首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The long-range apparent diffusion coefficient (LRADC) of (3)He gas in lungs, measured over times of several seconds and distances of 1-3 cm, probes the connections between the airways. Previous work has shown the LRADC to be small in health and substantially elevated in emphysema, reflecting tissue destruction, which is known to create collateral pathways. To better understand what controls LRADC, we report computer simulations and measurements of (3)He gas diffusion in healthy lungs. The lung is generated with a random algorithm using well-defined rules, yielding a three-dimensional set of nodes or junctions, each connected by airways to one parent node and two daughters; airway dimensions are taken from published values. Spin magnetization in the simulated lung is modulated sinusoidally, and the diffusion equation is solved to 1,000 s. The modulated magnetization decays with a time constant corresponding to an LRADC of approximately 0.001 cm(2)/s, which is smaller by a factor of approximately 20 than the values in healthy lungs measured here and previously in vivo and in explanted lungs. It appears that collateral gas pathways, not present in the simulations, are functional in healthy lungs; they provide additional and more direct routes for long-range motion than the canonical airway tree. This is surprising, inasmuch as collateral ventilation is believed to be physiologically insignificant in healthy lungs. We discuss the effect on LRADC of small collateral connections through airway walls and rule out other possible mechanisms. The role of collateral paths is supported by measurements of smaller LRADC in pigs, where collateral ventilation is known to be smaller.  相似文献   

2.
Washout of insoluble inert test gases of different diffusivity (He and SF6 or He and Ar) from dog lungs was studied during high-frequency ventilation (HFV). Test gas equilibrium and subsequent washout were performed with HFV, succeeding measurements being performed at different stroke volumes (1.5-2.5 ml/kg body wt), oscillation frequencies (10-30 Hz), and with different lung volumes (32-74 ml X kg-1). Test gas concentrations were continuously measured by a mass spectrometer. The time course of washout could be described as the sum of two exponentials. There were no consistent differences in the time courses of washout between He and SF6 or between He and Ar. It is concluded that gas mixing in the airways during HFV is not significantly limited by diffusion, and this is suggested to apply during HFV to steady-state transport of respiratory gases (e.g., O2 and CO2) as well as to the transient state of inert gas washout.  相似文献   

3.
The apparent diffusion coefficients (ADCs) of hyperpolarized (3)He and (129)Xe gases were measured in the lungs of rabbits with elastase-induced emphysema and correlated against the mean chord length from lung histology. In vivo measurements were performed at baseline and 2, 4, 6, and 8 wk after instillation of elastase (mild and moderate emphysema groups) or saline (control group). ADCs were determined from acquisitions that used two b values. To investigate the effect of b value on the results, b-value pairs of 0 and 1.6 s/cm(2) and 0 and 4.0 s/cm(2) were used for (3)He, and b-value pairs of 0 and 5.0 s/cm(2) and 0 and 10.0 s/cm(2) were used for (129)Xe. At 8 wk after instillation, the rabbits were euthanized, and the lungs were analyzed histologically and morphometrically. ADCs for the rabbits in the control group did not change significantly from baseline to week 8, whereas ADCs for the rabbits in the emphysema groups increased significantly (P < 0.05) for all gas and b-value combinations except (129)Xe with the b-value pair of 0 and 5.0 s/cm(2). The largest percent change in mean ADC from baseline to week 8 (15.3%) occurred with (3)He and the b-value pair of 0 and 1.6 s/cm(2) for rabbits in the moderate emphysema group. ADCs (all b values) were strongly correlated (r = 0.62-0.80, P < 0.001) with mean chord lengths from histology. These results further support the ability of diffusion-weighted MRI with hyperpolarized gases to detect regional and global structural changes of emphysema within the lung.  相似文献   

4.
Convective mixing in human respiratory tract: estimates with aerosol boli   总被引:1,自引:0,他引:1  
Convective gas mixing in the respiratory tract of 17 healthy male subjects was studied by an aerosol bolus technique. The monodisperse 1 micron di(2-ethylhexyl)sebacate droplets we used behaved as a nondiffusing gas. As the bolus was inspired to different depths and then expired, we measured the extent to which the bolus spread. We found that the deeper the bolus penetrated into the lungs, the more it became dispersed. The half-width of the expired bolus was a linear function of the volume to which the bolus penetrated at volumetric penetrations of 100-800 cm3. This suggests that convective mixing is not confined to central airways but can also occur in the lung periphery.  相似文献   

5.
We partitioned pulmonary resistance (RL) in excised normal, senile, and emphysematous human lungs at various distending pressures; peripheral resistance (Rp) was measured by means of retrograde catheters and lung tissue resistance (Rti) by means of pleural capsules. By subtracting Rp from RL and Rti from Rp, we obtained, respectively, central (Rcaw) and peripheral (Rpaw) airway resistance. We determined also lung volumes, the elastic recoil pressure-volume curve, and the forced expiratory volume in 1 s-to-vital capacity ratio (FEV1/VC). The functional data were related to morphometry: mean linear intercept (Lm), diameter (d), and density (n/cm2) of membranous bronchioles. In the three groups of lungs, Rti demonstrates a marked negative frequency dependence and increases with transplumonary pressure. In emphysematous lungs, the increase of RL is mainly due to an increase of Rpaw; in addition, Rcaw and Rti are higher than normal. In the group of senile lungs, airway resistances are within normal range, but Rti is slightly increased. FEV1/VC is related to Rpaw and elastic recoil pressure; Rpaw is related to d and n/cm2, and Rti is related to dynamic elastance and to Lm.  相似文献   

6.
Subpleural concentrations of He and SF6 were measured during multiple-breath washouts from isolated dog lungs. Tidal volume, inspiratory flow, and frequency were in the normal range of canine ventilation. For each gas, there was a local minimum in concentration during inspiration (Cinsp) and a local maximum in concentration during exhalation (Cexp). SF6 exhibited a deeper inspiratory trough than He for each breath of every washout. For large tidal volumes (10-20 ml/kg), Cexp approximated a single exponential decay and He was cleared more rapidly than SF6. For small tidal volumes (2.5 ml/kg), Cexp was multiexponential and SF6 was cleared more rapidly than He. Cinsp/Cexp (a measure of the depth of the inspiratory trough) and the kinetics of Cexp decay were determined for washouts using a tidal volume of 10 and 20 ml/kg and different inspiratory flows. Under all conditions, an increase of inspiratory flow resulted in a deeper inspiratory trough for both He and SF6. For washouts using 10 ml/kg and 60 breaths/min, an increase of inspiratory flow increased the clearance of both gases. In washouts using lower ventilatory frequencies, gas clearance was independent of inspiratory flow. These findings are contrary to predictions of contemporary models of convection and diffusion in the lung. This study suggests that convective axial mixing and radial diffusion in the airways are important determinants of pulmonary gas transport.  相似文献   

7.
Despite a long history of development, diagnostic tools for in vivo regional assessment of lungs in patients with pulmonary emphysema are not yet readily available. Recently, a new imaging technique, in vivo lung morphometry, was introduced by our group. This technique is based on MRI measurements of diffusion of hyperpolarized (3)He gas in lung air spaces and provides quantitative in vivo tomographic information on lung microstructure at the level of the acinar airways. Compared with standard diffusivity measurements that strongly depend on pulse sequence parameters (mainly diffusion time), our approach evaluates a "hard number," the average acinar airway radius. For healthy dogs, we find here a mean acinar airway radius of approximately 0.3 mm compared with 0.36 mm in healthy humans. The purpose of the present study is the application of this technique for quantification of emphysema progression in dogs with experimentally induced disease. The diffusivity measurements and resulting acinar airway geometrical characteristics were correlated with the local lung density and local lung-specific air volume calculated from quantitative computed tomography data obtained on the same dogs. The results establish an important association between the two modalities. The observed sensitivity of our method to emphysema progression suggests that this technique has potential for the diagnosis of emphysema and tracking of disease progression or improvement via a pharmaceutical intervention.  相似文献   

8.
The significance of convective and diffusive gas transport in the respiratory system was assessed from the response of combined inert gas and particle boluses inhaled into the conducting airways. Particles, considered as "nondiffusing gas," served as tracers for convection and two inert gases with widely different diffusive characteristics (He and SF6) as tracers for convection and diffusion. Six-milliliter boluses labeled with monodisperse di-2-ethylhexyl sebacate droplets of 0.86-microns aerodynamic diameter, 2% He, and 2% SF6 were inspired by three anesthetized mechanically ventilated beagle dogs to volumetric lung depths up to 170 ml. Mixing between inspired and residual air caused dispersion of the inspired bolus, which was quantified in terms of the bolus half-width. Dispersion of particles increased with increasing lung depth to which the boluses were inhaled. The increase followed a power law with exponents less than 0.5 (mean 0.39), indicating that the effect of convective mixing per unit volume was reduced with depth. Within the pulmonary dead space, the behavior of the inert gases He and SF6 was similar to that of the particles, suggesting that gas transport was almost solely due to convection. Beyond the dead space, dispersion of He and SF6 increased more rapidly than dispersion of particles, indicating that diffusion became significant. The gas and particle bolus technique offers a suitable approach to differential analysis of gas transport in intrapulmonary airways of lungs.  相似文献   

9.
Values for the effective axial diffusivity D for laminar flow of a gas species in the bronchial airways have been obtained as a function of the mean axial gas velocity u by experiment measurements of benzene vapor dispersion in a five generation glass tube model of the bronchial tree. For both inspiration and expiration D is seen to be approximately a linear function of u over the range of Reynolds' numbers 30-2,000 corresponding to peak flows in bronchial generations 0-13 under resting breathing conditions. The diffusivity for expiration is seen to be approximately one-third that for inspiration due presumably to increased radial mixing at bifurcations during expiration. The effective diffusivities relative to the molecular diffusivity can be expressed by the formulas D/Dmol = 1 + 1.08 NPe for inspiration and D/Dmol = 1 + .37 N-Pe for expiration. These velocity dependent diffusivities help to explain the short transit times of gas boluses from mouth to alveoli and will aid in the analysis of airway gas mixing by mathematical transport equations.  相似文献   

10.

Background

Copper is an important regulator of hypoxia inducible factor 1 alpha (HIF-1α) dependent vascular endothelial growth factor (VEGF) expression, and is also required for the activity of lysyl oxidase (LOX) to effect matrix protein cross-linking. Cell detachment from the extracellular matrix can induce apoptosis (anoikis) via inactivation of focal adhesion kinase (FAK).

Methodology

To examine the molecular mechanisms whereby copper depletion causes the destruction of the normal alveolar architecture via anoikis, Male Sprague-Dawley rats were fed a copper deficient diet for 6 weeks while being treated with the copper chelator, tetrathiomolybdate. Other groups of rats were treated with the inhibitor of auto-phosphorylation of FAK, 1,2,4,5-benzenetetraamine tetrahydrochloride (1,2,4,5-BT) or FAK small interfering RNA (siRNA).

Principal Findings

Copper depletion caused emphysematous changes, decreased HIF-1α activity, and downregulated VEGF expression in the rat lungs. Cleaved caspase-3, caspase-8 and Bcl-2 interacting mediator of cell death (Bim) expression was increased, and the phosphorylation of FAK was decreased in copper depleted rat lungs. Administration of 1,2,4,5-BT and FAK siRNA caused emphysematous lung destruction associated with increased expression of cleaved capase-3, caspase-8 and Bim.

Conclusions

These data indicate that copper-dependent mechanisms contribute to the pathogenesis of emphysema, which may be associated with decreased HIF-1α and FAK activity in the lung.  相似文献   

11.

Background

Alveolar apoptosis is increased in the emphysematous lung. However, mechanisms involved are not fully understood. Recently, we demonstrated that levels of TRAIL receptor 1 and 2, levels of p53, and Bax/Bcl-xL ratio were elevated in the lung of subjects with emphysema, despite smoking cessation. Thus, we postulate that due to chronic pulmonary oxidative stress, the emphysematous lung would be abnormally sensitive to TRAIL-mediated apoptosis.

Methodology

A549 cells were exposed to rTRAIL, cigarette smoke extract, and/or H2O2 prior to caspase-3 activity measurement and annexin V staining assessment. In addition, freshly resected lung samples were obtained from non-emphysematous and emphysematous subjects and exposed ex vivo to rTRAIL for up to 18 hours. Lung samples were harvested and levels of active caspase-3 and caspase-8 were measured from tissue lysates.

Results

Both cigarette smoke extract and H2O2 were able to sensitize A549 cells to TRAIL-mediated apoptosis. Moreover, following exposure to rTRAIL, caspase-3 and -8 were activated in lung explants from emphysematous subjects while being decreased in lung explants from non-emphysematous subjects.

Significance of the study

Alveolar sensitivity to TRAIL-mediated apoptosis is strongly increased in the emphysematous lung due to the presence of oxidative stress. This might be a new mechanism leading to increased alveolar apoptosis and persistent alveolar destruction following smoking cessation.  相似文献   

12.
The elastic behavior of postmortem human lungs has been studied in an effort to differentiate the effects of normal aging from those of mild emphysema. Static pressure-volume (P-V) curves were measured in 50 lungs obtained from men 15-85 yr of age, including 12 lungs with mild-to-moderate emphysema. The emphysema was quantitatively assessed by gross and microscopic methods. The P-V relationship in all lungs is accurately described by the empirically fitted equation, P = alpha1ea2v. This expression is useful because the two parameters separate the effects of elastic behavior (alpha1) from size (alpha2) on the P-V curve. There is a close negative correlation (R = -0.94) Between age and alpha1 in normal lungs but no significant age dependence of alpha2. Further decreases in alpha1 are found in most emphysematous lungs. Alpha1 is more than 2 SEE below the age-predicted mean in five of nine lungs with minimal emphysema (1-10% by point count) and more than 5 SEE below the mean in the three more severely affected lungs. There is a close correlation (R = +0.90) between alpha1 and the alveolar surface-to-volume ratio in both normal and emphysematous lungs.  相似文献   

13.
To facilitate the study of respiratory wheezes in an animal lung model, an isovolume, constant-flow excised dog lung preparation was developed. Dog lungs were inflated to 26 +/- 4 cmH2O and coated with layers of epoxy glue and polyester compound. A rigid shell 2 mm thick was obtained around the entire pleural surface and the extra-pulmonary airways. The adhesive forces between the pleura and the shell were strong enough to hold the lung distended after the inflation pressure was removed. Holes 2 mm diam were drilled through the shell over one of the lung lobes in an array, 4 cm across. The holes penetrated the pleural surface, so that constant flow could be maintained in the expiratory direction by activating a suction pump connected to the trachea. Downstream suction pressure and flow rate were measured with a mercury manometer and a rotameter, respectively. Sounds were recorded by a small (0.6 cm OD) microphone inserted into the trachea. When suction pressure was increased, flow initially increased to 31 +/- 3 l/min. Further increase of suction pressure caused only very slight additional increase in flow (i.e., flow limitation). During this plateau of flow, a pure tone was generated with acoustic properties similar to respiratory wheezes. Both the flow plateau and the wheezing sounds could be eliminated by freezing the lungs. It is concluded that wheezing sounds were associated with flow limitation in this preparation. It is suggested that the stable acoustic properties obtained by this preparation may become useful in the analysis of mechanisms of wheezing lung sounds generation.  相似文献   

14.
This study measured transit time (TT) and attenuation of sound transmitted through six pairs of excised pig lungs. Single-frequency sounds (50-600 Hz) were applied to the tracheal lumen, and the transmitted signals were monitored on the tracheal and lung surface using microphones. The effect of varying intrapulmonary pressure (Pip) between 5 and 25 cmH(2)O on TT and sound attenuation was studied using both air and helium (He) to inflate the lungs. From 50 to approximately 200 Hz, TT decreased from 4.5 ms at 50 Hz to 1 ms at 200 Hz (at 25 cmH(2)O). Between approximately 200 and 600 Hz, TT was relatively constant (1.1 ms at upper and 1.5 ms at lower sites). Gas density had very little effect on TT (air-to-He ratio of approximately 1.2 at upper sites and approximately 1 at lower sites at 25 cmH(2)O). Pip had marked effects (depending on gas and site) on TT between 50 and 200 Hz but no effect at higher frequencies. Attenuation was frequency dependent between 50 and 600 Hz, varying between -10 and -35 dB with air and -2 and -28 dB with He. Pip also had strong influence on attenuation, with a maximum sensitivity of 1.14 (air) and 0.64 dB/cmH(2)O (He) at 200 Hz. At 25 cmH(2)O and 200 Hz, attenuation with air was about three times higher than with He. This suggests that sound transmission through lungs may not be dominated by parenchyma but by the airways. The linear relationship between increasing Pip and increasing attenuation, which was found to be between 50 and approximately 100 Hz, was inverted above approximately 100 Hz. We suggest that this change is due to the transition of the parenchymal model from open to closed cell. These results indicate that acoustic propagation characteristics are a function of the density of the transmission media and, hence, may be used to locate collapsed lung tissue noninvasively.  相似文献   

15.
The purpose of the present study was to determine whether an intraspinal nociceptive pathway from the lungs modulated activity of spinal neurons that also received afferent input from the colon. Extracellular potentials of single lumbosacral (L6-S2) spinal neurons were recorded in pentobarbital-anesthetized, paralyzed, and ventilated male rats. The lower airways and lungs were irritated by injecting ammonia vapor over a 30% NH(4)OH solution into the inspiratory line of the ventilator (0.5 ml, 20 s). Graded colorectal distension (CRD; 20-60 mmHg, 20 s) was produced by air inflation of a balloon. Inhaled ammonia (IA) altered activity of 31/51 (61%) lumbosacral spinal neurons responding to noxious CRD (60 mmHg, 20 s). In contrast, IA changed activity of 3/30 (10%) spinal neurons with somatic fields that did not respond to colorectal inputs. IA decreased activity of 16/31 (52%) spinal neurons and increased activity of the other 15 neurons with colorectal input. Multiple patterns of viscerovisceral convergent spinal neurons with excitatory and inhibitory responses to CRD and IA were observed; 87% (27/31) of the viscerovisceral convergent neurons also responded to innocuous and/or noxious stimuli of somatic fields. Bilateral cervical vagotomy abolished responses to IA in 2/8 tested neurons, indicating that the remaining 6 neurons had input originating from sympathetic afferent fibers. Rostral C1 spinal transection did not abolish inhibitory responses to IA in 4/4 neurons, but L2 transection eliminated inhibitory responses to IA in 3/3 neurons. These results indicated that irritation of the lower airways modulated activity of lumbosacral spinal neurons with colorectal input. It might contribute to intraspinal cross talk between the colon and lungs.  相似文献   

16.
The effect of pulmonary resection on the maximal emptying of the remaining lobes was examined in an open-chest preparation in normal canine lungs and in a unilobar papain emphysema model. The objectives were to determine whether, compared with when both lungs were deflated (BL), maximal emptying of the normal lower lobes or the emphysematous right lower lobe would be altered 1) when acute pneumonectomy of the contralateral lung was performed (OL) and 2) when the lower lobe deflated alone (LA). The alveolar capsule technique was used to measure alveolar pressures (Palv) at 75, 50, and 30% lobar vital capacity (VC). During forced deflation, the maximal rates of deflation (dPalv/dt) and flows (lobarV(max)) of the lower lobes were determined under the three different conditions. The Pitot-static tube technique was used to measure intrabronchial pressures and to estimate bronchial area and compliance in which values were obtained at the same central airway during the conditions studied. The results showed that, compared with BL and OL, dPalv/dt and lobar V(max) decreased during LA (P < 0.05). These findings were due to a reduction in bronchial area during LA that limited flow at a lower maximal value compared with BL. This decrease in area appeared to be due to a change in bronchial pressure area behavior that resulted in a smaller bronchial area during LA for similar transmural pressures between conditions. There were no differences in findings between normal and emphysematous lobes. This study suggested that removal of lobes may alter the pressure area behavior of central airways. Possible mechanisms considered were differences in axial tension between conditions, negative effort dependence, or parenchymal-bronchial interdependence that may be relevant to understanding the dynamic collapsibility of central as well as intraparenchymal airways.  相似文献   

17.
Changes in pulmonary hemodynamics and vascular reactivity in emphysematous hamsters were studied in an isolated lung preparation perfused at constant flow with blood and 3% dextran. Hamsters were treated with intratracheal porcine pancreatic elastase at 70 days of age, and experimental studies were conducted at 1, 3, and 8 mo after treatment. Baseline pulmonary arterial pressure in elastase-treated lungs was increased compared with saline-treated control lungs 1 mo after treatment, but this increase did not progress at 3 and 8 mo. Increases in pulmonary arterial pressure in elastase-treated lungs were temporally correlated with the morphological development of emphysema and right ventricular hypertrophy; both of these were evident at 1 mo after treatment and showed little change thereafter. Pressor responses to hypoxia and angiotensin II were not different between elastase-treated and control lungs at 1 and 3 mo. At 8 mo, however, pressor responses in emphysematous lungs to 0% O2 (but not to angiotensin II) were significantly increased. This was the result of a lack of the normal age-related fall in the hypoxic pressor response. Our results suggest that the right ventricular hypertrophy found in these emphysematous animals results from a chronically increased pulmonary vascular resistance. Furthermore, increases in pulmonary vascular resistance in the early development of emphysema are likely a result of the loss of vascular beds and supporting connective tissue.  相似文献   

18.
Arterial pressure of chick embryos was measured electromanometrically to investigate the effect of altered gaseous environments on blood pressure (BP) and heart rate (HR). The experiments were made in eggs incubated for 14-16 days at 38 degrees C without impeding the diffusive respiratory gas exchange through the shell and chorioallantois. In air, the HR was counted 260-270 beats/min and the BP increased from 14/7 Torr at day 14 to 21/12 Torr at day 16. Both the BP and HR decreased with hypoxia, whereas hyperoxia affected a slight increase in BP and little change in HR. Hypercapnia decreased the HR and tended to enhance a systolic maximum pressure. The effect of hypoxia was augmented markedly in the presence of hypercapnia and vice versa. When N2 was replaced with helium (He), the effect of hypoxia was mitigated significantly. On the contrary, replacement of N2 with sulfur hexafluoride (SF6) augmented the effect of hypoxia. Because the respiratory gas exchange of the egg takes place by diffusion through the shell and chorioallantoic capillaries, the effect of He and SF6 atmospheres on BP and HR is attributed to an altered diffusivity of O2 and CO2 in these inert gases.  相似文献   

19.
A possible route of clearance of surfactant phosphatidylcholine from the lungs is via the airways. To quantify surfactant loss via this pathway, latex bags were surgically placed into the abdomens of adult rabbits such that secretions cleared via the esophagus could be collected. The rabbits then were given treatment or trace doses of radiolabeled phosphatidylcholine-surfactant by tracheal injection and/or intravascular radiolabeled precursors of phosphatidylcholine. Labeled saturated phosphatidylcholine was measured in all fluids that were collected from the bags at 2-h intervals for 24 h and in alveolar washes and lung tissues at 24 h. No more than 7% of either treatment or trace doses of intratracheal surfactant-saturated phosphatidylcholine was lost via clearance up the airways over 24 h. Clearances of endogenously synthesized and secreted saturated phosphatidylcholine were estimated to be no more than 3% of the flux of labeled saturated phosphatidylcholine through the alveolar pool. These experiments demonstrate that surfactant phosphatidylcholine clearance via movement up the airways is not a major pathway leading to surfactant catabolism.  相似文献   

20.
Because it is relatively insoluble, the oxidant gas O3 may penetrate to small peripheral airways when it is inhaled. Increased responsiveness in large airways after O3 breathing has been associated with the presence of inflammatory cells. To determine whether O3 produces prolonged hyperresponsiveness of small airways associated with the presence of inflammatory cells, we exposed the peripheral lungs of anesthetized dogs to 1.0 ppm O3 for 2 h using a wedged bronchoscope technique. A contralateral sublobar segment was simultaneously exposed to air as a control. In the O3-exposed segments, collateral resistance (Rcs) was increased within 15 min and remained elevated approximately 150% throughout the 2-h exposure period. Fifteen hours later, the base-line Rcs of the O3-exposed sublobar segments was significantly elevated, and these segments demonstrated increased responsiveness to aerosolized acetylcholine (100 and 500 micrograms/ml). There were no differences in neutrophils, mononuclear cells, or mast cells (numbers or degree of mast cell degranulation) between O3 and air-exposed airways at 15 h. The small airways of the lung periphery thus are capable of remaining hyperresponsive hours after cessation of localized exposure to O3, but this does not appear to be dependent on the presence of inflammatory cells in the small airway wall.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号