to larvae may increase longevity if larvae serve as food, or may interfere with survival if they induce caring behaviour in workers. Cold shock serves as a stress factor and a negative influence on survival is expected. The results show that isolated workers have a shorter lifespan than grouped workers, which in turn live for a shorter period than grouped workers with larvae. Beneficial ‘group effects’ contribute to group survival and the presence of larvae increases worker survival because the workers presumably feed on the larvae. Thus, improved starvation endurance may reflect an additional benefit of a social lifestyle. Moreover, variance in survival is lower for grouped workers than for isolated workers: group members not only demonstrate improved survival, but also smaller within‐group differences. Although a negative influence on survival is the expected outcome, this type of thermal stress is found to have no direct impact on starvation endurance other than moderating the differences between isolated and grouped workers.  相似文献   

5.
Tail biting in domestic pigs relates to a range of risk factors, primarily in the pigs’ environment. Preventive tail docking is widely used, and various experimental approaches suggest that docking reduces the risk of tail biting. However, whether the docking length affects the prevalence of tail biting outbreaks is less studied, as is how a shortened tail will affect pigs’ social behaviour. The aim of this study was to investigate how three different tail docking lengths, measured at docking, as well as retained intact tails (Short: 2.9 cm; Medium: 5.7 cm; Long: 7.5 cm; and Undocked) affected tail biting risk and behaviour directed at other finisher pigs with the same docking length treatment. Tail lesions were scored weekly, as was behaviour at pen level after introduction to finisher pens and until a potential outbreak of tail biting or slaughter. Pigs from four commercial herds (258 litters) entered the study. Before the pigs entered the finisher section and data collection started, some pigs were excluded, mainly due to tail biting outbreaks in the weaner section. The risk of a tail biting outbreak differed significantly between treatments (P=0.001), with a lowered risk of a tail biting outbreak in Short pens compared with Undocked (P<0.001) and Medium (P<0.05), and was affected by herd as well (P<0.001). Pens in the Long and Undocked treatments were pooled for the behavioural analysis due to low representation, especially in the Undocked treatment. The probability of tail contacts, where a pig interacted with a pen mate’s tail, differed between docking length treatments and was highest in the Long/Undocked compared with the Short treatment (P<0.01), but docking length did not affect aggressive behaviour. Docking length affected the risk of a tail biting outbreak and the frequency of tail-directed behaviour in our participating herds, of which three reported a high prevalence of tail biting problems. Only the shortest docking length treatment (Short) reduced the tail biting risk, but did not completely prevent tail biting outbreaks.  相似文献   

6.
Energy storage in arthropods has important implications for survival and reproduction. The lipid content of 276 species of adult arthropods with wet mass in the range 0.2–6.13 g is determined to assess how lipid mass scales with body mass. The relative contribution of lipids to total body mass is investigated with respect to phylogeny, ontogeny and sex. The lipid content of adult insects, arachnids, and arthropods in general shows an isometric scaling relationship with respect to body mass (M) (Marthropod lipid = ?1.09 ×Mdry1.01 and Marthropod lipid = ?1.00 ×Mlean0.98). However, lipid allocation varies between arthropod taxa, as well as with sex and developmental stage within arthropod taxa. Female insects and arachnids generally have higher lipid contents than males, and larval holometabolous insects and juvenile arachnids have higher lipid contents than adults.  相似文献   

7.
For young birds in a nest, body size may have implications for other aspects of development such as telomere length and immune function. However, it is possible to predict associations in either direction. On the one hand, there may be trade‐offs between growth and telomere maintenance, and growth and investment in immune function, suggesting there will be negative correlations. On the other hand, relatively larger individuals might be advantaged in competition with their nest‐mates, allowing them to garner more resources overall, leading to positive correlations. We studied development over the nestling period in 34 nests of wild European starlings, Sturnus vulgaris. Intrabrood competition is typically more intense in larger broods. Hence, we predicted that body size should become an increasingly positive predictor of telomere length and immune functioning as brood size increases. In partial support of our prediction, there were significant interactions between brood size and body size in predicting both erythrocyte telomere length change and plasma levels of the cytokine interleukin‐6. The associations between body size and these outcomes went from negative in the smallest broods to positive in the largest. A further immune marker, high‐sensitivity C‐reactive protein, showed no systematic patterning with body size or brood size. Our results confirm that the size to which a nestling grows is important for telomere dynamics and the development of the immune system, but the phenotypic associations are moderated by the competitive context.  相似文献   

8.
Sexual size dimorphism and sex ratios in dragonflies (Odonata)   总被引:1,自引:0,他引:1  
Sexual size dimorphism and biased sex ratios are common in animals. Rensch's rule states that sexual size dimorphism (SSD) would increase with body size in taxa where males are larger than females and decrease with body size in taxa where females are larger. We tested this trend in dragonflies (Odonata) by analysing body size of 21 species and found support for Rensch's rule. The increase in SSD with increasing size among species can be explained by sexual selection favouring large males. We also estimated the slope of the relationship between sex ratio and size ratio in populations of the 21 species. A negative slope would suggest that the larger sex suffers from high mortality in the larval stage, consistent with riskier foraging. The slope of this relationship was negative, but after correcting for phylogentic non-independence with independent contrasts the relationship was no longer statistically significant, perhaps because of phylogenic inertia or low sample size.  © 2005 The Linnean Society of London, Biological Journal of the Linnean Society , 2005, 86 , 507–513.  相似文献   

9.
Body size is important to most aspects of biology and is also one of the most labile traits. Despite its importance we know remarkably little about the proximate (developmental) factors that determine body size under different circumstances. Here, I review what is known about how cell size and number contribute to phenetic and genetic variation in body size in Drosophila melanogaster, several fish, and fruits and leaves of some angiosperms. Variation in resources influences size primarily through changes in cell number while temperature acts through cell size. The difference in cellular mechanism may also explain the differences in growth trajectories resulting from food and temperature manipulations. There is, however, a poorly recognized interaction between food and temperature effects that needs further study. In addition, flies show a sexual dimorphism in temperature effects with the larger sex responding by changes in cell size and the smaller sex showing changes in both cell size and number. Leaf size is more variable than other organs, but there appears to be a consistent difference between how shade-tolerant and shade-intolerant species respond to light level. The former have larger leaves via cell size under shade, the latter via cell number in light conditions. Genetic differences, primarily from comparisons of D. melanogaster, show similar variation. Direct selection on body size alters cell number only, while temperature selection results in increased cell size and decreased cell number. Population comparisons along latitudinal clines show that larger flies have both larger cells and more cells. Use of these proximate patterns can give clues as to how selection acts in the wild. For example, the latitudinal pattern in D. melanogaster is usually assumed to be due to temperature, but the cellular pattern does not match that seen in laboratory selection at different temperatures.  相似文献   

10.
In ants, workers of different sizes may perform various tasks, even in so-called monomorphic species with relatively low body size variation. However, it is unclear if the body size diversity of monomorphic workers correlates with task efficiency, especially in stressful contingencies. Here we tested if the body size variation of workers corresponds with its efficiency in transferring pupae. Transferring brood is a pre-set behavioral response to stress, e.g. suboptimal temperature. Here we applied a laboratory experiment simulating nest damage. The study was performed on the common garden ant (Lasius niger (Linnaeus, 1758)) – a species with no distinct worker subcastes. The efficiency of workers was measured as the latency of transferring pupae from a lit part of the experimental colony to a darkened part, while the body size diversity was expressed as the within-colony coefficient of variation in head width. We did not find any significant correlation between efficiency and body size variation. Summarizing the existing studies and the present results, we propose the hypothesis that the body size diversity of L. niger may have implications for workers’ division of labor but not for their task efficiency in a stressful contingency.  相似文献   

11.
Animals often search for food more efficiently with experience. However, the contribution of experience to foraging success under direct competition has rarely been examined. Here we used colonies of an individually foraging desert ant to investigate the value of spatial experience. First, we trained worker groups of equal numbers to solve either a complex or a simple maze. We then tested pairs of both groups against one another in reaching a food reward. This task required solving the same complex maze that one of the groups had been trained in, to determine which group would exploit better the food reward. The worker groups previously trained in the complex mazes reached the food reward faster and more of these workers fed on the food than those trained in simple mazes, but only in the intermediate size group. To determine the relative importance of group size versus spatial experience in exploiting food patches, we then tested smaller trained worker groups against larger untrained ones. The larger groups outcompeted the smaller ones, despite the latter's advantage of spatial experience. The contribution of spatial experience, as found here, appears to be small, and depends on group size: an advantage of a few workers of the untrained group over the trained group negates its benefits.  相似文献   

12.
As a classical example of a sexually selected trait, the horns of male bovids offer a prime opportunity to identify predictors of the intensity of sexual selection. Here I use the comparative method to quantify sexual and natural selection pressures behind interspecific variation in horn length. I show that male horn length depends on factors proposed to affect the mean mate number per mating male, correlating positively with group size and negatively with male territoriality. This suggests that whereas group size increases the opportunity for sexual selection, territoriality reduces it because territorial males are unable to follow and monopolize female groups as effectively as males in nonterritorial species. Sexual body size dimorphism also correlates positively with group size and negatively with territoriality, corroborating these factors as predictors of the intensity of sexual selection on males. Female horn length was unaffected by the factors related to mating system, suggesting that this trait is mainly under natural selection. Using female horn length as a proxy for forces of natural selection revealed a negative effect on male horn length. Thus where natural selection favors female horns, possibly as effective weapons against predators, a similar selection pressure on males might prevent them from evolving too elaborate horns through sexual selection. There was no correlation found between horn length and latitude, thus providing no support for the hypothesis that horns have a thermoregulatory function.  相似文献   

13.
This study tests the hypothesis that high species richness in small-bodied mammals results from higher speciation rates than in clades composed of large-bodied individuals. A right-skewed pattern is evident in size distributions of all mammal groups tested. Gaps between 100 g bins expand smoothly for the global mammal database. Less diverse mammal clades composed of large-sized individuals originated at relatively large size. Mechanisms promoting isolation and higher speciation rates in small mammals include the environmental mosaic, low absolute energy needs, small home range size, stenotopy, and intraspecific competition. A decline in diversity for the smallest size category in some clades suggests there is a lower limit in homoiotherms of about 1.5–2 g, possibly related to high metabolic rate and high surface area to volume ratio. Mammal size diversity from young Canadian ecosystems (≤19,000 years BP) is right-skewed, and diversity of species per unit area is approximately the same as for North America. Diversity and size distributions for mammals and select animal groups from southern Minnesota follow expected right-skewed patterns, suggesting the inverse relationship of body size and speciation rate is universal for complex metazoans. A logistic model is presented integrating γ and α diversity over evolutionary timescales.  相似文献   

14.
1. Annual insects are predicted to grow larger where the growing season is longer. However, transitions from one to two generations per year can occur when the season becomes sufficiently long, and are predicted to result in a sharp decrease in body size because available development time is halved. The potential for resulting saw‐tooth clines has been investigated only in solitary taxa with free‐living larvae. 2. Size clines were investigated in two socially polymorphic sweat bees (Halictidae): transitions between solitary and social nesting occur along gradients of increasing season length, characterised by the absence or presence of workers and offspring that are individually mass provisioned by adults. How the body size changes with season length was examined, and whether transitions in social phenotype generate saw‐tooth size clines. We measured Lasioglossum calceatum and Halictus rubicundus nest foundresses originating from more than 1000 km of latitude, encompassing the transition between social and solitary nesting. 3. Using satellite‐collected temperature data to estimate season length, it was shown that both species were largest where the season was longest. Body size increased linearly with season length in L. calceatum and non‐linearly in H. rubicundus but the existence of saw‐tooth clines was not supported. 4. The present results suggest that because the amount of food consumed by offspring during development is determined by adults, environmental and social influences on the provisioning strategies of adult bees may be more important factors than available feeding time in determining offspring body size in socially polymorphic sweat bees.  相似文献   

15.
Freshwater cyclopoid copepods exhibit at least a fivefold range in somatic genome size and a mechanism, chromatin diminution, which could account for much of this interspecific variation. These attributes suggest that copepods are well suited to studies of genome size evolution. We tested the nucleotypic hypothesis of genome size evolution, which poses that variation in genome size is adaptive due to the bulk effects of both coding and noncoding DNA on cell size and division rates, and their correlates. We found a significant inverse correlation between genome size and developmental (growth) rate in five freshwater cyclopoid species at three temperatures. That is, species with smaller genomes developed faster. Species with smaller genomes had significantly smaller bodies at 22 °C, but not at cooler and warmer temperatures. Species with smaller genomes developed faster at all three temperatures, but had smaller bodies only at 22 °C. We propose a model of life history evolution that adds genome size and cell cycle dynamics to the suite of characters on which selection may act to mold life histories and to influence the distribution of traits among different habitats.  相似文献   

16.
17.
We describe the allometry of body mass and body size as measured by hind-tibia length in males of Monoctonus paulensis (Ashmead) (Hymenoptera: Braconidae, Aphidiinae), a solitary parasitoid of aphids. To assess the influence of host quality on allometric relationships, we reared parasitoids on second and fourth nymphal instars of four different aphid species, Acyrthosiphon pisum (Harris), Macrosiphum creelii Davis, Myzus persicae (Sulzer) and Sitobion avenae (F.), under controlled conditions in the laboratory. Dry mass was positively correlated with hind-tibia length, and could be predicted from it, in unparasitized aphids, in aphid mummies containing parasitoid pupae, and in the parasitoid. The reduced-major-axis scaling exponents for the regression of dry mass on hind-tibia length were species-specific in aphids, reflecting differences in volume and shape between species. In mummified aphids, the stage at death influenced the size/mass relationship. In males of M. paulensis, the allometric exponent varied between parasitoids developing in different kinds of host. Individuals developing in pea aphid were absolutely larger in dry mass as well as proportionately larger relative to their hind-tibia length. We discuss the allometry of body size and body mass in relation to parasitoid fitness.  相似文献   

18.
Variation in substrate association types and maximum size of aquatic insects were studied in a vegetated littoral zone of three lake basins. The basins differed from each other in trophic status, biomass of benthivorous fish, and abundance of macrophytes. Four types of substrate association – swimmers, crawlers, semisessiles and burrowers, respectively – were assumed to represent decreasing vulnerability to fish predators. Large-sized species were also hypothesised to be more vulnerable to fish predators. The distributions of species traits were examined in relation to vegetation density. Inferring from ``predation hypothesis' opposite selection pressures on the species traits were expected along the vegetation density. Dense macrophyte beds were thought to be dominated by invertebrate predators and open water by fish predators, since the predation efficiency of fish decreases in complex environments. In the case of invertebrate predator domination, large size and higher activity should be favoured traits among the prey species. Distribution patterns of modes of the two studied traits were explored separately for predatory and non-predatory insects. As expected, swimmers and large-sized crawlers were characteristic of the insect assemblages of dense macrophyte beds. The densities of Odonata, Corixidae, Dytiscidae, Ephemeroptera and Sialidae were higher among macrophytes than in open water, where these insect taxa were possibly depleted by fish. On the other hand, the small-sized and fairly immobile Chironomidae were the most abundant group in open water. These results support the existence of a predator transition zone among littoral vegetation, ranging from domination of invertebrate predation among the dense beds to that of fish predation in open water.  相似文献   

19.
Individuals of the genus Jaera do not mate at random. In the species from the Mediterranean group, J. italica and. J. nordmanni, large males and medium sized females are at an advantage and their sizes are positively assorted. These effects are attributable to sexual competition between males. In the Ponlo-caspian species J. istri, no advantage of large males exists, but sexual selection could be the cause for a long passive phase prior to copulation and for normalizing selection upon female size at pairing. In the Atlantic species, J. albifrons, no selection can be ascertained.
Differential mating success in males appears as one of the causes of the evolution of sexual dimorphism in body size, which makes males larger, of equal size, or smaller than females according to the species. The reason for this reversal in dimorphism seems to differ in the two sexes. Sexual selection provides an explanation for the evolution of male size, while the interspecific changes in female length are more likely due to ecological factors.  相似文献   

20.
Overall, large animals dive longer and deeper than small animals; however, after the difference in body size is taken into account, smaller divers often tend to make relatively longer dives. Neither physiological nor theoretical explanations have been provided for this paradox. This paper develops an optimal foraging diving model to demonstrate the effect of body size on diving behaviour, and discusses optimal diving behaviour in relation to body size. The general features of the results are: (1) smaller divers should rely more heavily on anaerobic respiration, (2) larger divers should not always make longer dives than smaller divers, and (3) an optimal body size exists for each diving depth. These results explain the relatively greater diving ability observed in smaller divers, and suggest that if the vertical distribution of prey in the water column is patchy, there is opportunity for a population of diving animals to occupy habitat niches related to body size.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号