首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Root systems of mutant (E107) and parental (cv `Sparkle') Pisum sativum genotypes were studied to determine the basis for excess Fe accumulation in E107. Plants were grown with (+Fe-treated) or without (−Fe-treated) added Fe(III)-N,N'-ethylenebis[2-(2-hydroxyphenyl)glycine] in aerated nutrient solutions. Daily measurements of Fe(III) reduction indicated a four-to seven-fold higher reduction rate in +Fe- or −Fe-treated E107, and −Fe-treated Sparkle, when compared with +Fe-treated Sparkle. An agarose-based staining technique used to localize Fe(III) reduction, revealed Fe(III) reduction over most of the length of the roots (but not at the root apices) in both E107 treatments and −Fe-treated Sparkle. In +Fe-treated Sparkle, Fe(III) reduction was either nonexistent or localized to central regions of the roots. Measurements of short-term Fe influx (with 0.1 millimolar 59Fe(III)-ethylenediaminetetraacetic acid) was also enhanced (threefold) in +Fe- or −Fe-treated E107 and −Fe-treated Sparkle, relative to +Fe-treated Sparkle. The physiological characteristics of E107 root systems, which are similar to those seen in Fe-deficient Sparkle, have led us to conclude that the mutation causes E107 to act functionally as an Fe-deficient plant, and appears to explain the excess Fe accumulation in E107.  相似文献   

2.
用豌豆Sparkle及其单基因突变体E107进行的水培的试验表明,-Fe和+Fe处理的E107幼苗以及-Fe处理的Sparkle幼苗均表现出根系H+分泌量大、根系Fe(Ⅲ)还原力强等特点,其中尤以+Fe处理的E107最为突出;而十Fe处理的Sparkle则无以上特点。与Sparkle相比,E107各处理的地上部Fe、Mn合量均很高,但根部含量则相反。与Spekle相比,E107—Fe处理表现为Fe高效,即使在+Fe处理下,E107仍表现出-Fe条件下的根系生理特性,活化并还原了根际大量Fe(Ⅲ)和Mn,因而它对Fe、Mn具有较高的吸收效率,但是这些元素并不在根系中贮存,而是源源不断地运输到地上部,并在叶片中累积乃至使叶片中毒坏死,充分表现了E107单基因突变体对Fe、Mn也具有较高的转移效率。  相似文献   

3.
The development of plasma membrane-associated iron(III) reductase activity was characterized in root systems of Pisum sativum during the first 2 wk of growth, as plants were challenged with iron-deficiency stress. Plants of a parental genotype (cv. Sparkle) and a functional iron-deficiency mutant genotype (E107) were grown hydroponically with or without supplemental iron. Iron(III) reductase activity was visualized by placing the roots in an agarose matrix containing 0.2 idm Fe(III)-ethylenediaminetetraacetic acid and 0.3 mM Na2-bathophenanthrolinedisulfonic acid (BPDS). Red staining patterns, resulting from the formation of Fe(II)-BPDS, were used to identify iron(III)-reducing regions. Iron(III) reduction was extensive on roots of E107 as early as d 7, but not until d 11 for -Fe-treated Sparkle. Roots of +Fe-treated Sparkle showed limited regions of reductase activity throughout the period of study. For secondary lateral roots, iron(III) reduction was found for all growth types except + Fe-treated Sparkle. Treating Sparkle plants alternately to a cycle of iron deficiency, iron sufficiency, and iron deficiency revealed that reductase activity at a given root zone could be alternatively present, absent, and again present. Our results suggest that for Pisum roots grown under the present conditions, iron-deficiency stress induces the activation of iron(III) reductase capacity within 2 d.  相似文献   

4.
Sink to source translocation in soybean   总被引:2,自引:1,他引:1       下载免费PDF全文
The possibility that phloem loading may occur in the reproductive sink tissues of soybeans (Glycine max Merr. cv Chippewa 64) was examined. When [14C]sucrose was applied to seed coat tissues from which the developing embryo had been surgically removed, 0.1% to 0.5% of the radioactivity was translocated to the vegetative plant parts. This sink to source translocation was largely unaffected by destroying a band of phloem with steam treatment on the stem above and below the labeled pod. The same steam treatment, however, completely abolished translocation of [14C]sucrose between mature leaves and developing fruits. These results indicate that the movement of nutrients from developing seed coats to the vegetative plant parts occur in the xylem and that phloem loading does not occur in this sink tissue.  相似文献   

5.
E107 (brz) is a pleiotropic mutant of pea (Pisum sativum L. cv Sparkle) characterized by low nodulation, leaf necrosis, excessive ion accumulation, and decreased plant size. The defective nodulation of E107 was studied by light microscopy of lateral roots. The number of infections per centimeter of lateral root was only a third that of Sparkle. Moreover, most of the infections were aborted early; i.e. in only 14% of the infections did the infection thread penetrate beyond the epidermis. Nodulation of E107 was partly restored by treating the plant with the ethylene inhibitors aminoethoxyvinylglycine (AVG) or Ag+. Treatment with Ag+ did not increase the number of infections, but half of the infections went to completion. Ag+ and AVG did not alter the size of the mutant, the accumulation of cations in its shoots, nor the leaf necrosis. Thus, in E107, nodule development can be uncoupled from other pleiotropic characteristics.  相似文献   

6.
Fe2+ transport in plants has been difficult to quantify because of the inability to control Fe2+ activity in aerated solutions and non-specific binding of Fe to cell walls. In this study, a Fe(II)-3-(2-pyridyl)-5,6-diphenyl-1,2,4-triazine-4[prime]4"-disulfonic acid buffer system was used to control free Fe2+ in uptake solutions. Additionally, desorption methodologies were developed to adequately remove nonspecifically bound Fe from the root apoplasm. This enabled us to quantify unidirectional Fe2+ influx via radiotracer (59Fe) uptake in roots of pea (Pisum sativum cv Sparkle) and its single gene mutant brz, an Fe hyperaccumulator. Fe influx into roots was dramatically inhibited by low temperature, indicating that the measured Fe accumulation in these roots was due to true influx across the plasma membrane rather than nonspecific binding to the root apoplasm. Both Fe2+ influx and Fe translocation to the shoots were stimulated by Fe deficiency in Sparkle. Additionally, brz, a mutant that constitutively exhibits high ferric reductase activity, exhibited higher Fe2+ influx rates than +Fe-grown Sparkle. These results suggest that either Fe deficiency triggers the induction of the Fe2+ transporter or that the enhanced ferric reductase activity somehow stimulates the activity of the existing Fe2+ transport protein.  相似文献   

7.
During monocarpic senescence in soybean (Glycine max [L.] Merrill cv. Anoka) there is a remobilization of nitrogen from the leaves to the seeds, and it has been hypothesized that this loss of nitrogen from the leaves induces foliar yellowing. The phloem in a small segment of the petiole between the pods and the target leaf can be inactivated with a jet of steam. When a plant is depodded except for a single pod cluster in the center of the plant, the pod cluster induces yellowing of the nearest leaf even if the petiole contains a zone of dead phloem, whereas most of the rest of the plant remains green. The nitrogen content of these leaves with a dead phloem zone in their petioles does not decrease greatly, even though the leaves turn yellow. A similar treatment of a single leaf on a fully depodded plant (leaves stay green) does not cause that leaf to turn yellow. Since nutrients would have to be withdrawn from the leaves via the phloem, the pods do not induce yellowing by pulling nutrients out of the leaf and must be able to exert their influence via the xylem.  相似文献   

8.
Changes in the weight and in the chlorophyll, free amino-acid and protein content of developing and senescing, vegetative and reproductive organs of Pisum sativum L. (cv. Burpeeana) were measured, and the proteolytic activity in extracts from the senescing leaf and the subtended pod was followed in relation to these changes. Protein content decreased in the ageing leaf and pod while it increased in the developing cotyledon. The proteolytic activity of the leaf did not increase as the leaf protein content decreased. In contrast, proteolytic activity in the subtended pod increased while the protein level decreased. The proteolytic activity in the extracts from the ageing organs was greater than the rates of protein loss. The proteolytic activity of leaf and pod extracts was greater on protein prepared from the respective organ than on non-physiological substrates. Proteolysis was increased by 2-mercaptoethanol and ethylenediaminetetraacetate but was not influenced by addition of ATP to the reaction mixture. The pH optimum was at 5.0. Free amino acids did not accumulate in the senescing leaf or pod when protein was degraded in each organ. It is suggested that these amino acids were quickly metabolized in situ or translocated to sink areas in the plant, especially to the developing seeds.  相似文献   

9.
Mobilization of Minerals to Developing Seeds of Legumes   总被引:4,自引:0,他引:4  
HOCKING  P. J.; PATE  J. S. 《Annals of botany》1977,41(6):1259-1278
The mineral nutrition of fruiting plants of Pisum sativum L.,Lupinus albus L. and Lupinus angustifolius L. is examined insand cultures supplying adequate and balanced amounts of essentialnutrients. Changes in content of specific minerals in leaves,pods, seed coat, and embryo are described. P, N and Zn tendto increase precociously in an organ relative to dry matteraccumulation, other elements more or less parallel with (K,Mn, Cu, Mg and Fe) or significantly behind (Ca and Na) dry weightincrease. Some 60–90 per cent of the N, P and K is lostfrom the leaf, pod and seed coat during senescence, versus 20–60per cent of the Mg, Zn, Mn, Fe and Cu and less than 20 per centof the Na and Ca. Mobilization returns from pods are estimatedto provide 4–39 per cent of the seeds' accumulations ofspecific minerals, compared with 4–27 per cent for testatransfer to the embryo. Endosperm minerals are of only minorsignificance in embryo nutrition. Comparisons of the mineral balance of plant parts of Lupinusspp. with that of stem xylem sap and fruit tip phloem sap supportthe view that leaves and pod are principal recipients of xylem-borneminerals and that export from these organs via phloem is themajor source of minerals to the seeds. Endosperm and embryodiffer substantially in mineral compostition from phloem sap,suggesting that selective uptake occurs from the translocationstream during seed development. Considerable differences are observed between species in mineralcomposition of plant organs and in the effectiveness of transferof specific minerals to the seeds Differences between speciesrelate principally to Ca, Na and certain trace elements.  相似文献   

10.
盐胁迫对苹果器官中钙镁铁锌含量的影响   总被引:6,自引:0,他引:6  
以盆栽2年生富士苹果树(砧木为平邑甜茶M.hupehensisReld)为试材,研究了盐胁迫对苹果矿质营养平衡的影响.结果表明,在盐胁迫下,苹果各器官不同时期的单位干样中Ca、Mg、Fe和Zn含量的平均值没有明显变化,但各元素与Na的比值明显下降,特别是在高盐(3‰NaCl)胁迫下下降更为明显,从而破坏了树体内元素平衡.在无盐和盐胁迫下,苹果各器官中Ca含量的顺序为主干韧皮部>叶片、新梢>根>主干木质部;Mg含量为新梢、根>主干木质部、主干韧皮部、叶片;Fe含量为根>叶片>主干韧皮部、新梢>主干木质部;Zn含量为新梢>叶片>根、主干韧皮部>主干木质部.与对照相比,器官中各元素含量在胁迫期间表现出不同程度的波动性.  相似文献   

11.
Partitioning of nitrogen by soybeans ( Glycine max L. Merr. cv. Hodgson) grown in natural conditions was studied by successive exposures of root systems to 15N2 and periodical measurements of 15N distribution. Nitrogen derived from the atmosphere was mainly found in the aerial parts of the plants, and the stage of development exerted a strong influence on the initial 15N distribution (measured one week after incorporation). Until day 69 after sowing, leaf blades contained 47 to 57% of the fixed N. After that, reproductive structures attracted increasing proportions, 10 to 60% between days 69 and 92. Around day 82, stems and petioles stored up to 30% of the newly fixed N. During pod development and pod filling and until maturity, fixed N was remobilized from vegetative tissues and pod walls to seeds. These transfers first concerned the newly incorporated N, but at maturity 80 to 90% of the total was recovered in the seeds. The high mobility of N originating from the atmosphere as compared to that coming from the soil (vegetative tissues exported only 50% of their total N) seems to indicate that fixed N was at least partially integrated in a special pool. This was certainly the case at the later stage of N2 fixation, when a large portion of fixed N accumulated in the stems and petioles, probably in the form of storage compounds such as ureides for later transfer to the developing seeds. Further research is needed in order to investigate the nature and role of this pool in the nitrogen nutrition of soybeans.  相似文献   

12.
The fluxes of (1) exogenous nitrogen (N) assimilation and (2) remobilization of endogenous N from vegetative plant compartments were measured by 15N labeling during the seed-filling period in pea (Pisum sativum L. cv Cameor), to better understand the mechanism of N remobilization. While the majority (86%) of exogenous N was allocated to the vegetative organs before the beginning of seed filling, this fraction decreased to 45% at the onset of seed filling, the remainder being directed to seeds. Nitrogen remobilization from vegetative parts contributed to 71% of the total N in mature seeds borne on the first two nodes (first stratum). The contribution of remobilized N to total seed N varied, with the highest proportion at the beginning of filling; it was independent of the developmental stage of each stratum of seeds, suggesting that remobilized N forms a unique pool, managed at the whole-plant level and supplied to all filling seeds whatever their position on the plant. Once seed filling starts, N is remobilized from all vegetative organs: 30% of the total N accumulated in seeds was remobilized from leaves, 20% from pod walls, 11% from roots, and 10% from stems. The rate of N remobilization was maximal when seeds of all the different strata were filling, consistent with regulation according to the N demand of seeds. At later stages of seed filling, the rate of remobilization decreases and may become controlled by the amount of residual N in vegetative tissues.  相似文献   

13.
E132 ( sym 21) is a stable pleiotropic mutant of Pisum sativum cv. Sparkle obtained by mutagenesis with ethyl methane sulfonic acid. The line forms few nodules and short, highly branched roots. Microscopy studies revealed that infection by rhizobia is normal, and low nodulation is mainly due to a low rate of emergence of the nodule meristems. E132 shoots depressed nodulation on Sparkle stocks, whereas in reciprocal grafts more nodules formed on E132 stocks than on control roots or self-grafted Sparkle plants. Nodule number on the mutant was slightly increased by exogenous ethylene inhibitors, which, however, did not alter the root phenotype.  相似文献   

14.
Neo HH  Layzell DB 《Plant physiology》1997,113(1):259-267
The aim of the present study was to test the hypothesis that the N content or the composition of the phloem sap that supplies nodulated roots may play a role in the feedback regulation of nitrogenase activity by increasing nodule resistance to O2 diffusion. Treating shoots of lupin (Lupinus albus cv Manitoba) or soybean (Glycine max L. Merr. cv Maple Arrow) with 100 [mu]L L-1 NH3 caused a 1.3-fold (lupin) and 2.6-fold (soybean) increase in the total N content of phloem sap without altering its C content. The increase in phloem N was due primarily to a 4.8-fold (lupin) and 10.5-fold (soybean) increase in the concentration of glutamine N. In addition, there was a decline in both the apparent nitrogenase activity and total nitrogenase activity that began within 4 h and reached about 54% of its initial activity within 6 h of the start of the NH3 treatment. However, the potential nitrogenase activity values in the treated plants were not significantly different from those of the control plants. These results provide evidence that changes in the N composition of the phloem sap, particularly the glutamine content, may increase nodule resistance to O2 diffusion and, thereby, down-regulate nodule metabolism and nitrogenase activity by controlling the supply of O2 to the bacteria-infected cells.  相似文献   

15.
The pea (Pisum sativum L.) mutant, E107 (brz, brz) accumulated extremely high concentrations of Fe in its older leaves when grown in light rooms in either defined nutrient media or potting mix, or outdoors in soil. Leaf symptoms (bronze color and necrosis) were correlated with very high Fe concentrations. When E107 plants were grown in nutrient solutions supplied 10 μm Fe, as the Fe(III)-N,N′-ethylenebis[2-(2-hydroxyphenyl)glycine] chelate, their roots released higher concentrations of Fe(III) reducing substances to the nutrient media than did roots of the normal parent cv, `Sparkle.' Reciprocal grafting experiments demonstrated that the high concentrations of Fe in the shoot was controlled by the genotype of the root. In short-term 59Fe uptake studies, 15-day-old E107 seedlings exhibited higher rates of Fe absorption than did `Sparkle' seedlings under Fe-adequate growth conditions. Iron deficiency induced accelerated short-term Fe absorption rates in both mutant and normal genotypes. Iron-treated E107 roots also released larger amounts of both protons and Fe(III) reductants into their nutrient media than did iron-treated `Sparkle' roots. Furthermore, the mutant translocated proportionately more Fe to its shoot than did the parent regardless of Fe status.  相似文献   

16.
Iron transport across polarized intestinal epithelium was studied by using Caco-2 cells grown in bicameral chambers. When cells were grown under conditions of low, normal, or high iron concentration not only was the iron content of the cells markedly altered but the low iron cells exhibited a nearly 2-fold increase in transepithelial electrical resistance (TEER). 59Fe uptake from the apical surface into cells and transport into the basal chamber was affected both by the valency of the iron and the iron status of the cells. Uptake from 59Fe(II)-ascorbate was about 600 pmol 59Fe/h per mg protein, increased about 2-fold in low iron cells, and was about 13-200-fold greater than uptakes from 59Fe(III) chelated to nitrilotriacetic acid, BSA, or citrate. Transport into the basal chamber from 59Fe(II)-ascorbate was 3.7 +/- 1.7 pmol/h per cm2 for Fe-deficient cells vs. 0.72 +/- 0.1 pmol/h per cm2 for normal-Fe cells and from 59Fe(III)-BSA 1.1 +/- 0.2 pmol/h per cm2 vs. 0.3 +/- 0.03 pmol/h per cm2 for deficient vs. normal iron cells, respectively. The greater transport of iron both from Fe(II) and in iron deficient cells supports the use of the Caco-2 cells as a model for iron transport.  相似文献   

17.
KUO  J.; PATE  J. S. 《Annals of botany》1985,55(5):635-647
A mycelium-like network of internal phloem was observed in theinner mesocarp of the lateral pod walls of the fruit of certaingenotypes of cowpea [Vigna unguiculata (L.) Walp.] In the cultivarVita 3, the network consists of single, or rarely double, strandsof sieve elements and associated phloem parenchyma, orientedmainly parallel with the fibres of the adjacent endocarp, andstretching marginally beyond the sheets of fibres to connectabove and below with the outermost phloem of the longitudinalstrands of the dorsal and ventral sutures of the fruit. Theinternal phloem network does not relate conformationally to,or interconnect with the conventional (xylem+phloem) vasculatureof the mid mesocarp of the pod wall. In Vita 3, sieve elementsdifferentiate in the internal phloem after those in the majorveins of the pod, but before the presumptive endocarp fibrescommence wall thickening. The pod walls of twenty-one otherspecies of legumes proved negative for internal phloem, whileof nine varied genotypes of cowpea examined, six proved positive,three negative for the trait. Presence of internal phloem incowpea is not always associated with presence of endocarp fibresor necessarily with large fruits with large seeds. Possiblefunctions suggested for the phloem network are to provide assimilatesfor fibre wall thickening or to transport solutes to or fromsites of temporary storage in the fleshy inner layers of thepod wall. Internal phloem, legume fruit, translocation, mesocarp, pod wall, Vigna unguiculata, cowpea  相似文献   

18.
A technique has been developed which permits mechanistic studies of phloem unloading in developing seeds of soybean (Glycine max cv Clark) and other legumes. An opening is cut in the pod wall and the embryo surgically removed from the seedcoat without diminishing the capacity of that tissue for assimilate import, phloem unloading, or efflux. The sites of phloem unloading were accessible via the seedcoat apoplast and were challenged with inhibitors, solutes, buffers, etc., to characterize the unloading process.

Unloading is stimulated by divalent metal chelators and diethylstilbestrol, and inhibited by metabolic uncouplers and sulfhydryl group modifiers. Solutes released from the seed coat had a carbon/nitrogen ratio of 31 milligrams carbon per milligram nitrogen; sucrose represented 90% of the carbon present and various nitrogenous solutes contributed the remaining 10%. Unloading could be maintained for up 8 hours at rates of 0.5 to 1.0 micromoles per hour, providing a valid, convenient in vivo technique for studies of phloem unloading and seed growth mechanisms.

  相似文献   

19.
The effects of the herbicide methabenzthiazuron (175 and 220 g ha-1) on vegetative and reproductive growth, nodulation and nitrogenase activity of Vicia faba were studied in the field under Mediterranean conditions. Nitrogenase activity of excised nodules was estimated using the acetylene reduction assay four times during the developmental period. Leaf area index, dry weight and nitrogen content of the different parts of the plants were measured. Methabenzthiazuron-treated plants showed an increase in nodulation, nitrogenase activity and vegetative growth at early pod fill. Methabenzthiazuron also caused an increase in leaf N content and fruits. These were transient effects found during early and mid pot fill. Nevertheless, plants treated with these sublethal doses of herbicide improved seed production and nitrogen content of seeds at harvest time. The stimulatory effect of methabenzthiazuron on N2 fixation and vegetative growth seems not be related with the transient stimulatory effect on photosynthetic capacity, also caused by the herbicide, since the stimulatory effect on N2 fixation was apparent during pod fill, when photosynthetic capacity declined and was not modified by methabenzthiazuron.  相似文献   

20.
The amino acid composition of the EDTA-induced phloem exudatereaching the fruit and the seed, and of the solutes releasedby the seed coat during fruit development were determined inglasshouse-grown pea (Pisum sativum L. cv. Finale) suppliedeither with nitrate-free nutrients (nodulated plants) or withcomplete medium (non-nodulated plants). The EDTA-promoted exudationtechnique was used supposedly to collect phloem sap and theempty seed technique supposedly to collect the solutes secretedby the seed coat to the embryo sac cavity. In young seeds embryosac liquid was sampled directly from the embryo sac. The maincarbohydrate transported and secreted was sucrose. The mainamino acids reaching the fruit were asparagine, glutamine, andhomoserine. Their proportions were steady during a day-nightcycle and throughout fruit development. Amino acid compositionchanges occurred first in the pathway from fruit stalk to seedfunicle, due to the formation of threonine (probably from homoserine)and in the seed coat due to production of glutamine, alanineand valine which, together with threonine were the main secretedamino acids. The temporary nitrogen reserves of the pod walland seed coat were remobilized as asparagine during senescence.Phloem exudate of nodulated plants showed a higher (about twice)proportion of asparagine but lower proportions of homoserineand glutamine than in EDTA-induced phloem exudate of nitrate-fedplants. The two types of nitrogen nutrition also produced somechanges in relative proportions of threonine and homoserinesecreted by the seed coat. Key words: Pisum sativum, phloem, amino acids, pod wall, seed coat  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号