首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Heparin-binding epidermal growth factor-like growth factor (HB-EGF), a mitogen and chemotactic factor, binds to two receptor tyrosine kinases, erbB1 and erbB4. Now we demonstrate that HB-EGF also binds to a novel 140 kDa receptor on MDA-MB 453 cells. Purification of this receptor showed it to be identical to N-arginine dibasic convertase (NRDc), a metalloendopeptidase of the M16 family. Binding to cell surface NRDc and NRDc in solution was highly specific for HB-EGF among EGF family members. When overexpressed in cells, NRDc enhanced their migration in response to HB-EGF but not to EGF. Conversely, inhibition of endogenous NRDc expression in cells by antisense morpholino oligonucleotides inhibited HB-EGF-induced cell migration. Anti-erbB1 neutralizing antibodies completely abrogated the ability of NRDc to enhance HB-EGF-dependent migration, demonstrating that this NRDc activity was dependent on erbB1 signaling. Although NRDc is a metalloproteinase, enzymatic activity was not required for HB-EGF binding or enhancement of cell migration; neither did NRDc cleave HB-EGF. Together, these results suggest that NRDc is a novel specific receptor for HB-EGF that modulates HB-EGF-induced cell migration via erbB1.  相似文献   

2.
Like other members of the epidermal growth factor family, heparin-binding epidermal growth factor-like growth factor (HB-EGF) is synthesized as a transmembrane protein that can be shed enzymatically to release a soluble growth factor. Ectodomain shedding is essential to the biological functions of HB-EGF and is strictly regulated. However, the mechanism that induces the shedding remains unclear. We have recently identified nardilysin (N-arginine dibasic convertase (NRDc)), a metalloendopeptidase of the M16 family, as a protein that specifically binds HB-EGF (Nishi, E., Prat, A., Hospital, V., Elenius, K., and Klagsbrun, M. (2001) EMBO J. 20, 3342-3350). Here, we show that NRDc enhances ectodomain shedding of HB-EGF. When expressed in cells, NRDc enhanced the shedding in cooperation with tumor necrosis factor-alpha-converting enzyme (TACE; ADAM17). NRDc formed a complex with TACE, a process promoted by phorbol esters, general activators of ectodomain shedding. NRDc enhanced TACE-induced HB-EGF cleavage in a peptide cleavage assay, indicating that the interaction with NRDc potentiates the catalytic activity of TACE. The metalloendopeptidase activity of NRDc was not required for the enhancement of HB-EGF shedding. Notably, a reduction in the expression of NRDc caused by RNA interference was accompanied by a decrease in ectodomain shedding of HB-EGF. These results indicate the essential role of NRDc in HB-EGF ectodomain shedding and reveal how the shedding is regulated by the modulation of sheddase activity.  相似文献   

3.
Tumor necrosis factor-α (TNF-α) is released from cells by proteolytic cleavage of a membrane-anchored precursor. The TNF-α-converting enzyme (TACE/ADAM17) is the major sheddase for ectodomain shedding of TNF-α. At present, however, it is poorly understood how its catalytic activity is regulated. Here, we show that nardilysin (N-arginine dibasic convertase; NRDc) enhanced TNF-α shedding. In a cell-based shedding assay, expression of NRDc synergistically enhanced TACE-induced TNF-α shedding. A peptide cleavage assay in vitro showed that recombinant NRDc enhances the cleavage of TNF-α induced by TACE. Notably, co-incubation of NRDc completely reversed the inhibitory effect of a physiological concentration of salt on TACE’s activity in vitro. Overexpression of NRDc in TACE-deficient fibroblasts resulted in an increase in the amount of TNF-α released. Co-expression of NRDc with ADAM10 promoted the release compared with the sole expression of ADAM10. These results suggested that NRDc enhances TNF-α shedding through activation of not only TACE but ADAM10. Our results indicate the involvement of NRDc in ectodomain shedding of TNF-α, which may be a novel target for anti-inflammatory therapies.  相似文献   

4.
5.
Amyloid-beta (Abeta) peptide, the principal component of senile plaques in the brains of patients with Alzheimer's disease, is derived from proteolytic cleavage of amyloid precursor protein (APP) by beta- and gamma-secretases. Alternative cleavage of APP by alpha-secretase occurs within the Abeta domain and precludes generation of Abeta peptide. Three members of the ADAM (a disintegrin and metalloprotease) family of proteases, ADAM9, 10 and 17, are the main candidates for alpha-secretases. However, the mechanism that regulates alpha-secretase activity remains unclear. We have recently demonstrated that nardilysin (EC 3.4.24.61, N-arginine dibasic convertase; NRDc) enhances ectodomain shedding of heparin-binding epidermal growth factor-like growth factor through activation of ADAM17. In this study, we show that NRDc enhances the alpha-secretase activity of ADAMs, which results in a decrease in the amount of Abeta generated. When expressed with ADAMs in cells, NRDc dramatically increased the secretion of alpha-secretase-cleaved soluble APP and reduced the amount of Abeta peptide generated. A peptide cleavage assay in vitro also showed that recombinant NRDc enhances ADAM17-induced cleavage of the peptide substrate corresponding to the alpha-secretase cleavage site of APP. A reduction of endogenous NRDc by RNA interference was accompanied by a decrease in the cleavage by alpha-secretase of APP and increase in the amount of Abeta generated. Notably, NRDc is clearly expressed in cortical neurons in human brain. Our results indicate that NRDc is involved in the metabolism of APP through regulation of the alpha-secretase activity of ADAMs, which may be a novel target for the treatment of Alzheimer's disease.  相似文献   

6.
7.
Loss of cell-matrix adhesion is often associated with acute epithelial injury, suggesting that "anoikis" may be an important contributor to cell death. Resistance against anoikis is a key characteristic of transformed cells. When nontransformed epithelia are injured, activation of the epidermal growth factor (EGF) receptor (EGFR) by paracrine/autocrine release of soluble ligands can induce a prosurvival program, but there is generally evidence for concomitant dedifferentiation. The EGFR ligand, heparin-binding EGF-like growth factor (HB-EGF), is synthesized as a membrane-anchored precursor that can activate the EGFR via juxtacrine signaling or can be released and act as a soluble growth factor. In Madin-Darby canine kidney cells, expression of membrane-anchored HB-EGF increases cell-cell and cell-matrix adhesion. Therefore, these studies were designed to test the effects of juxtacrine HB-EGF signaling upon cell survival and epithelial integrity when cells are denied proper cell-matrix interactions. Cells expressing a noncleavable mutated form of membrane-anchored HB-EGF demonstrated increased survival from anoikis, formed larger cell aggregates, and maintained epithelial characteristics even following prolonged detachment from the substratum. Physical association between membrane-anchored HB-EGF and EGFR was observed. Signaling studies indicated synergistic effects of EGFR activation and phosphatidylinositol 3-kinase signaling to regulate apoptotic and survival pathways. In contrast, although administration of exogenous EGF partially suppressed anoikis in wild type cells, it also led to an increased expression of mesenchymal markers, suggesting dedifferentiation. Taken together, we propose a novel role for membrane-anchored HB-EGF in the cytoprotection of epithelial cells.  相似文献   

8.
The brain-specific protein p42IP4, also called centaurin-alpha1, specifically binds phosphatidylinositol 3,4,5-trisphosphate [PtdIns(3,4,5)P3] and inositol 1,3,4,5-tetrakisphosphate [Ins(1,3,4,5)P4]. Here, we investigate the interaction of p42IP4/centaurin-alpha1 with nardilysin (NRDc), a member of the M16 family of zinc metalloendopeptidases. Members of this peptidase family exhibit enzymatic activity and also act as receptors for other proteins. We found that p42IP4/centaurin-alpha1 binds specifically to NRDc from rat brain. We further detected that centaurin-alpha2, a protein that is highly homologous to p42IP4/centaurin-alpha1 and expressed ubiquitously, also binds to NRDc. In vivo interaction was demonstrated by co-immunoprecipitation of p42IP4/centaurin-alpha1 with NRDc from rat brain. The acidic domain of NRDc (NRDc-AD), which does not participate in catalysis, is sufficient for the protein interaction with p42IP4. Interestingly, preincubation of p42IP4 with its cognate ligands D-Ins(1,3,4,5)P4 and the lipid diC8PtdIns(3,4,5)P3 negatively modulates the interaction between the two proteins. D-Ins(1,3,4,5)P4 and diC8PtdIns(3,4,5)P3 suppress the interaction with virtually identical concentration dependencies. This inhibition is highly ligand specific. The enantiomer L-Ins(1,3,4,5)P4 is not effective. Similarly, the phosphoinositides diC8PtdIns(3,4)P2, diC8PtdIns(3,5)P2 and diC8PtdIns(4,5)P2 all have no influence on the interaction. Further experiments revealed that endogenous p42IP4 from rat brain binds to glutathione-S-transferase (GST)-NRDc-AD. The proteins dissociate from each other when incubated with D-Ins(1,3,4,5)P4, but not with inositol 1,4,5-trisphosphate [Ins(1,4,5)P3]. In summary, we demonstrate that p42IP4 binds to NRDc via the NRDc-AD, and that this interaction is controlled by the cognate cellular ligands of p42IP4/centaurin-alpha1. Thus, specific ligands of p42IP4 can modulate the recruitment of proteins, which are docked to p42IP4, to specific cellular compartments.  相似文献   

9.
Heparin-binding epidermal-like growth factor (HB-EGF) is synthesized as a transmembrane precursor (HB-EGF(TM)). The addition of phorbol ester (PMA, phorbol 12-myristate 13-acetate) to cells expressing HB-EGF(TM) results in the metalloproteinase-dependent release (shedding) of soluble HB-EGF. To analyze mechanisms that regulate HB-EGF shedding, a stable cell line was established expressing HB-EGF(TM) in which the ectodomain and the cytoplasmic tail were tagged with hemagglutinin (HA) and Myc epitopes, respectively (HB-EGF(TM)HA/Myc). HB-EGF(TM)HA/Myc cleavage was followed by the appearance of soluble HB-EGFHA in conditioned medium, the loss of biotinylated cell-surface HB-EGF(TM)HA/Myc, and the appearance of a Myc-tagged cytoplasmic tail fragment in cell lysates. By using this approach, several novel metalloproteinase-dependent regulators of HB-EGF(TM) shedding were identified as follows. (i) HB-EGF(TM)HA/Myc shedding induced by PMA was blocked by the mitogen-activated protein (MAP) kinase kinase inhibitor, PD98059. PMA activated MAP kinase within 5 min, but HB-EGF(TM)HA/Myc shedding did not occur until 20 min, suggesting that MAP kinase activation was a necessary step in the pathway of PMA-induced HB-EGF(TM) cleavage. (ii) Activation of an inducible Raf-1 kinase, DeltaRaf-1:estrogen receptor, resulted in a rapid MAP kinase activation within 10 min and shedding of HB-EGF(TM)HA/Myc within 20-40 min. (iii) Serum induced MAP kinase activation and HB-EGF(TM)HA/Myc shedding that were inhibited by PD98059. (iv) Whereas PMA induced HB-EGF(TM)HA/Myc shedding in attached cells, no shedding occurred when the cells were placed in suspension. Shedding was fully restored shortly after cells were allowed to spread on fibronectin, and the extent of PMA-induced shedding increased with the extent of cell spreading. PMA induced the same level of MAP kinase activation whether the cells were attached or in suspension suggesting that although MAP kinase activation might be necessary for shedding, it was not sufficient. Taken together, these results suggest that there are two components of cell regulation that contribute to the shedding process, not previously recognized, the Raf-1/MAP kinase signal transduction pathway and cell adhesion and spreading.  相似文献   

10.
Heparin-binding epidermal growth factor-like growth factor (HB-EGF) is a promising target for ovarian cancer therapy. Cross-reacting material 197 (CRM197), a specific HB-EGF inhibitor, has been proven to represent possible chemotherapeutic agent for ovarian cancer. However, the effect of CRM197 on the resistant ovarian carcinoma cells has not been sufficiently elucidated. Here, we found that HB-EGF was over-expressed in a paclitaxel-resistant human ovarian carcinoma cell line (A2780/Taxol) and a cisplatin-resistant cell line (A2780/CDDP), as well as the xenograft mouse tissue samples with these cells. To investigate the possible significance of the HB-EGF over-expression in A2780/Taxol and A2780/CDDP cells, we inhibited HB-EGF expression by CRM197 to investigate the effect of CRM197 treatment on these cells. We observed that CRM197 significantly induced anti-proliferative activity in a dose-dependent manner with the cell-cycle arrest at the G0/G1 phase and enhanced apoptosis in A2780/Taxol and A2780/CDDP cells. The sensitive ovarian carcinoma parental cell line (A2780), A2780/Taxol and A2780/CDDP cells formed tumors in nude mice, and enhanced tumorigenicity was observed in drug-resistant tumors. Furthermore, we observed that CRM197 significantly suppressed the growth of drug-resistant ovarian cancer xenografts in vivo (p<0.001). These results suggest that CRM197 as an HB-EGF-targeted agent has potent anti-tumor activity in paclitaxel- and cisplatin-resistant ovarian cancer which over-express HB-EGF.  相似文献   

11.
Heparin-binding EGF-like growth factor (HB-EGF), which belongs to the EGF-family of growth factors, was isolated from the conditioned medium of macrophage-like cells. To investigate the effect of N- and C-terminal residues of the EGF-like domain of HB-EGF in the binding affinity to the EGF receptor on A431 cell. We synthesized HB-EGF(44-86) corresponding to the EGF-like domain of HB-EGF and its N- or C-terminal truncated peptides. Thermolytic digestion demonstrated three disulfide bond pairings of the EGF-like domain in HB-EGF is consistent with that of human-EGF and human-TGF-alpha. HB-EGF(44-86) showed high binding affinity to EGF-receptor, like human-EGF. The truncation of the C-terminal Leu86 residue from HB-EGF(44-86), HB-EGF(45-86) or HB-EGF(46-86) caused a drastic reduction in the binding affinity to the EGF receptor. These results suggest that the EGF-like domain of HB-EGF plays an important role in the binding to the EGF receptor, and its C-terminal Leu86 residue is necessary for binding with the EGF-receptor. In addition, the deletion of the two N-terminal residues (Asp44-Pro45) from HB-EGF(44-86) caused a 10-fold decrease in relative binding affinity to the EGF receptor. This indicates that the two N-terminal residues of the EGF-like domain of HB-EGF are necessary for its optimal binding affinity to the EGF receptor.  相似文献   

12.
Heparin-binding epidermal growth factor-like growth factor (HB-EGF) is an activating ligand for the EGF receptor (HER1/ErbB1) and the high-affinity receptor for diphtheria toxin (DT) in its transmembrane form (proHB-EGF). HB-EGF was immunolocalized within human benign and malignant prostatic tissues, using monospecific antibodies directed against the mature protein and against the cytoplasmic domain of proHB-EGF. Prostate carcinoma cells, normal glandular epithelial cells, undifferentiated fibroblasts, and inflammatory cells were not decorated by the anti-HB-EGF antibodies; however, interstitial and vascular smooth muscle cells were highly reactive, indicating that the smooth muscle compartments are the major sites of synthesis and localization of HB-EGF within the prostate. In marked contrast to prostatic epithelium, proHB-EGF was immunolocalized to seminal vesicle epithelium, indicating differential regulation of HB-EGF synthesis within various epithelia of the reproductive tract. HB-EGF was not overexpressed in this series of cancer tissues, in comparison to the benign tissues. In experiments with LNCaP human prostate carcinoma cells, HB-EGF was similar in potency to epidermal growth factor (EGF) in stimulating cell growth. Exogenous HB-EGF and EGF each activated HER1 and HER3 receptor tyrosine kinases and induced tyrosine phosphorylation of cellular proteins to a similar extent. LNCaP cells expressed detectable but low levels of HB-EGF mRNA; however, proHB-EGF was detected at the cell surface indirectly by demonstration of specific sensitivity to DT. HB-EGF is the first HER1 ligand to be identified predominantly as a smooth muscle cell product in the human prostate. Further, the observation that HB-EGF is similar to EGF in mitogenic potency for human prostate carcinoma cells suggests that it may be one of the hypothesized stromal mediators of prostate cancer growth. J. Cell. Biochem. 68:328-338, 1998. © 1998 Wiley-Liss, Inc.  相似文献   

13.
Vero cell heparin-binding epidermal growth factor-like growth factor (HB-EGF) is synthesized as a 20- to 30-kDa membrane-anchored HB-EGF precursor (proHB-EGF). Localization and processing of proHB-EGF, both constitutive and 12-O-tetradecanoylphorbol 13-acetate (TPA)-inducible, was examined in Vero cells overexpressing recombinant HB-EGF (Vero H cells). Flow cytometry and fluorescence immunostaining demonstrated that Vero cell proHB-EGF is cell surface-associated and localized at the interface of cell to cell contact. Cell surface biotinylation and immunoprecipitation detected a 20- to 30-kDa heterogeneous proHB-EGF species. Vero H cell surface proHB-EGF turned over constitutively with a half-life of 1.5 h. Some of the 20- to 30-kDa cell surface-associated proHB-EGF was processed and a 14-kDa species of bioactive HB-EGF was released slowly, but most of the proHB-EGF was internalized, displaying a diffuse immunofluorescent staining pattern and accumulation of proHB-EGF in endosomes. Addition of TPA induced a rapid processing of proHB-EGF at a Pro148-Val149 site with a half-life of 7min. The TPA effect was abrogated by the protein kinase C inhibitors, staurosporine and H7. Kinetic analysis showed that loss of cell surface proHB-EGF is maximal at 30 min after addition of TPA and that proHB-EGF is resynthesized and the initial cell surface levels are regained within 12-24 h. Loss of cell surface proHB-EGF was concomitant with appearance of 14- and 19-kDa soluble HB-EGF species in conditioned medium. Vero H cell-associated proHB-EGF is a juxtacrine growth factor for EP170.7 cells in coculture. Processing of proHB-EGF resulted in loss of juxtacrine activity and a simultaneous increase in soluble HB-EGF paracrine mitogenic activity. It was concluded that processing regulates HB-EGF bioactivity by converting it from a cell-surface juxtacrine growth factor to a processed, released soluble paracrine growth factor.  相似文献   

14.
15.
Blastocyst implantation requires molecular and cellular interactions between the uterine luminal epithelium and blastocyst trophectoderm. We have previously shown that heparin-binding EGF-like growth factor (HB-EGF) is induced in the mouse luminal epithelium solely at the site of blastocyst apposition at 16:00 hours on day 4 of pregnancy prior to the attachment reaction (22:00-23:00 hours), and that HB-EGF promotes blastocyst growth, zona-hatching and trophoblast outgrowth. To delineate which EGF receptors participate in blastocyst activation, the toxicity of chimeric toxins composed of HB-EGF or TGF-(&agr;) coupled to Pseudomonas exotoxin (PE) were used as measures of receptor expression. TGF-(&agr;) or HB-EGF binds to EGF-receptor (ErbB1), while HB-EGF, in addition, binds to ErbB4. The results indicate that ErbB1 is inefficient in mediating TGF-(&agr;)-PE or HB-EGF-PE toxicity as follows: (i) TGF-(&agr;)-PE was relatively inferior in killing blastocysts, 100-fold less than HB-EGF-PE, (ii) analysis of blastocysts isolated from cross-bred egfr+/- mice demonstrated that HB-EGF-PE, but not TGF-(&agr;)-PE, killed egfr-/- blastocysts, and (iii) blastocysts that survived TGF-(&agr;)-PE were nevertheless killed by HB-EGF-PE. HB-EGF-PE toxicity was partially mediated by cell surface heparan sulfate proteoglycans (HSPG), since a peptide corresponding to the heparin-binding domain of HB-EGF as well as heparitinase treatment protected the blastocysts from the toxic effects of HB-EGF-PE by about 40%. ErbB4 is a candidate for being an HB-EGF-responsive receptor since RT-PCR analysis demonstrated that day 4 mouse blastocysts express two different erbB4 isoforms and immunostaining with anti-ErbB4 antibodies confirmed that ErbB4 protein is expressed at the apical surface of the trophectoderm cells. It is concluded that (i) HB-EGF interacts with the blastocyst cell surface via high-affinity receptors other than ErbB1, (ii) the HB-EGF interaction with high-affinity blastocysts receptors is regulated by heparan sulfate, and (iii) ErbB4 is a candidate for being a high-affinity receptor for HB-EGF on the surface of implantation-competent blastocysts.  相似文献   

16.
《Gene》1997,195(1):81-86
In this paper we report the cloning and characterization of cDNA encoding a novel, short form of heparin-binding EGF-like growth factor (SF HB-EGF), and show expression of specific mRNA in various tissues and cell types. Our data suggest that SF HB-EGF mRNA is a product of alternative splicing. Like normal HB-EGF, SF HB-EGF contains the signal peptide, the propeptide, the heparin-binding domain and the first two conservative disulfide loops of the EGF unit. Instead of the third disulfide loop, the spacer, the transmembrane and the cytoplasmic domains, SF HB-EGF has a nine amino acid tail.  相似文献   

17.
Heparin-binding EGF-like growth factor (HB-EGF), which is a potent mitogen for vascular smooth muscle cells (SMC) and fibroblasts, has been reported to be strongly implicated in atherosclerosis and wound healing. HB-EGF mRNA is known to be induced by thrombin, angiotensin-II, basic fibroblast growth factor (bFGF), platelet-derived growth factor (PDGF), and HB-EGF itself in SMC. In vascular endothelial cells (EC), its mRNA is induced by tumor necrosis factor-alpha and interleukin-1beta. Only phorbol 12-myristate 13-acetate is a common inducer for HB-EGF mRNA. The present study shows that calcium ionophore A23187 also induced HB-EGF mRNA in both SMC and in EC and that both intracellular reactive oxygen species (ROS) and an increase in calcium levels were essential for the induction of this growth factor mRNA. While HB-EGF caused an increase in both intracellular ROS and calcium in SMC, it increased only calcium, but not the intracellular ROS in EC. When the intracellular ROS was elevated by treatment with hydrogen peroxide (H2O2) or by depletion of glutathione by buthionine sulfoxamine, both HB-EGF and thrombin were observed to upregulate HB-EGF mRNA in EC. These data suggest that H2O2, produced by activated leukocytes in inflammatory lesions, upregulates HB-EGF mRNA by cooperating with thrombin, angiotensin-II, and the above growth factors. Since activated macrophages under the EC are thought to elevate the ROS in neighboring EC, this mechanism might play a major role in the progression of atherosclerosis and for wound healing.  相似文献   

18.
A G protein-coupled receptor agonist, angiotensin II (AngII), induces epidermal growth factor (EGF) receptor (EGFR) transactivation possibly through metalloprotease-dependent, heparin-binding EGF (HB-EGF) shedding. Here, we have investigated signal transduction of this process by using COS7 cells expressing an AngII receptor, AT1. In these cells AngII-induced EGFR transactivation was completely inhibited by pretreatment with a selective HB-EGF inhibitor, or with a metalloprotease inhibitor. We also developed a COS7 cell line permanently expressing a HB-EGF construct tagged with alkaline phosphatase, which enabled us to measure HB-EGF shedding quantitatively. In the COS7 cell line AngII stimulated release of HB-EGF. This effect was mimicked by treatment either with a phospholipase C activator, a Ca2+ ionophore, a metalloprotease activator, or H2O2. Conversely, pretreatment with an intracellular Ca2+ antagonist or an antioxidant blocked AngII-induced HB-EGF shedding. Moreover, infection of an adenovirus encoding an inhibitor of G(q) markedly reduced EGFR transactivation and HB-EGF shedding through AT1. In this regard, AngII-stimulated HB-EGF shedding was abolished in an AT1 mutant that lacks G(q) protein coupling. However, in cells expressing AT1 mutants that retain G(q) protein coupling, AngII is still able to induce HB-EGF shedding. Finally, the AngII-induced EGFR transactivation was attenuated in COS7 cells overexpressing a catalytically inactive mutant of ADAM17. From these data we conclude that AngII stimulates a metalloprotease ADAM17-dependent HB-EGF shedding through AT1/G(q)/phospholipase C-mediated elevation of intracellular Ca2+ and reactive oxygen species production, representing a key mechanism indispensable for EGFR transactivation.  相似文献   

19.
Heparin-binding epidermal growth factor-like growth factor (HB-EGF) is a member of the epidermal growth factor family and has a variety of physiological and pathological functions. Modulation of HB-EGF activity might have a therapeutic potential in the oncology area. We explored the therapeutic possibilities by characterizing the in vitro biological activity of anti-HB-EGF monoclonal antibody Y-142. EGF receptor (EGFR) ligand and species specificities of Y-142 were tested. Neutralizing activities of Y-142 against HB-EGF were evaluated in EGFR and ERBB4 signaling. Biological activities of Y-142 were assessed in cancer cell proliferation and angiogenesis assays and compared with the anti-EGFR antibody cetuximab, the HB-EGF inhibitor CRM197, and the anti-vascular endothelial growth factor (VEGF) antibody bevacizumab. The binding epitope was determined with alanine scanning. Y-142 recognized HB-EGF as well as the EGFR ligand amphiregulin, and bound specifically to human HB-EGF, but not to rodent HB-EGF. In addition, Y-142 neutralized HB-EGF-induced phosphorylation of EGFR and ERBB4, and blocked their downstream ERK1/2 and AKT signaling. We also found that Y-142 inhibited HB-EGF-induced cancer cell proliferation, endothelial cell proliferation, tube formation, and VEGF production more effectively than cetuximab and CRM197 and that Y-142 was superior to bevacizumab in the inhibition of HB-EGF-induced tube formation. Six amino acids in the EGF-like domain were identified as the Y-142 binding epitope. Among the six amino acids, the combination of F115 and Y123 determined the amphiregulin cross-reactivity and that F115 accounted for the species selectivity. Furthermore, it was suggested that the potent neutralizing activity of Y-142 was derived from its recognition of R142 and Y123 and its high affinity to HB-EGF. Y-142 has a potent HB-EGF neutralizing activity that modulates multiple biological activities of HB-EGF including cancer cell proliferation and angiogenic activities. Y-142 may have a potential to be developed into a therapeutic agent for the treatment of HB-EGF-dependent cancers.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号