首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 296 毫秒
1.
Osamu Ueno 《Planta》1996,199(3):394-403
Eleocharis vivipara link, an amphibious leafless sedge, develops traits of C4 photosynthesis and Kranz anatomy in the terrestrial form but develops C3-like traits with non-Kranz anatomy when submerged. The cellular localization of C3 and C4 enzymes in the photosynthetic cells of the two forms was investigated by immunogold labeling and electron microscopy. The terrestrial form has mesophyll cells and three kinds of bundle sheath cell, namely, parenchyma sheath cells, non-chlorophyllous mestome sheath cells, and Kranz cells. Phosphoenol-pyruvate carboxylase (PEPCase) was present in the cytosol of both the mesophyll cells and the parenchyma sheath cells, with higher-density labeling in the latter, but not in the Kranz cells. Pyruvate, Pi dikinase (PPDK) was found at high levels in the chloroplasts of both the mesophyll cells and the parenchyma sheath cells with some-what stronger labeling in the latter. This enzyme was also absent from the Kranz cells. Ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) was found in the chloroplasts of all types of photosynthetic cell, but labeling was significantly less intense in the parenchyma sheath cells than in other types of cell. The submerged form also has three types of photosynthetic cell, as well as non-chlorophyllous mestome sheath cells, but it lacks the traits of Kranz anatomy as a consequence of modification of the cells. Rubisco was densely distributed in the chloroplasts of all the photosynthetic cells. However, PEPCase and PPDK were found in both the mesophyll cells and the parenchyma sheath cells but at lower levels than in the terrestrial form. These data reveal that the terrestrial form has a unique pattern of cellular localization of C3 and C4 enzymes, and they suggest that this pattern and the changes in the extent of accumulation of the various enzymes are the main factors responsible for the difference in photosynthetic traits between the two forms.Abbreviations CAM crassulacean acid metabolism - MC meso phyll cell - PSC parenchyma sheath cell - KC Kranz cell - PEP-Case phosphoenolpyruvate carboxylase - PPDK pyruvate, Pi dikinase - Rubisco ribulose-1,5-bisphosphate carboxylase/oxygenase - LS large subunit - RuBP ribulose-1,5-bisphosphate This study was supported by Grants-in-Aid from the Ministry of Agriculture, Forestry and Fisheries of Japan (Integrated Research Program for the Use of Biotechnological Procedures for Plant Breeding) and from the Science and Technology Agency of Japan (Enhancement of Center-of-Excellence, the Special Coordination Funds for Promoting Science and Technology). The author is grateful to Drs M. Matsuoka and S. Muto for providing the antisera and Dr. M. Samejima for his advice at the early stages of this study.  相似文献   

2.
Osamu Ueno 《Planta》1996,199(3):382-393
Eleocharis vivipara Link is a unique amphibious leafless sedge. The terrestrial form has Kranz anatomy and the biochemical traits of C4 plants while the submerged form develops structural and biochemical traits similar to those of C3 plants. The structural features of the culms, which are the photosynthetic organs, of the two forms were examined and compared. The culms of the terrestrial form have mesophyll cells and three bundle sheaths which consist of three kinds of cell, namely, the innermost Kranz cells that contain large numbers of organelles, the middle mestome sheath cells that lack chloroplasts, and the outermost parenchyma sheath cells that contain chloroplasts. The culms of the submerged form had a tendency towards reduction in numbers and size of Kranz cells and vascular bundles, as compared to the terrestrial form, and they had spherical mesophyll cells that were tightly packed without intercellular spaces inside the epidermis. The submerged form had a higher ratio of cross-sectional area of mesophyll cells plus parenchyma sheath cells to that of Kranz cells than the terrestrial form. The difference was mainly due to a decrease in the number and the size of the Kranz cells and to a marked increase in the size of the mesophyll cells and the parenchyma sheath cells in the submerged form, as compared to the terrestrial form. The Kranz cells of the terrestrial form had basically the structural characteristics of plants of the NAD-malic enzyme type, with the exception of the intracellular location of organelles. The Kranz cells of the submerged form included only a few organelles, and the percentage of organelles partitioned to the Kranz cells was significantly smaller in the submerged form than in the terrestrial form. In addition, the size of chloroplasts of the Kranz cells was 60–70% of that of the terrestrial form. These structural differences between the two forms may be related to the functional differences in their mechanisms of photosynthesis.Abbreviations KC Kranz cell - MC mesophyll cell - PSC parenchyma sheath cell - NAD-ME NAD-malic enzyme - VB vascular bundle This study was supported by Grants-in-Aid from the Ministry of Agriculture, Forestry and Fisheries of Japan (Integrated Research Program for the Use of Biotechnological Procedures for Plant Breeding) and from the Science and Technology Agency of Japan (Enhancement of Center-of-Excellence, the Special Coordination Funds for Promoting Science and Technology).  相似文献   

3.
The leafless amphibious sedge Eleocharis vivipara develops culms with C4 traits and Kranz anatomy under terrestrial conditions, but develops culms with C3 traits and non-Kranz anatomy under submerged conditions. The culms of the terrestrial form have high C4 enzyme activities, while those of the submerged form have decreased C4 enzyme activities. The culms accumulate ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) in the mesophyll cells (MC) and the bundle sheath cells. The Rubisco in the MC may be responsible for the operation of the C3 pathway in the submerged form. To verify the presence of the C3 cycle in the MC, we examined the effects of 3,3-dichloro-2-(dihydroxyphosphinoylmethyl) -propenoate (DCDP), an inhibitor of phosphoenolpyruvate carboxylase (PEPC), on photosynthesis in culms of the terrestrial forms of E. vivipara and related amphibious species, E. baldwinii and E. retroflexa ssp. chaetaria. When 1 mM DCDP was fed via the transpiration stream to excised leaves, photosynthesis was inhibited completely in Fimbristylis dichotoma (C4 control), but by only 20% in potato (C3 control). In the terrestrial Eleocharis plants, the degree of inhibition of photosynthesis by DCDP was intermediate between those of the C4 and C3 plants, at 58–81%. These results suggest that photosynthesis under DCDP treatment in the terrestrial Eleocharis plants is due mainly to fixation of atmospheric CO2 by Rubisco and probably the C3 cycle in the MC. These features are reminiscent of those in C4-like plants. Differential effects of DCDP on photosynthesis of the 3 Eleocharis species are discussed in relation to differences in the degree of Rubisco accumulation and C3 activity in the MC. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

4.
The effect of drought stress (DS) on photosynthesis and photosynthesis-related enzyme activities was investigated in F. pringlei (C3), F. floridana (C3–C4), F. brownii (C4-like), and F. trinervia (C4) species. Stomatal closure was observed in all species, probably being the main cause for the decline in photosynthesis in the C3 species under ambient conditions. In vitro ribulose-1,5-bisphosphate carboxylase/oxygenase (RuBPCO) and stromal fructose 1,6-bisphosphatase (sFBP) activities were sufficient to interpret the net photosynthetic rates (P N), but, from the decreases in P N values under high CO2 (C a = 700 μmol mol− 1) it is concluded that a decrease in the in vivo rate of the RuBPCO reaction may be an additional limiting factor under DS in the C3 species. The observed decline in the photosynthesis capacity of the C3–C4 species is suggested to be associated both to in vivo decreases of RuBPCO activity and of the RuBP regeneration rate. The decline of the maximum P N observed in the C4-like species under DS was probably attributed to a decrease in maximum RuBPCO activity and/or to decrease of enzyme substrate (RuBP or PEP) regeneration rates. In the C4 species, the decline of both in vivo photosynthesis and photosynthetic capacity could be due to in vivo inhibition of the phosphoenolpyruvate carboxylase (PEPC) by a twofold increase of the malate concentration observed in mesophyll cell extracts from DS plants.  相似文献   

5.
Hydrilla verticillata has a facultative single-cell system that changes from C3 to C4 photosynthesis. A NADP+-dependent malic enzyme (NADP-ME) provides a high [CO2] for Rubisco fixation in the C4 leaf chloroplasts. Of three NADP-ME genes identified, only hvme1 was up-regulated in the C4 leaf, during the light period, and it possessed a putative transit peptide. Unlike obligate C4 species, H. verticillata exhibited only one plastidic isoform that may perform housekeeping functions, but is up-regulated as the photosynthetic decarboxylase. Of the two cytosolic forms, hvme2 and hvme3, the latter exhibited the greatest expression, but was not light-regulated. The mature isoform of hvme1 had a pI of 6.0 and a molecular mass of 64 kD, as did the recombinant rHVME1m, and it formed a tetramer in the chloroplast. The recombinant photosynthetic isoform showed intermediate characteristics between isoforms in terrestrial C3 and C4 species. The catalytic efficiency of rHVME1m was four-fold higher than the cytosolic rHVME3 and two-fold higher than recombinant cytosolic isoforms of rice, but lower than plastidic forms of maize. The K m (malate) of 0.6 mM for rHVME1 was higher than maize plastid isoforms, but four-fold lower than found with rice. A comprehensive phylogenetic analysis of 25 taxa suggested that chloroplastic NADP-ME isoforms arose from four duplication events, and hvme1 was derived from cytosolic hvme3. The chloroplastic eudicot sequences were a monophyletic group derived from a cytosolic clade after the eudicot and monocot lineages separated, while the monocots formed a polyphyletic group. The findings support the hypothesis that a NADP-ME isoform with specific and unusual regulatory properties facilitates the functioning of the single-cell C4 system in H. verticillata. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

6.
Methanogenic archaea are generally thought to use tetrahydromethanopterin or tetrahydrosarcinapterin (H4SPT) rather than tetrahydrofolate (H4F) as a pterin C1 carrier. However, the genome sequence of Methanosarcina species recently revealed a cluster of genes, purN, folD, glyA and metF, that are predicted to encode for H4F-specific enzymes. We show here for folD and glyA from M. barkeri that this prediction is correct: FolD (bifunctional N5,N10-methylene-H4F dehydrogenase/N5,N10-methenyl-H4F cyclohydrolase) and GlyA (serine:H4F hydroxymethyltransferase) were heterologously overproduced in Escherichia coli, purified and found to be specific for methylene-H4F and H4F, respectively (apparent Km below 5 M). Western blot analyses and enzyme activity measurements revealed that both enzymes were synthesized in M. barkeri. The results thus indicate that M. barkeri should contain H4F, which was supported by the finding that growth of M. barkeri was dependent on folic acid and that the vitamin could be substituted by p-aminobenzoic acid, a biosynthetic precursor of H4F. From the p-aminobenzoic acid requirement, an intracellular H4F concentration of approximately 5 M was estimated. Evidence is presented that the p-aminobenzoic acid taken up by the growing cells was not required for the biosynthesis of H4SPT, which was found to be present in the cells at a concentration above 3 mM. The presence of both H4SPT and H4F in M. barkeri is in agreement with earlier isotope labeling studies indicating that there are two separate C1 pools in these methanogens.  相似文献   

7.
The amphibious leafless sedge, Eleocharis baldwinii, expresses C4 characteristics in the terrestrial form and intermediate characteristics between C3 and C4 photosynthesis in the submerged form. This study examined the immunocytochemical localization of C3 and C4 enzymes in culms of the two forms to elucidate the regulatory mechanism of photosynthetic metabolism and compared the activities and amounts of C3 and C4 enzymes with those in other Eleocharis species, E. vivipara and E. retroflexa, which show C4 characteristics on land but C3 and C4 characteristics under water. The terrestrial form of E. baldwinii exhibited a C4‐like pattern of enzyme localization. The submerged form exhibited a modified anatomy with well‐developed mesophyll cells and small Kranz cells. The C4 enzyme levels declined conspicuously in outer mesophyll cells adjacent to the epidermis, whereas Rubisco levels increased throughout the mesophyll in the submerged form. These results suggest that intermediate photosynthesis between C3 and C4 photosynthesis in the submerged form results from the predominant operation of the C3 pathway in the outer mesophyll cells and the C4 pathway in both the inner mesophyll and Kranz cells. Differences in the degree of C4 expression in terrestrial forms of Eleocharis species may cause the differences in the expression of photosynthetic modes under water.  相似文献   

8.
Wakayama M  Ohnishi J  Ueno O 《Planta》2006,223(6):1243-1255
In its leaf blade, Arundinella hirta has unusual Kranz cells that lie distant from the veins (distinctive cells; DCs), in addition to the usual Kranz units composed of concentric layers of mesophyll cells (MCs) and bundle sheath cells (BSCs; usual Kranz cells) surrounding the veins. We examined whether chlorophyllous organs other than leaf blades—namely, the leaf sheath, stem, scale leaf, and constituents of the spike—also have this unique anatomy and the C4 pattern of expression of photosynthetic enzymes. All the organs developed DCs to varying degrees, as well as BSCs. The stem, rachilla, and pedicel had C4-type anatomy with frequent occurrence of DCs, as in the leaf blade. The leaf sheath, glume, and scale leaf had a modified C4 anatomy with MCs more than two cells distant from the Kranz cells; DCs were relatively rare. An immunocytochemical study of C3 and C4 enzymes revealed that all the organs exhibited essentially the same C4 pattern of expression as in the leaf blade. In the scale leaf, however, intense expression of ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) occurred in the MCs as well as in the BSCs and DCs. In the leaf sheath, the distant MCs also expressed Rubisco. In Arundinella hirta, it seems that the ratio of MC to Kranz cell volumes, and the distance from the Kranz cells, but not from the veins, affects the cellular expression of photosynthetic enzymes. We suggest that the main role of DCs is to keep a constant quantitative balance between the MCs and Kranz cells, which is a prerequisite for effective C4 pathway operation.  相似文献   

9.
Park J  Knoblauch M  Okita TW  Edwards GE 《Planta》2009,229(2):369-382
Bienertia sinuspersici Akhani has an unusual mechanism of C4 photosynthesis which occurs within individual chlorenchyma cells. To perform C4, the mature cells have two cytoplasmic compartments consisting of a central (CCC) and a peripheral (PCC) domain containing dimorphic chloroplasts which are interconnected by cytoplasmic channels. Based on leaf development studies, young chlorenchyma cells have not developed the two cytoplasmic compartments and dimorphic chloroplasts. Fluorescent dyes which are targeted to membranes or to specific organelles were used to follow changes in cell structure and organelle distribution during formation of C4-type chlorenchyma. Chlorenchyma cell development was divided into four stages: 1—the nucleus and chloroplasts occupy much of the cytoplasmic space and only small vacuoles are formed; 2—development of larger vacuoles, formation of a pre-CCC with some scattered chloroplasts; 3—the vacuole expands, cells have directional growth; 4—mature stage, cells have become elongated, with a distinctive CCC and PCC joined by interconnecting cytoplasmic channels. By staining vacuoles with a fluorescent dye and constructing 3D images of chloroplasts, and by microinjecting a fluorescence dye into the vacuole of living cells, it was demonstrated that the mature cell has only one vacuole, which is traversed by cytoplasmic channels connecting the CCC with the PCC. Immunofluorescent studies on isolated chlorenchyma cells treated with cytoskeleton disrupting drugs suspended in different levels of osmoticum showed that both microtubules and actin filaments are important in maintaining the cytoplasmic domains. With prolonged exposure of plants to dim light, the cytoskeleton undergoes changes and there is a dramatic shift of the CCC from the center toward the distal end of the cell.  相似文献   

10.
Summary Coconut (Cocos nucifera L.) plantlets grown in vitro often grow slowly when transferred to the field possibly, due to a limited photosynthetic capacity of in vitro-cultured plantlets, apparently caused by the sucrose added to growth medium causing negative feedback for photosynthesis. In this paper, we tested the hypothesis that high exogenous sucrose will decrease ribulose 1,5-bisphosphate carboxylase (Rubisco) activity and photosynthesis resulting in limited ex vitro growth. Plantlets grown with high exogenous sucrose (90 gl−1) had reduced photosynthetic activity that resulted in a poor photosynthetic response to high levels of light and CO2. These plantlets also had low amounts of Rubisco protein, low Rubisco activity, and reduced growth despite showing high survival when transferred to the field. Decreasing the medium’s sucrose concentration from 90 to 22.5 gl−1 or 0 gl−1 resulted in increased photosynthetic response to light and CO2 along with increased Rubisco and phosphoenolpyruvate carboxylase (PEPC) activities and proteins. However, plantlets grown in vitro without exogenous sucrose died when transferred ex vitro, whereas those grown with intermediate exogenous sucrose showed intermediate photosynthetic response, high survival, fast growth, and ex vitro photosynthesis. Thus, exogenous sucrose at moderate concentration decreased photosynthesis but increased survival, suggesting that both in vitro photosynthesis and exogenous sucrose reserves contribute to field establisment and growth of coconut plantlets cultured in vitro.  相似文献   

11.
The ba 3-type cytochrome c oxidase from Thermus thermophilus is phylogenetically very distant from the aa 3–type cytochrome c oxidases. Nevertheless, both types of oxidases have the same number of redox-active metal sites and the reduction of O2 to water is catalysed at a haem a 3-CuB catalytic site. The three-dimensional structure of the ba 3 oxidase reveals three possible proton-conducting pathways showing very low homology compared to those of the mitochondrial, Rhodobacter sphaeroides and Paracoccus denitrificans aa 3 oxidases. In this study we investigated the oxidative part of the catalytic cycle of the ba 3 -cytochrome c oxidase using the flow-flash method. After flash-induced dissociation of CO from the fully reduced enzyme in the presence of oxygen we observed rapid oxidation of cytochrome b (k ≅ 6.8 × 104 s−1) and formation of the peroxy (PR) intermediate. In the next step a proton was taken up from solution with a rate constant of ~1.7 × 104 s−1, associated with formation of the ferryl (F) intermediate, simultaneous with transient reduction of haem b. Finally, the enzyme was oxidized with a rate constant of ~1,100 s−1, accompanied by additional proton uptake. The total proton uptake stoichiometry in the oxidative part of the catalytic cycle was ~1.5 protons per enzyme molecule. The results support the earlier proposal that the PR and F intermediate spectra are similar (Siletsky et al. Biochim Biophys Acta 1767:138, 2007) and show that even though the architecture of the proton-conducting pathways is different in the ba 3 oxidases, the proton-uptake reactions occur over the same time scales as in the aa 3-type oxidases. Smirnova and Zaslavsky contributed equally to the work described in this paper.  相似文献   

12.
Eleocharis vivipara Link alters its photosynthetic mode depending on the growth environment. It utilizes C4 photosynthesis when grown under terrestrial conditions (terrestrial form) and C3 photosynthesis when grown under submerged conditions (submerged form). The photosynthetic organ (the mature internodal region of the culm) of the terrestrial form shows typical Kranz anatomy with well-developed bundle sheath cells, while the bundle sheath cells of the submerged form are not developed. In the mature internodal region of the terrestrial form, expression of the genes encoding two carboxylases, the small subunit of ribulose 1,5-bisphosphate carboxylase (RbcS) and phosphoenolpyruvate carboxylase (Ppc), occurred mainly in bundle sheath cells and in mesophyll cells, respectively, as seen in a typical C4 leaf. In the submerged form, RbcS was expressed in both bundle sheath cells and mesophyll cells, and no expression of Ppc was observed. In the immature internodal region with undeveloped bundle sheath cells, both life forms showed the same expression pattern as in C3 plants: RbcS expression was localized in mesophyll cells and no Ppc expression was observed. The C4-type expression pattern was established concomitantly with the development of bundle sheath cells during tissue maturation in the terrestrial internode. In contrast to the terrestrial form, the submerged form maintains C3-type gene expression during tissue maturation. When the terrestrial culm was submerged, a region of transition from the terrestrial form to the submerged form was established in newly sprouting culms. In this transitional region, C4-type expression of the two carboxylase genes was still maintained even though the development of bundle sheath cells was repressed. This observation suggests that the C4-type cell-specific gene expression pattern does not depend on the formation of Kranz anatomy.  相似文献   

13.
n-Alkanes pattern in response to NaCl stress has been studied in the cyanobacterium Anabaena cylindrica. Saturated hydrocarbons were separated and identified by gas chromatography-mass spectrometry (GC-MS) using serially coupled capillary column. Light chain n-alkanes in the range of C9–C17 (43%) and heavy chain n-alkanes in range of C17–C23 (34%) and C23–C31 (23%) were identified as the major components of total hydrocarbons in the NaCl adapted cells of A. cylindrica. In contrast, NaCl-untreated cells of A. cylindrica had dominance of only long chain n-alkanes in the range of C23–C31 comprising about 94% of its total n-alkanes. The persistence of high level (43%) of short chain n-alkanes (C9–C17) in NaCl adapted cells of A. cylindrica as compared to its negligible level (0.2%) in NaCl untreated counterpart clearly indicates that NaCl stress causes the A. cylindrica to shift towards the synthesis of short chain n-alkanes.  相似文献   

14.
L-Lactate cytochrome c oxidoreductase (flavocytochrome b 2, FC b 2) from the thermotolerant methylotrophic yeast Hansenula polymorpha (Pichia angusta) is, unlike the enzyme form baker’s yeast, a thermostable enzyme potentially important for bioanalytical technologies for highly selective assays of L-lactate in biological fluids and foods. This paper describes the construction of flavocytochrome b 2 producers with over-expression of the H. polymorpha CYB2 gene, encoding FC b 2. The HpCYB2 gene under the control of the strong H. polymorpha alcohol oxidase promoter in a plasmid for multicopy integration was transformed into the recipient strain H. polymorpha C-105 (grc1 catX), impaired in glucose repression and devoid of catalase activity. A method was developed for preliminary screening of the transformants with increased FC b 2 activity in permeabilized yeast cells. The optimal cultivation conditions providing for the maximal yield of the target enzyme were found. The constructed strain is a promising FC b 2 producer characterized by a sixfold increased (to 3 μmol min?1 mg?1 protein in cell-free extract) activity of the enzyme.  相似文献   

15.
Mycobacterium austroafricanum IFP 2012, which grows on methyl tert-butyl ether (MTBE) and on tert-butyl alcohol (TBA), the main intermediate of MTBE degradation, also grows on a broad range of n-alkanes (C2 to C16). A single alkB gene copy, encoding a non-heme alkane monooxygenase, was partially amplified from the genome of this bacterium. Its expression was induced after growth on n-propane, n-hexane, n-hexadecane and on TBA but not after growth on LB. The capacity of other fast-growing mycobacteria to grow on n-alkanes (C1 to C16) and to degrade TBA after growth on n-alkanes was compared to that of M. austroafricanum IFP 2012. We studied M. austroafricanum IFP 2012 and IFP 2015 able to grow on MTBE, M. austroafricanum IFP 2173 able to grow on isooctane, Mycobacterium sp. IFP 2009 able to grow on ethyl tert-butyl ether (ETBE), M. vaccae JOB5 (M. austroaafricanum ATCC 29678) able to degrade MTBE and TBA and M. smegmatis mc2 155 with no known degradation capacity towards fuel oxygenates. The M. austroafricanum strains grew on a broad range of n-alkanes and three were able to degrade TBA after growth on propane, hexane and hexadecane. An alkB gene was partially amplified from the genome of all mycobacteria and a sequence comparison demonstrated a close relationship among the M. austroafricanum strains. This is the first report suggesting the involvement of an alkane hydroxylase in TBA oxidation, a key step during MTBE metabolism.  相似文献   

16.
Barbehenn RV  Karowe DN  Chen Z 《Oecologia》2004,140(1):96-103
The increasing CO2 concentration in Earths atmosphere is expected to cause a greater decline in the nutritional quality of C3 than C4 plants. As a compensatory response, herbivorous insects may increase their feeding disproportionately on C3 plants. These hypotheses were tested by growing the grasses Lolium multiflorum C3) and Bouteloua curtipendula C4) at ambient (370 ppm) and elevated (740 ppm) CO2 levels in open top chambers in the field, and comparing the growth and digestive efficiencies of the generalist grasshopper Melanoplus sanguinipes on each of the four plant × CO2 treatment combinations. As expected, the nutritional quality of the C3 grass declined to a greater extent than did that of the C4 grass at elevated CO2; protein levels declined in the C3 grass, while levels of carbohydrates (sugar, fructan and starch) increased. However, M. sanguinipes did not significantly increase its consumption rate to compensate for the lower nutritional quality of the C3 grass grown under elevated CO2. Instead, these grasshoppers appear to use post-ingestive mechanisms to maintain their growth rates on the C3 grass under elevated CO2. Consumption rates of the C3 and C4 grasses were also similar, demonstrating a lack of compensatory feeding on the C4 grass. We also examined the relative efficiencies of nutrient utilization from a C3 and C4 grass by M. sanguinipes to test the basis for the C4 plant avoidance hypothesis. Contrary to this hypothesis, neither protein nor sugar was digested with a lower efficiency from the C4 grass than from the C3 grass. A novel finding of this study is that fructan, a potentially large carbohydrate source in C3 grasses, is utilized by grasshoppers. Based on the higher nutrient levels in the C3 grass and the better growth performance of M. sanguinipes on this grass at both CO2 levels, we conclude that C3 grasses are likely to remain better host plants than C4 grasses in future CO2 conditions.  相似文献   

17.
R.Z. Wang 《Photosynthetica》2005,43(4):535-549
Of the total 570 species, 194 species in 116 genera and 52 families were found with C3 photosynthesis, 24 species in 17 genera and 6 families with C4 photosynthesis, and 2 species in 1 genera and 1 family with CAM photosynthesis. 90 % of the total species can be found in Changbai Mountain flora, more a half (69 %) in North China flora, and about 1/3 in Mongolian flora and Xinan flora, respectively. The occurrence of C4 species was not as common as that in adjacent grasslands and deserts, but relatively more than in the adjacent forests. Of the total 24 C4 species, 63 % C4 species (15 of 24) was found in Gramineae. Nine life form types can be found, reflecting the moist climate in the region, especially the occurrence of epiphyte and liana forms. Relatively more geophyte life form plants suggested the winter in the region was much colder than in grasslands. These indicated that both ecological studies and land management decisions must take into account plant photosynthetic pathway and life form patterns, for both of them are closely related to climatic changes and land use.  相似文献   

18.

Background  

The key enzymes of photosynthetic carbon assimilation in C4 plants have evolved independently several times from C3 isoforms that were present in the C3 ancestral species. The C4 isoform of phosphoenolpyruvate carboxylase (PEPC), the primary CO2-fixing enzyme of the C4 cycle, is specifically expressed at high levels in mesophyll cells of the leaves of C4 species. We are interested in understanding the molecular changes that are responsible for the evolution of this C4-characteristic PEPC expression pattern, and we are using the genus Flaveria (Asteraceae) as a model system. It is known that cis-regulatory sequences for mesophyll-specific expression of the ppcA1 gene of F. trinervia (C4) are located within a distal promoter region (DR).  相似文献   

19.
Yoshimura Y  Kubota F  Ueno O 《Planta》2004,220(2):307-317
In C4 plants, photorespiration is decreased relative to C3 plants. However, it remains unclear how much photorespiratory capacity C4 leaf tissues actually have. We thoroughly investigated the quantitative distribution of photorespiratory organelles and the immunogold localization of the P protein of glycine decarboxylase (GDC) in mesophyll (M) and bundle sheath (BS) cells of various C4 grass species. Specific differences occurred in the proportions of mitochondria and peroxisomes in the BS cells (relative to the M cells) in photosynthetic tissues surrounding a vein: lower in the NADP-malic enzyme (NADP-ME) species having poorly formed grana in the BS chloroplasts, and higher in the NAD-malic enzyme (NAD-ME) and phosphoenolpyruvate carboxykinase (PCK) species having well developed grana. In all C4 species, GDC was localized mainly in the BS mitochondria. When the total amounts of GDC in the BS mitochondria per unit leaf width were estimated from the immunogold labeling density and the quantity of mitochondria, the BSs of NADP-ME species contained less GDC than those of NAD-ME or PCK species. This trend was also verified by immunoblot analysis of leaf soluble protein. There was a high positive correlation between the degree of granal development (granal index) in the BS chloroplasts and the total amount of GDC in the BS mitochondria. The variations in the structural and biochemical features involved in photorespiration found among C4 species might reflect differences in the O2/CO2 partial pressure and in the potential photorespiratory capacity of the BS cells.Abbreviations BS Bundle sheath - GDC Glycine decarboxylase - M Mesophyll - NAD-ME NAD-malic enzyme - NADP-ME NADP-malic enzyme - PCK Phosphoenolpyruvate carboxykinase  相似文献   

20.
Clusia minor L. is a C3-CAM species in which Crassulacean acid Metabolism (CAM) is induced, among other factors, by water deficit. We propose that CAM induction by natural drought in C. minor shifts the sap flow pattern from daytime to a night-time one, and that the decreased osmotic potential due to increased malate content in droughted plants aids in the increase in nocturnal sap flow. In order to test these hypotheses, we followed for 2 years the seasonal changes in parameters of water relationships and sap flow velocity in one single, freestanding tree growing in Caracas. Leaf water and osmotic potential were measured psychrometrically, nocturnal proton accumulation by titration of aqueous leaf extracts and sap flow density with thermal dissipation probes. Leaf water, osmotic and turgor potential remained relatively high throughout the seasons. Nocturnal proton accumulation was nil under extreme drought or after frequent and heavy rains, and high after moderate rainfall. Estimated malate and citrate concentrations contributed up to 80 and 60%, respectively, of the value of osmotic potential. The shape of the daily courses of sap flow velocity varied seasonally, from mostly diurnal during the dry season to mostly nocturnal after a short dry spell during the rainy season, when nocturnal acid accumulation attained high values. There was a strong positive relationship between the proportion of the integrated sap flow courses corresponding to the night and dawn [H+] (r 2 = 0.88). Increased nocturnal sap flow in the CAM stage of the tree of C. minor may be explained by a lower osmotic potential due to an increased acid concentration, together with increased stomatal aperture, as suggested by increased nocturnal acid accumulation probably due to nocturnal CO2 fixation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号