首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Human immunodeficiency virus type 1 (HIV-1) protease (PR) and p6(Pol) are translated as part of the Gag-Pol polyprotein after a ribosomal frameshift. PR is essential to virus replication and is responsible for cleaving Gag and Gag-Pol precursors, but the role of p6(Pol) in HIV-1 infection is poorly understood. Here, we report that (i) PR is present in mature HIV-1 virions primarily as a p6(Pol)-PR fusion protein; (ii) HIV-1 PR cleaves viral precursor proteins expressed in bacterial cells at the Phe-Leu bond (positions 1639 to 1642) located at the junction of the NC and p6(Pol) proteins, releasing the p6(Pol)-PR fusion protein; and (iii) purified p6(Pol)-PR fusion protein undergoes autocleavage in vitro at at least three sites.  相似文献   

2.
3.
Human immunodeficiency virus type 1 (HIV-1) Gag and the cellular protein cyclophilin A form an essential complex in the virion core: virions produced by proviruses encoding Gag mutants with decreased cyclophilin A affinity exhibit attenuated infectivity, as do virions produced in the presence of the competitive inhibitor cyclosporine. The A224E Gag mutant has no effect on cyclophilin A affinity but renders HIV-1 replication cyclosporine resistant in Jurkat T cells. In contrast, A224E mutant virus is dead in H9 T cells, although replication is rescued by cyclosporine or by expression in cis of a Gag mutant that decreases cyclophilin A-affinity. The observation that disruption of the Gag-cyclophilin A interaction rescues A224E mutant replication in H9 cells prompted experiments which revealed that, relative to Jurkat cells, H9 cells express greater quantities of cyclophilin A. The resulting larger quantity of cyclophilin A shown to be packaged into virions produced by H9 cells is presumably disruptive to the A224E mutant virion core. Further evidence that increased cyclophilin A expression in H9 cells is of functional relevance was provided by the finding that Gag mutants with decreased cyclophilin A affinity are dead in Jurkat cells but capable of replication in H9 cells. Similarly, cyclosporine concentrations which inhibit wild-type HIV-1 replication in Jurkat cells stimulate HIV-1 replication in H9 cells. These results suggest that HIV-1 virion infectivity imposes narrow constraints upon cyclophilin A stoichiometry in virions and that infectivity is finely tuned by host cyclophilin A expression levels.  相似文献   

4.
X Yu  X Yuan  Z Matsuda  T H Lee    M Essex 《Journal of virology》1992,66(8):4966-4971
Accumulating evidence suggests that the matrix (MA) protein of retroviruses plays a key role in virus assembly by directing the intracellular transport and membrane association of the Gag polyprotein. In this report, we show that the MA protein of human immunodeficiency virus type 1 is also critical for the incorporation of viral Env proteins into mature virions. Several deletions introduced in the MA domain (p17) of human immunodeficiency virus type 1 Gag polyprotein did not greatly affect the synthesis and processing of the Gag polyprotein or the formation of virions. Analysis of the viral proteins revealed normal levels of Gag and Pol proteins in these mutant virions, but the Env proteins, gp120 and gp41, were hardly detectable in the mutant virions. Our data suggest that an interaction between the viral Env protein and the MA domain of the Gag polyprotein is required for the selective incorporation of Env proteins during virus assembly. Such an interaction appears to be very sensitive to conformational changes in the MA domain, as five small deletions in two separate regions of p17 equally inhibited viral Env protein incorporation. Mutant viruses were not infectious in T cells. When mutant and wild-type DNAs were cotransfected into T cells, the replication of wild-type virus was also hindered. These results suggest that the incorporation of viral Env protein is a critical step for replication of retroviruses and can be a target for the design of antiviral strategies.  相似文献   

5.
6.
7.
B Yuan  X Li    S P Goff 《The EMBO journal》1999,18(17):4700-4710
The p12 Gag protein of Moloney murine leukemia virus is a small polypeptide of unknown function, containing two proline-rich motifs. To determine its role in replication, we introduced a series of deletion and alanine-scanning substitution mutations throughout the p12 coding region of a proviral DNA, and characterized the phenotypes of the resulting mutant viruses. Complete deletion of p12 and mutations affecting the PPPY motif caused substantial reduction in the yield of virions and a modest reduction in Gag processing. Proteolytic cleavage of the R-peptide from the cytoplasmic tail of the envelope protein TM was abolished in these mutants, suggesting that the PPPY motif is crucial for the viral protease to access the TM tail. The resulting virions were non-infectious, and unable to initiate DNA synthesis in infected cells. Mutants with alterations in both the N- and C-terminal portions of p12 exhibited a distinct phenotype. The production of virions and processing of Gag, Pol and Env precursors were normal. The viruses were able to direct synthesis of linear viral DNA, but there was almost no detectable circular DNAs or LTR-LTR junction. These data suggest that p12 plays a critical role in the early events of the virus life cycle.  相似文献   

8.
Gan X  Gould SJ 《PloS one》2012,7(1):e29421
The prevailing hypothesis of HIV budding posits that the viral Gag protein drives budding, and that the Gag p6 peptide plays an essential role by recruiting host-cell budding factors to sites of HIV assembly. HIV also expresses a second Gag protein, p160 Gag-Pol, which lacks p6 and fails to bud from cells, consistent with the prevailing hypothesis of HIV budding. However, we show here that the severe budding defect of Gag-Pol is not caused by the absence of p6, but rather, by the presence of Pol. Specifically, we show that (i) the budding defect of Gag-Pol is unaffected by loss of HIV protease activity and is therefore an intrinsic property of the Gag-Pol polyprotein, (ii) the N-terminal 433 amino acids of Gag and Gag-Pol are sufficient to drive virus budding even though they lack p6, (iii) the severe budding defect of Gag-Pol is caused by a dominant, cis-acting inhibitor of budding in the HIV Pol domain, and (iv) Gag-Pol inhibits Gag and virus budding in trans, even at normal levels of Gag and Gag-Pol expression. These and other data support an alternative hypothesis of HIV budding as a process that is mediated by the normal, non-viral pathway of exosome/microvesicle biogenesis.  相似文献   

9.
Lee EG  Linial ML 《Journal of virology》2008,82(21):10803-10810
Foamy viruses (FV) differ from orthoretroviruses in many aspects of their replication cycle. A major difference is in the mode of Pol expression, regulation, and encapsidation into virions. Orthoretroviruses synthesize Pol as a Gag-Pol fusion protein so that Pol is encapsidated into virus particles through Gag assembly domains. However, as FV express Pol independently of Gag from a spliced mRNA, packaging occurs through a distinct mechanism. FV genomic RNA contains cis-acting sequences that are required for Pol packaging, suggesting that Pol binds to RNA for its encapsidation. However, it is not known whether Gag is directly involved in Pol packaging. Previously our laboratory showed that sequences flanking the three glycine-arginine-rich (GR) boxes at the C terminus of FV Gag contain domains important for RNA packaging and Pol expression, cleavage, and packaging. We have now shown that both deletion and substitution mutations in the first GR box (GR1) prevented neither the assembly of particles with wild-type density nor packaging of RNA genomes but led to a defect in Pol packaging. Site-directed mutagenesis of GR1 indicated that the clustered positively charged amino acids in GR1 play important roles in Pol packaging. Our results suggest that GR1 contains a Pol interaction domain and that a Gag-Pol complex is formed and binds to RNA for incorporation into virions.  相似文献   

10.
11.
Jin S  Chen C  Montelaro RC 《Journal of virology》2005,79(14):8793-8801
We have previously reported that serial truncation of the Gag p9 protein of equine infectious anemia virus (EIAV) revealed a progressive loss in replication phenotypes in transfected cells, such that a proviral mutant (E32) expressing the N-terminal 31 amino acids of p9 produced infectious virus particles similarly to parental provirus, while a proviral mutant (K30) with two fewer amino acids produced replication-defective virus particles, despite containing apparently normal levels of processed Gag and Pol proteins (C. Chen, F. Li, and R. C. Montelaro, J. Virol. 75:9762-9760, 2001). Based on these observations, we sought in the current study to identify the precise defect in K30 virion infection of permissive equine dermal (ED) cells. The results of these experiments clearly demonstrated that K30 virions entered target ED cells and produced early (minus-strand strong-stop) and late (Gag) viral DNA products as efficiently as did the replication-competent E32 mutant and parental EIAV(UK) viruses. However, in contrast to the replication-competent E32 mutant and parental viruses, infection with K30 mutant virus failed to produce detectable two-long-terminal-repeat DNA circles, stable integrated provirus, virus-specific Gag mRNA expression, or intracellular viral protein expression. Taken together, these data demonstrate that the K30 mutant is defective in the ability to produce sufficient nuclear viral DNA to establish a productive infection in ED cells. Thus, these observations indicate for the first time that the EIAV Gag p9 protein performs a critical role in viral DNA production and processing to provirus during EIAV infection, in addition to its previously defined role in viral budding mediated by the p9 L domain.  相似文献   

12.
13.
X Wu  H Liu  H Xiao  J A Conway    J C Kappes 《Journal of virology》1996,70(6):3378-3384
The human immunodeficiency virus type I (HIV-1) Vpr and HIV-2 Vpx proteins package into virions through interactions with their cognate Gag polyprotein precursor. The targeting properties of Vpr and Vpx have been exploited to incorporate foreign proteins into virions by expression as heterologous fusion molecules (X. Wu, H.-M. Liu, H. Xiao, J. Kim, P. Seshaiah, G. Natsoulis, J. D. Boeke, B. H. Hahn, and J. C. Kappes, J. Virol. 69:3389-3398, 1995). To explore the possibility of utilizing Vpx and Vpr to target dominant negative mutants of the HIV Pol proteins into virions, we fused HIV-2 Vpx with an enzymatically defective protease (PR) mutant. Using a vector system to facilitate transient coexpression with HIV provirus, Vpx-PR-mutant (VpxPR(M)) fusion protein was expressed and packaged efficiently into HIV-2 and simian immunodeficiency virus virions. Immunoblot analysis of purified virions demonstrated that the packaging of VpxPR(M) interfered with the processing of the Gag and Gag/Pol precursor proteins, similar to that of a well-characterized active-site PR inhibitor. The incomplete processing of Gag and Gag/Pol was consistent with a 25-fold reduction in virion infectivity. The coexpression of a packaging defective VpxPR(M) fusion protein with HIV-2 provirus produced virions with fully processed Gag protein, similar to wild-type virions. Importantly, virions trans complemented with a Vpx-chloramphenicol acetyltransferase fusion protein were normal with respect to the processing of Gag protein and the ability to infect and replicate in vitro. These results indicate that VpxPR(M) specifically inhibited the function of the viral protease and provide for the first time proof of principle that the incorporation of foreign proteins into virions via fusion with Vpx can inhibit HIV replication. The use of accessory proteins as vehicles to deliver deleterious proteins to virions, including dominant negative mutants of Pol proteins, may provide new opportunities for application of gene therapy-based antiretroviral strategies. The ability to package PR by expression in trans, independent of the Gag/Pol precursor, also represents a novel approach that may be exploited to study the function of the Pol proteins.  相似文献   

14.
15.
16.
The human immunodeficiency virus type 1 (HIV-1) protease (PR) has recently been shown to be inhibited by its propeptide p6* in vitro. As p6* itself is a PR substrate, the primary goal of this study was to determine the importance of p6* cleavage for HIV-1 maturation and infectivity. For that purpose, short peptide variants mimicking proposed cleavage sites within and flanking p6* were designed and analyzed for qualitative and quantitative hydrolysis in vitro. Proviral clones comprising the selected cleavage site mutations were established and analyzed for Gag and Pol processing, virus maturation, and infectivity in cultured cells. Amino-terminal cleavage site mutation caused aberrant processing of nucleocapsid proteins and delayed replication kinetics. Blocking the internal cleavage site resulted in the utilization of a flanking site at a significantly decreased hydrolysis rate in vitro, which however did not affect Gag-Pol processing and viral replication. Although mutations blocking cleavage at the p6* carboxyl terminus yielded noninfectious virions exhibiting severe Gag processing defects, mutations retarding hydrolysis of this cleavage site neither seemed to impact viral infectivity and propagation in cultured cells nor seemed to interfere with overall maturation of released viruses. Interestingly, these mutants were shown to be clearly disadvantaged when challenged with wild-type virus in a dual competition assay. In sum, we conclude that p6* cleavage is absolutely essential to allow complete activation of the PR and subsequent processing of the viral precursors.  相似文献   

17.
18.
Y Xiang  C E Cameron  J W Wills    J Leis 《Journal of virology》1996,70(8):5695-5700
The p2 region of the Rous sarcoma virus (RSV) Gag polyprotein contains an assembly domain, which is required late in replication for efficient budding of virus-like particles from cells (J. W. Wills, C. E. Cameron, C. B. Wilson, Y. Xiang, R. P. Bennett, and J. Leis, J. Virol. 68:6605-6618, 1994). This domain, referred to as the L domain, was previously mapped to the 11 amino acids of p2b. Through the analysis of a series of deletion and substitution mutations, the L domain has now been fine mapped to a highly conserved amino acid sequence, PPPPYV of p2b. Sequences flanking PPPPYV motif can be deleted without any effect on budding. Defects caused by L-domain deletions can be rescued by placing a wild-type copy of the sequence at several other positions in RSV Gag. A proline-rich P(S/T)APP motif is found in many retroviral Gag polyproteins; the motif found in the p6 region of human immunodeficiency virus type 1 has been implicated in late functions of the virus. Substitution of the RSV L domain with this motif in a 10-amino-acid sequence derived from visna leukemia virus results in wild-type release of virus particles from cells. In contrast, the slightly different sequences from Gibbon ape leukemia virus, Moloney leukemia virus, PSAPP alone, or a proline-rich SH3 binding sequence do not efficiently rescue RSV L-domain mutations.  相似文献   

19.
20.
Highly conserved amino acids in the second helix structure of the human immunodeficiency virus type 1 (HIV-1) MA protein were identified to be critical for the incorporation of viral Env proteins into HIV-1 virions from transfected COS-7 cells. The effects of these MA mutations on viral replication in the HIV-1 natural target cells, CD4+ T lymphocytes, were evaluated by using a newly developed system. In CD4+ T lymphocytes, mutations in the MA domain of HIV-1 Gag also inhibited the incorporation of viral Env proteins into mature HIV-1 virions. Furthermore, mutations in the MA domain of HIV-1 Gag reduced surface expression of viral Env proteins in CD4+ T lymphocytes. The synthesis of gp160 and cleavage of gp160 to gp120 were not significantly affected by MA mutations. On the other hand, the stability of gp120 in MA mutant-infected cells was significantly reduced compared to that in the parental wild-type virus-infected cells. These results suggest that functional interaction between HIV-1 Gag and Env proteins is not only critical for efficient incorporation of Env proteins into mature virions but also important for proper intracellular transport and stable surface expression of viral Env proteins in infected CD4+ T lymphocytes. A single amino acid substitution in MA abolished virus infectivity in dividing CD4+ T lymphocytes without significantly affecting virus assembly, virus release, or incorporation of Gag-Pol and Env proteins, suggesting that in addition to its functional role in virus assembly, the MA protein of HIV-1 also plays an important role in other steps of virus replication.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号