首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The purpose of the present study was to determine if old individuals show a greater exercise-induced decrement in motor performance and slower recovery compared to young individuals. Ten college-age women (23.6 years) and ten older women (67.4 years) performed an exercise consisting of 24 eccentric actions of the forearm flexors. In young subjects, eccentric exercise is known to produce repairable muscle damage. Before the exercise and for 5 days after, isometric strength, soreness, reaction time, and movement time were measured. For both groups, strength was reduced and soreness developed in the days following the exercise, generally indicating that muscle damage had occurred. The older subjects showed a slower strength recovery such that by 5 days after exercise they had not returned to their initial level of strength. There was no significant difference in soreness development between groups. Reaction time and movement time were not adversely affected by the exercise. Thus, the older subjects demonstrated a slower strength recovery after damage-inducing exercise, and, with regard to response speed, the older subjects could compensate for the impaired muscle function as well as the younger subjects.  相似文献   

2.
Dynamics of the delayed-onset muscle soreness after the exercise on a bicycle ergometer with floating seat under predominantly concentric and eccentric conditions was evaluated using three different tests. Depending on the used test, the maximum delayed-onset muscle soreness was recorded on days 1 to 3 after the exercise without significant differences between the groups performing concentric and eccentric work. A trend of a slower development of both the delayed onset of muscle soreness and the corresponding recovery was recorded by the test with a passive pressure on the working muscle group (knee joint extensor muscles). A positive correlation between the delayed-onset muscle soreness and the relative work intensity was found; the relative intensity was assessed according to the decrease in strength during the recovery period. No correlation between the delayed-onset muscle soreness and exercise duration was detected.  相似文献   

3.
The purpose of this study was to determine if pomegranate juice supplementation improved the recovery of skeletal muscle strength after eccentric exercise in subjects who routinely performed resistance training. Resistance trained men (n = 17) were randomized into a crossover design with either pomegranate juice or placebo. To produce delayed onset muscle soreness, the subjects performed 3 sets of 20 unilateral eccentric elbow flexion and 6 sets of 10 unilateral eccentric knee extension exercises. Maximal isometric elbow flexion and knee extension strength and muscle soreness measurements were made at baseline and 2, 24, 48, 72, 96, and 168 hours postexercise. Elbow flexion strength was significantly higher during the 2- to 168-hour period postexercise with pomegranate juice compared with that of placebo (main treatment effect; p = 0.031). Elbow flexor muscle soreness was also significantly reduced with pomegranate juice compared with that of placebo (main treatment effect; p = 0.006) and at 48 and 72 hours postexercise (p = 0.003 and p = 0.038, respectively). Isometric strength and muscle soreness in the knee extensors were not significantly different with pomegranate juice compared with those using placebo. Supplementation with pomegranate juice attenuates weakness and reduces soreness of the elbow flexor but not of knee extensor muscles. These results indicate a mild, acute ergogenic effect of pomegranate juice in the elbow flexor muscles of resistance trained individuals after eccentric exercise.  相似文献   

4.
The effects of performing light eccentric exercise (LB) during the period of recovery from a heavy eccentric exercise bout (HB) were studied. An experimental and a control group, each consisting of nine college age volunteers (seven women, two men) performed two HB--HB1 and HB2--14 days apart, using the elbow flexor and extensor muscles of one arm. The experimental group performed an additional LB on the day following the first HB. HB1 resulted in muscle soreness, muscle weakness, changes in elbow joint flexibility, and large delayed increases in serum creatine kinase (CK) activity. The HB2 produced smaller changes in all parameters, indicating that adaptation to the effects of eccentric exercise had occurred in the muscle. The LB did not alter muscle soreness, strength or elbow flexibility, but did reduce or delay CK activity increase after HB1. The LB had no apparent effect on adaptation to HB2.  相似文献   

5.
Unaccustomed eccentric exercise is accompanied by muscle damage and impaired glucose uptake and glycogen synthesis during subsequent recovery. Recently, it was shown that the role and regulation of glycogen in skeletal muscle are dependent on its subcellular localization, and that glycogen synthesis, as described by the product of glycogen particle size and number, is dependent on the time course of recovery after exercise and carbohydrate availability. In the present study, we investigated the subcellular distribution of glycogen in fibers with high (type I) and low (type II) mitochondrial content during post-exercise recovery from eccentric contractions. Analysis was completed on five male subjects performing an exercise bout consisting of 15 x 10 maximal eccentric contractions. Carbohydrate-rich drinks were subsequently ingested throughout a 48 h recovery period and muscle biopsies for analysis included time points 3, 24 and 48 h post exercise from the exercising leg, whereas biopsies corresponding to prior to and at 48 h after the exercise bout were collected from the non-exercising, control leg. Quantitative imaging by transmission electron microscopy revealed an early (post 3 and 24 h) enhanced storage of intramyofibrillar glycogen (defined as glycogen particles located within the myofibrils) of type I fibers, which was associated with an increase in the number of particles. In contrast, late in recovery (post 48 h), intermyofibrillar, intramyofibrillar and subsarcolemmal glycogen in both type I and II fibers were lower in the exercise leg compared with the control leg, and this was associated with a smaller size of the glycogen particles. We conclude that in the carbohydrate-supplemented state, the effect of eccentric contractions on glycogen metabolism depends on the subcellular localization, muscle fiber’s oxidative capacity, and the time course of recovery. The early enhanced storage of intramyofibrillar glycogen after the eccentric contractions may entail important implications for muscle function and fatigue resistance.  相似文献   

6.
为探讨人体进行最大等速离心运动(ECC)诱发血液肌酸激酶(CK)水平变化、血清肌酸激酶水平与肌肉损伤(EIMD)的关系,本研究筛选出150名"缺乏运动"的健康大学生为受试者,进行血样采集,进行前测包括血清肌酸激酶(CK)、最大等长肌力(MVC)、肘关节活动角度(ROM)、上臂围(CIR)、肌肉感受(VAS)。受试者进行5组×12次最大等速离心运动,运动后恢复期,将全部受试者血清肌酸激酶值进行排序:血清肌酸激酶值最高和最低20%样本,高肌酸激酶水平组(HCK组)和低肌酸激酶水平组(low LCK组),利用SPSS18.0统计学软件,以方差分析和多元回归分析进行统计分析。本研究发现全部受试者、高肌酸激酶水平组、低肌酸激酶水平组在最大等速离心运动后各评估指标均显著高于比前测结果,p<0.05。全部受试者、高肌酸激酶水平组受试者在最大等速离心运动后各指标变化皆明显大于低肌酸激酶水平组受试者,p<0.05。受试者血清肌酸激酶峰值与最大等长肌力、肘关节活动角度、上臂围、肌肉感受最大变化值有相关,p<0.05。本研究认为肌肉损伤程度与肌酸激酶水平具有显著相关,尤其高血清肌酸激酶水平者肌酸激酶水平较大程度反映肌肉损伤程度趋势。本研究表明,肘关节活动角度、上臂围具有预测肌酸激酶峰值的效果。  相似文献   

7.
The purpose of this study was to use paired-pulse transcranial magnetic stimulation (TMS) to examine the effect of eccentric exercise on short-interval intracortical inhibition (SICI) after damage to elbow flexor muscles. Nine young (22.5 ± 0.6 yr; mean ± SD) male subjects performed maximal eccentric exercise of the elbow flexor muscles until maximal voluntary contraction (MVC) force was reduced by ~40%. TMS was performed before, 2 h after, and 2 days after exercise under Rest and Active (5% MVC) conditions with motor-evoked potentials (MEPs) recorded from the biceps brachii (BB) muscle. Peripheral electrical stimulation of the brachial plexus was used to assess maximal M-waves, and paired-pulse TMS with a 3-ms interstimulus interval was used to assess changes in SICI at each time point. The eccentric exercise resulted in a 34% decline in strength (P < 0.001), a 41% decline in resting M-wave (P = 0.01), changes in resting elbow joint angle (10°, P < 0.001), and a shift in the optimal elbow joint angle for force production (18°, P < 0.05) 2 h after exercise. This was accompanied by impaired muscle strength (27%, P < 0.001) and increased muscle soreness (P < 0.001) 2 days after exercise, which is indicative of muscle damage. When the test MEP amplitudes were matched between sessions, we found that SICI was reduced by 27% in resting and 23% in active BB muscle 2 h after exercise. SICI recovered 2 days after exercise when muscle pain and soreness were present, suggesting that delayed onset muscle soreness from eccentric exercise does not influence SICI. The change in SICI observed 2 h after exercise suggests that eccentric muscle damage has widespread effects throughout the motor system that likely includes changes in motor cortex.  相似文献   

8.
It has been shown that intensive eccentric muscle actions lead to prolonged loss of muscle force and sarcolemmal damage. This may lead to a reduction in the excitability of the sarcolemma and contribute to the functional deficit. Experiments were carried out to test sarcolemmal excitability after eccentric elbow flexor exercise in humans. Electrically elicited surface compound muscle action potential (M-wave) properties from 30s stimulation trains (20Hz) were analyzed in biceps brachii muscle immediately after, 1h and 48h after the exercise. M-wave area, amplitude, root mean square and duration were reduced immediately after the eccentric exercise. However, no such reduction could be observed 48h after the exercise, although the maximal voluntary isometric and eccentric torques were still depressed by 12.2+/-9% (P<0.001) and 17.7+/-9% (P<0.001), respectively. Acute increase in plasma concentrations of K(+) and Ca(2+) were also observed after the eccentric exercise. These findings suggest that eccentric exercise may acutely decrease sarcolemmal excitability, which seems to be partially related to increased extracellular ion concentrations. However, disturbance of sarcolemmal excitability is not the major factor determining eccentric exercise induced prolonged loss of muscle strength, because no prolonged impairment was observed in any of the studied M-wave parameters.  相似文献   

9.
The aim of the present study was to investigate leucocyte markers, CD11b, CD16, CD66b, CD68, myeloperoxidase and neutrophil elastase on skeletal muscle biopsies from biceps brachii after unaccustomed eccentric exercise followed by the second bout of exercise 3 weeks later. The subjects (10 subjects received COX-2 inhibitor (Celecoxib) and 13 subjects received placebo) were divided into three categories: mild, moderate and severe effect of eccentric exercise, according to the reduction and recovery of muscle force-generating capacity after performing 70 maximal eccentric actions with elbow flexors on an isokinetic dynamometer. The results showed that the CD66b antibody was applicable for localization of neutrophils in human skeletal muscle, whereas the other studied neutrophil markers recognized also other leucocytes than neutrophils. The number of CD66b positive cells in skeletal muscle was very low and was not affected by the exercise. The macrophage marker CD68 showed reactivity also against satellite cells and fibroblast-like cells in skeletal muscle and therefore cannot be applied as a quantitative value for inflammatory cells. Skeletal muscle fibre injury, shown as dystrophin negative fibres, was observed approximately in half of the biopsies at 4 and 7 days after the first exercise bout in the categories moderate and severe effect of eccentric exercise. These subjects represent the most prominent loss in muscle force-generating capacity both at the category and the individual levels. Furthermore, deformed skeletal muscle fibres were observed in five subjects in these categories after the second bout of exercise. The present results suggest that neutrophils are not involved in skeletal muscle fibre injury and the reduction in muscle force-generating capacity after a single bout of eccentric exercise is a good indirect indicator of muscle damage in humans. Furthermore, prolonged regeneration process could be one of the reasons for impaired peripheral muscle function after high-force eccentric exercise.  相似文献   

10.
High force eccentric muscle contractions can result in delayed onset muscle soreness (DOMS), prolonged loss of muscle strength, decreased range of motion, muscle swelling and an increase of muscle proteins in the blood. At the ultrastructural level Z-line streaming and myofibrillar disruptions have been taken as evidence for muscle damage. In animal models of eccentric exercise-induced injury, disruption of the cytoskeleton and the sarcolemma of muscle fibres occurs within the first hour after the exercise, since a rapid loss of staining of desmin, a cytoskeletal protein, and the presence of fibronectin, a plasma and extracellular protein, are observed within the muscle fibres. In the present study, biopsies from subjects who had performed different eccentric exercises and had developed DOMS were examined. Our aim was to determine whether eccentric exercise leading to DOMS causes sarcolemmal disruption and loss of desmin in humans. Our study shows that even though the subjects had DOMS, muscle fibres had neither lost staining for desmin nor contained plasma fibronectin. This study therefore does not support previous conclusions that there is muscle fibre degeneration and necrosis in human skeletal muscle after eccentric exercise leading to DOMS. Our data are in agreement with the recent findings that there is no inflammatory response in skeletal muscle following eccentric exercise in humans. In combination, these findings should stimulate the search for other mechanisms explaining the functional and structural alterations in human skeletal muscle after eccentric exercise.  相似文献   

11.
This study compared resistance-trained and untrained men for changes in commonly used indirect markers of muscle damage after maximal voluntary eccentric exercise of the elbow flexors. Fifteen trained men (28.2 +/- 1.9 years, 175.0 +/- 1.6 cm, and 77.6 +/- 1.9 kg) who had resistance trained for at least 3 sessions per week incorporating exercises involving the elbow flexor musculature for an average of 7.7 +/- 1.4 years, and 15 untrained men (30.0 +/- 1.5 years, 169.8 +/- 7.4 cm, and 79.9 +/- 4.4 kg) who had not performed any resistance training for at least 1 year, were recruited for this study. All subjects performed 10 sets of 6 maximal voluntary eccentric actions of the elbow flexors of one arm against the lever arm of an isokinetic dynamometer moving at a constant velocity of 90 degrees .s. Changes in maximal voluntary isometric and isokinetic torque, range of motion, upper arm circumference, plasma creatine kinase activity, and muscle soreness before, immediately after, and for 5 days after exercise were compared between groups. The trained group showed significantly (P < 0.05) smaller changes in all of the measures except for muscle soreness and faster recovery of muscle function compared with the untrained group. For example, muscle strength of the trained group recovered to the baseline by 3 days after exercise, where the untrained group showed approximately 40% lower strength than baseline. These results suggest that resistance-trained men are less susceptible to muscle damage induced by maximal eccentric exercise than untrained subjects.  相似文献   

12.
This investigation examined the effects of a protease supplement on selected markers of muscle damage and delayed-onset muscle soreness (DOMS). The study used a double-blinded, placebo-controlled, crossover design. Twenty men (mean +/- SD age = 21.0 +/- 3.1 years) were randomly assigned to either a supplement group (SUPP) or a placebo group (PLAC). All subjects were tested for unilateral isometric forearm flexion strength, hanging joint angle, relaxed arm circumference, subjective pain rating, and plasma creatine kinase activity and myoglobin concentration. The testing occurred before (TIME1), immediately after (TIME2), and 24 (TIME3), 48 (TIME4), and 72 (TIME5) hours after a bout of eccentric exercise. During these tests, the subjects in the SUPP group ingested a protease supplement. The subjects in the PLAC group took microcrystalline cellulose. After testing at TIME5 and 2 weeks of rest, the subjects were crossed over into the opposite group and performed the same tests as during visits 1-5, but with the opposite limb. Overall, isometric forearm flexion strength was greater (7.6%) for the SUPP group than for the PLAC group, despite nearly identical (difference = 0.14 N.m, p = 0.940) mean strength values before (TIME1) the eccentric exercise protocol. There were no between-group differences for hanging joint angle, relaxed arm circumference, subjective pain ratings, and plasma creatine kinase activity and myoglobin concentration from TIME1 to TIME5. These findings provided initial evidence that the protease supplement may be useful for reducing strength loss immediately after eccentric exercise and for aiding in short-term strength recovery. The protease supplement had no effect, however, on the perception of pain associated with DOMS or the blood markers of muscle damage.  相似文献   

13.
Eccentric and concentric force and median frequency of the EMG power spectrum were measured during and immediately after maximal eccentric (EE) and concentric (CE) exercise and during the recovery period of 1 week. Eight male subjects performed EE and CE consisting of 100 maximal eccentric and concentric actions with elbow flexors during two separate exercise sessions. When comparing maximal eccentric and concentric actions before the exercises, the average force was higher (P<0.001) in eccentric than in concentric but the average rectified EMG (aEMG) values were the same with the two types of action. The average eccentric force decreased 53.3% after EE and 30.6% after CE, while the average concentric force decreased 49.9% after CE and 38.4% after EE. The recovery was slower after EE. The median frequency (MF) of biceps brachii (BB) in eccentric action decreased during both EE (P<0.01) and CE (P<0.05). It recovered within 2 days of the exercises but was lower again (P<0.01) 7 days after EE. In concentric action MF of BB decreased during CE (P<0.01), while no changes were observed in EE. Blood lactate concentration increased (P<0.001) in both exercises and serum creatine kinase (CK) activity increased in EE only, being significantly higher (P<0.001) 7 days after than before the eccentric exercise. In the absolute scale, the eccentric force in EE decreased more than the concentric force in CE (P<0.01). Fatigue response was action type specific as seen in the greater reduction in the force of the exercise type. MF decreased immediately after both exercises, which may be at least partly related to elevated blood lactate concentration. Eccentric actions led to possible muscle damage as indicated by elevated serum CK and muscle soreness, and therefore to longer recovery as compared to concentric actions. Decreased MF after EE may be indicative of selective damage of the fast twitch fibers in this type of exercise.  相似文献   

14.
Eccentric exercise-induced muscle damage impairs muscle glycogen repletion   总被引:5,自引:0,他引:5  
Five healthy untrained young male subjects were studied before, immediately after, and 10 days after a 45-min bout of eccentric exercise on a cycle ergometer (201 W). The subjects were sedentary at all other times and consumed a eucaloric meat-free diet. Needle biopsies of the vastus lateralis muscle were examined for intracellular damage and glycogen content. Immediately after exercise, muscle samples showed myofibrillar tearing and edema. At 10 days, there was myofibrillar necrosis, inflammatory cell infiltration, and no evidence of myofibrillar regeneration. Glycogen utilization during the exercise bout was 33 mmol glycosyl units/kg muscle, consistent with the metabolic intensity of 44% of maximal O2 uptake; however, the significant glycogen use by type II fibers contrasted with concentric exercise performed at this intensity. At 10 days after exercise, muscle glycogen was still depleted, in both type I and II fibers. It is possible that the alterations in muscle ultrastructures were related to the lack of repletion of muscle glycogen. Damage produced by eccentric exercise was more persistent than previously reported, indicating that more than 10 days may be necessary for recovery of muscle ultrastructure and carbohydrate reserves.  相似文献   

15.
Exercise-induced muscle damage, repair, and adaptation in humans   总被引:6,自引:0,他引:6  
This study examined exercise-induced muscle damage, repair, and rapid adaptation. Eight college-age women performed three eccentric exercises of the forearm flexors. One arm performed 70 maximal contractions (70-MAX condition), and the other arm performed 24 maximal contractions (24-MAX) followed 2 wk later by 70 maximal contractions (70-MAX2). Criterion measures of serum creatine kinase, muscle soreness and pain, isometric strength, and muscle shortening were assessed before, immediately after, and for 5 days after each exercise. Significant changes in all criterion measures were found after the 70-MAX exercise with a slow recovery that was not complete by day 5 after exercise. The 24-MAX condition showed only small changes in the criterion measures. Changes in the criterion measures after the 70-MAX2 exercise were significantly smaller than those after the 70-MAX exercise. Results from this study, with regard to the ability of the muscle to adapt to exercise-induced damage, suggest that an adaptation takes place such that the muscle is more resistant to damage and any damage that does occur is repaired at a faster rate. It is also clear that a relatively small insult will produce this adaptation.  相似文献   

16.
This study assessed muscle fatigue patterns of the elbow flexors in untrained men and women to determine if sex differences exist during acute maximal eccentric exercise. High-intensity eccentric exercise is often used by athletes to elicit gains in muscle strength and size gains. Development of fatigue during this type of exercise can increase risk of injury; therefore, it is important to understand fatigue patterns during eccentric exercise to minimize injury risk exposure while still promoting training effects. While many isometric exercise studies have demonstrated that women show less fatigue, the patterns of fatigue during purely eccentric exercise have not been assessed in men and women. Based on the lack of sex differences in overall strength loss immediately post-eccentric exercise, it was hypothesized that women and men would have similar relative fatigue pattern responses (i.e., change from baseline) during a single bout of maximal eccentric exercise. Forty-six subjects (24 women and 22 men) completed 5 sets of 10 maximal eccentric contractions on an isokinetic dynamometer. Maximal voluntary isometric contraction strength was assessed at baseline and immediately following each exercise set. Maximal eccentric torque and contractile properties (i.e., contraction time, work, half relaxation time, and maximal rate of torque development) were calculated for each contraction. Men and women demonstrated similar relative isometric (32% for men and 39% for women) and eccentric (32% for men and 39% for women) fatigue as well as similar deficits in work done and rates of torque development and relaxation during exercise (p > 0.05). Untrained men and women displayed similar relative responses in all measures of muscle function during a single bout of maximal eccentric exercise of the elbow flexors. Thus, there is no reason to suspect that women may be more vulnerable to fatigue-related injury.  相似文献   

17.
Ingestion of a protein-amino acid mixture (Pro; wheat protein hydrolysate, leucine, and phenylalanine) in combination with carbohydrate (CHO; 0.8 g x kg(-1) x h(-1)) has been shown to increase muscle glycogen synthesis after exercise compared with the same amount of CHO without Pro. The aim of this study was to investigate whether coingestion of Pro also increases muscle glycogen synthesis when 1.2 g CHO. kg(-1). h(-1) is ingested. Eight male cyclists performed two experimental trials separated by 1 wk. After glycogen-depleting exercise, subjects received either CHO (1.2 g x kg(-1) x h(-1)) or CHO+Pro (1.2 g CHO x kg(-1) x h(-1) + 0.4 g Pro x kg(-1) x h(-1)) during a 3-h recovery period. Muscle biopsies were obtained immediately, 1 h, and 3 h after exercise. Blood samples were collected immediately after the exercise bout and every 30 min thereafter. Plasma insulin was significantly higher in the CHO+Pro trial compared with the CHO trial (P < 0.05). No difference was found in plasma glucose or in rate of muscle glycogen synthesis between the CHO and the CHO+Pro trials. Although coingestion of a protein amino acid mixture in combination with a large CHO intake (1.2 g x kg(-1) x h(-1)) increases insulin levels, this does not result in increased muscle glycogen synthesis.  相似文献   

18.
This study aimed to investigate the motor unit firing property immediately after concentric or eccentric contraction exercise. Eighteen healthy men performed repetitive maximal isokinetic knee extension exercises with only concentric or eccentric contraction until they exerted less than 80% of the baseline strength. Before and after the fatiguing exercise, high-density surface electromyography of the vastus lateralis was recorded during submaximal ramp-up isometric contraction and individual motor units were identified. Only motor units that could be tracked before and after exercise were analyzed. Muscle cross-sectional area of the vastus lateralis was measured using ultrasound, and electrically evoked torque was recorded before and after the exercise. Sixty-five and fifty-three motor units were analyzed before and after the concentric and eccentric contractions, respectively. The results showed that motor units with moderate to high recruitment thresholds significantly decreased recruitment thresholds under both conditions, and the motor unit discharge rates significantly increased after concentric contraction compared to eccentric contraction. A greater muscle cross-sectional area was observed with concentric contraction. The evoked torque was significantly decreased under both conditions, but no difference between the conditions. These results suggest that fatiguing exercise with concentric contraction contributes to greater neural input to muscles and metabolic responses than eccentric contraction.  相似文献   

19.
This study investigated whether the second eccentric exercise performed 3 days after the initial bout would exacerbate muscle damage and retard the recovery. Fifty-one athletes performed 30 eccentric actions of the elbow flexors using a dumbbell weighted 100% of the maximal isometric force (MIF) at the elbow joint angle of 90 degrees (ECC1). Three days after ECC1, all subjects except those in the control group (n = 12) performed the second bout (ECC2) with the same (100%) intensity (n = 12), 90% (n = 13), or 80% (n = 14) of the ECC1. Some subjects, especially in the 100% group, required spotting for ECC2 but made maximal effort to complete the exercise. MIF, range of motion, upper-arm circumference, muscle soreness, muscle proteins in the blood, and ultrasound images were used to assess muscle damage. Changes in these measures for 9 days following ECC1 were compared among groups by 2-way analysis of variance (ANOVA) with repeated measures. All criterion measures changed significantly after ECC1; however, no significant differences between the groups were evident for any of the changes in the measures. These results suggest that it is possible for athletes to complete the second bout if the intensity is reduced 10-20% from the initial bout. No significant differences between the control group and other groups indicate that the second eccentric exercise performed 3 days after the initial bout does not exacerbate muscle damage and retard the recovery regardless of the intensity of the second bout. It is concluded that the elbow flexors can perform high-intensity eccentric exercise in the early stage of recovery from the initial bout and are not damaged further by performing a subsequent bout 3 days after the first.  相似文献   

20.
The effect of eccentric contraction on force generation and intracellular pH (pH(i)) regulation was investigated in rat soleus muscle. Eccentric muscle damage was induced by stretching muscle bundles by 30% of the optimal length for a series of 10 tetani. After eccentric contractions, there was reduction in force at all stimulation frequencies and a greater reduction in relative force at low-stimulus frequencies. There was also a shift of optimal length to longer lengths. pH(i) was measured with a pH-sensitive probe, 2',7'-bis-(2-carboxyethyl)-5(6)-carboxyfluorescein AM. pH(i) regulation was studied by inducing an acute acid load with the removal of 20-40 mM ammonium chloride, and the rate of pH(i) recovery was monitored. The acid extrusion rate was obtained by multiplying the rate of pH(i) recovery by the buffering power. The resting pH(i) after eccentric contractions was more acidic, and the rate of recovery from acid load post-eccentric contractions was slower than that from postisometric controls. This is further supported by the slower acid extrusion rate. Amiloride slowed the recovery from an acid load in control experiments. Because the Na(+)/H(+) exchanger is the dominant mechanism for the recovery of pH(i), this suggests that the impairment in the ability of the muscle to regulate pH(i) after eccentric contractions is caused by decreased activity of the Na(+)/H(+) exchanger.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号