首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In osteoclasts, polyphosphoinositides such as phosphatidylinositol 4,5 bisphosphate (PI(4,5)P2) and phosphatidylinositol 3,4,5 trisphosphate (PI(3,4,5)P3) are produced in response to integrin alphavbeta3 signaling and they have a critical role in actin cytoskeleton remodeling. The levels of PI(4,5)P2 and PI(3,4,5)P3 are regulated by Rho GTPase through the activation of phosphatidylinositol 4-phosphate 5-kinase (PI4P-5 kinase) and phospatidylinositol 3-kinase (PI3 kinase), respectively. Interaction of PI(4,5)P2 with gelsolin and Wiscott-Aldrich syndrome protein (WASP) is critical for podosome assembly/disassembly and actin ring formation in osteoclasts. Interaction of PI(3,4,5)P3 with gelsolin functions in orchestrating the podosome signaling complex consisting of several key signaling molecules. Gelsolin deficiency has been shown to block podosome assembly and motility in mouse osteoclasts. However, these osteoclasts are able to form a WASP-containing actin ring and retain their resorptive function. The TAT-mediated delivery of gelsolin phosphoinositide-binding domains into osteoclasts resulted in production of podosome clusters and disruption of actin ring formation. Hence, these osteoclasts were hypomotile and less resorptive. Our observations suggest that both PI(4,5)P2 and PI(3,4,5)P3 are involved in regulating osteoclast functions through modulation of severing, capping, and nucleating functions of actin-binding proteins.  相似文献   

2.
Trypanosoma cruzi, the causative agent of Chagas' disease in humans, is an intracellular protozoan parasite with the ability to invade a wide variety of mammalian cells by a unique and remarkable process in cell biology that is poorly understood. Here we present evidence suggesting a role for the host phosphatidylinositol (PI) 3-kinases during T. cruzi invasion. The PI 3-kinase inhibitor wortmannin marked inhibited T. cruzi infection when macrophages were pretreated for 20 min at 37 degrees C before inoculation. Infection of macrophages with T. cruzi markedly stimulated the formation of the lipid products of the phosphatidylinositol (PI) 3-kinases, PI 3-phospate, PI 3,4-biphosphate, and PI 3,4,5-triphosphate, but not PI 4-phosphate or PI 4,5-biphosphate. This activation was inhibited by wortmannin. Infection with T. cruzi also stimulated a marked increase in the in vitro lipid kinase activities that are present in the immunoprecipitates of anti-p85 subunit of class I PI 3-kinase and anti-phosphotyrosine. In addition, T. cruzi invasion also activated lipid kinase activity found in immunoprecipitates of class II and class III PI 3-kinases. These data demonstrate that T. cruzi invasion into macrophages strongly activates separated PI 3-kinase isoforms. Furthermore, the inhibition of the class I and class III PI 3-kinase activities abolishes the parasite entry into macrophages. These findings suggest a prominent role for the host PI 3-kinase activities during the T. cruzi infection process.  相似文献   

3.
Motile nonmuscle cells concentrate phosphatidylinositol 3,4,5-trisphosphate (PtdIns(3,4,5)P3) and phosphatidylinositol 4,5-bisphosphate (PtdIns(4,5)P2) in areas of new actin filament assembly. There is great interest in assessing the in vivo functional significance of these phosphoinositides, and we have used Listeria monocytogenes to explore the contribution of PtdIns(3,4,5)P3 and PtdIns(4,5)P2 to its actin-based motility. In Listeria-infected PtK2 cells Akt-pleckstrin homology (PH)-green fluorescent protein (GFP) and phospholipase C delta (PLC delta)-PH-GFP both first concentrate at the front of motile Listeria, subsequently surrounding the bacterium and then concentrating in the actin filament tail. Surprisingly, Listeria ActA mutant strains lacking the putative phosphoinositide binding site are also able to concentrate these probes. Reduction of available PtdIns(3,4,5)P3 by expression of Akt-PH-GFP and available PtdIns(4,5)P2 by expression of PLC delta-PH-GFP both significantly slow Listeria actin-based movement. Treatment of cells with the PI 3-kinase inhibitor, LY294002, dissociates Akt-PH but not PLC delta-PH, from the bacterial surface and cell membranes, and results in near complete inhibition of Listeria actin-based motility and filopod formation. Removal of LY294002 results in rapid and full recovery of Akt-PH localization, Listeria actin-based motility, and filopod formation. These findings suggest that PtdIns(4,5)P2 is concentrated at the surface of Listeria and serves as the substrate for PtdIns(3,4,5)P3 production, indicating a central role for PI 3-kinases in Listeria intracellular actin-based motility and filopod formation.  相似文献   

4.
The mammalian tumor suppressor, phosphatase and tensin homologue deleted on chromosome 10 (PTEN), inhibits cell growth and survival by dephosphorylating phosphatidylinositol-(3,4,5)-trisphosphate (PI[3,4,5]P3). We have found a homologue of PTEN in the fission yeast, Schizosaccharomyces pombe (ptn1). This was an unexpected finding because yeast (S. pombe and Saccharomyces cerevisiae) lack the class I phosphoinositide 3-kinases that generate PI(3,4,5)P3 in higher eukaryotes. Indeed, PI(3,4,5)P3 has not been detected in yeast. Surprisingly, upon deletion of ptn1 in S. pombe, PI(3,4,5)P3 became detectable at levels comparable to those in mammalian cells, indicating that a pathway exists for synthesis of this lipid and that the S. pombe ptn1, like mammalian PTEN, suppresses PI(3,4,5)P3 levels. By examining various mutants, we show that synthesis of PI(3,4,5)P3 in S. pombe requires the class III phosphoinositide 3-kinase, vps34p, and the phosphatidylinositol-4-phosphate 5-kinase, its3p, but does not require the phosphatidylinositol-3-phosphate 5-kinase, fab1p. These studies suggest that a pathway for PI(3,4,5)P3 synthesis downstream of a class III phosphoinositide 3-kinase evolved before the appearance of class I phosphoinositide 3-kinases.  相似文献   

5.
Phosphatidylinositol 3-kinases (PtdIns 3-kinases) that produce phosphatidylinositol (3,4,5) triphosphate (PtdIns(3,4,5)P3) are considered to be important regulators of actin dynamics in animal cells. In plants, neither PtdIns(3,4,5)P3 nor the enzyme that produces this lipid has been reported. However, a PtdIns 3-kinase that produces phosphatidylinositol 3-phosphate (PtdIns3P) has been identified, suggesting that PtdIns3P, instead of PtdIns(3,4,5)P3, regulates actin dynamics in plant cells. Phosphatidylinositol 4-kinase (PtdIns 4-kinase) is closely associated with the actin cytoskeleton in plant cells, suggesting a role for this lipid kinase and its product phosphatidylinositol 4-phosphate (PtdIns4P) in actin-related processes. Here, we investigated whether or not PtdIns3P or PtdIns4P plays a role in actin reorganization induced by a plant hormone abscisic acid (ABA) in guard cells of day flower ( Commelina communis ). ABA-induced changes in actin filaments were inhibited by LY294002 (LY) and wortmannin (WM), inhibitors of PtdIns3P and PtdIns4P synthesis. Expression of PtdIns3P- and PtdIns4P-binding domains also inhibited ABA-induced actin reorganization in a manner similar to LY and WM. These results suggest that PtdIns3P and PtdIns4P regulate actin dynamics in guard cells. Furthermore, we demonstrate that PtdIns3P exerts its effect on actin dynamics, at least in part, via generation of reactive oxygen species (ROS) in response to ABA.  相似文献   

6.
The signaling pathways involving lipid kinase class I phosphatidylinositol 3-kinases (PI 3-kinases) regulate cell growth, proliferation, and survival. Class I PI 3-kinases catalyze the conversion of PI (4,5)P(2) to PI (3,4,5)P(3), which acts as a lipid second messenger to activate mitogenic signaling cascades. Recently, p110alpha, a class IA PI 3-kinase, was found to be mutated frequently in many human cancers. Therefore, it is increasingly studied as an anticancer drug target. Traditionally, PI 3-kinase activities have been studied using liposome substrates. This method, however, is hampered significantly by the labor-intensive manual lipid extraction followed by a low-throughput thin-layer chromatography analysis. The authors describe a high-throughput liposome substrate-based assay based on an automated lipid extraction method that allows them to study PI 3-kinase enzyme mechanism and quantitatively measure inhibitor activity using liposome substrates in a high-throughput mode. This improved assay format can easily be extended to study other classes of phosphoinositide lipid kinases.  相似文献   

7.
To investigate the potential role of phosphatidylinositol 4, 5-bisphosphate (PI(4,5)P2) in the regulation of actin polymerization and GLUT4 translocation, the type I phosphatidylinositol 4-phosphate 5-kinases (PIP5Ks) were expressed in 3T3L1 adipocytes. In preadipocytes (fibroblasts) PIP5K expression promoted actin polymerization on membrane-bound vesicles to form motile actin comets. In contrast, expression of PIP5K in differentiated 3T3L1 adipocytes resulted in the formation of enlarged vacuole-like structures coated with F-actin, cortactin, dynamin, and N-WASP. Treatment with either latrunculin B (an inhibitor for actin polymerization) or Clostridium difficile toxin B (a general Rho family inhibitor) resulted in a relatively slower disappearance of coated F-actin from these vacuoles, but the vacuoles themselves remained unaffected. Functionally, the increased PI(4,5)P2 levels resulted in an inhibition of transferrin receptor and GLUT4 endocytosis and a slow accumulation of these proteins in the PI(4,5)P2-enriched vacuoles along with the non-clathrin-derived endosome marker (caveolin) and the AP-2 adaptor complex. However, these structures were devoid of early endosome markers (EEA1, clathrin) and the biosynthetic membrane secretory machinery markers p115 (Golgi) and syntaxin 6 (trans-Golgi Network). Taken together, these data demonstrate that PI(4,5)P2 has distinct morphologic and functional properties depending upon specific cell context. In adipocytes, altered PI(4,5)P2 metabolism has marked effects on GLUT4 endocytosis and intracellular vesicle trafficking due to the derangement of actin dynamics.  相似文献   

8.
Type I phosphatidylinositol 4-phosphate 5-kinase (PI4P5K) catalyzes the phosphorylation of phosphatidylinositol 4 phosphate [PI(4)P] at carbon 5, producing phosphatidylinositol 4,5 bisphosphate [PI(4,5)P2]. Phosphatidic acid (PA) activates PI4P5K in vitro and plays a central role in the activation of PIP5K pathways in vivo. This report demonstrates that actin fiber formation in murine fibroblasts involves PA activation of PIP5Ks and defines biochemical interactions between PA and the PIP5Ks. Inhibition of phospholipase D production of PA results in the loss of actin fibers. Overexpression of the beta isoform of the type I murine phosphatidylinositol 4-phosphate 5-kinase (mPIP5K-Ibeta) maintains actin fiber structure in the face of phospholipase D inhibition. PA activates mPIP5K-Ibeta by direct binding to mPIP5K-Ibeta through both electrostatic and hydrophobic interactions, with the fatty acid acyl chain length and degree of saturation acting as critical determinants of binding and activation. Furthermore, kinetic analysis suggests that phosphorylation of the PI(4)P substrate does not follow classical Michaelis-Menten kinetics. Instead, the kinetic data are consistent with a model in which mPIP5K-Ibeta initially binds to the lipid micelle and subsequently binds the PI(4)P substrate. In addition, the kinetics indicate substrate inhibition, suggesting that mPIP5K-Ibeta contains an inhibitory PI(4)P-binding site. These results suggest a model in which mPIP5K-Ibeta is surrounded by PI(4)P, but is unable to catalyze its conversion to PI(4,5)P2 unless PA is bound.  相似文献   

9.
The four mammalian phosphatidylinositol 4-kinases, together with the PI(4,5)P2 depleting 5-phosphatases of the oculocerebrorenal syndrome of Lowe and synaptojanin families, modulate neuronal pools of PI4P lipid and regulate intracellular membrane trafficking in the endocytic and secretory pathways. Dysfunctions in these enzymes have been associated with a broad spectrum of disorders including schizophrenia, bipolar disorder, Lowe syndrome, age-related neurodegeneration, Alzheimer’s disease and Down syndrome. Recent work has shown that reduced expression of individual phosphatidylinositol 4-kinase isozymes is associated with impaired survival of specific neuronal populations within the CNS. Furthermore, alterations to the concentrations of different phosphoinositide lipid species in the brain and, in particular, the ratio of PI4P to PI(4,5)P2 can have deleterious effects on clathrin-dependent membrane trafficking both in the Golgi–endosomal pathway and at the plasma membrane. In this article, we focus on the cell biology, biochemistry and neuronal functions of the phosphatidylinositol 4-kinases and their emerging roles in psychiatric and neurological pathologies.  相似文献   

10.
The regulation of pollen tube growth by the phospholipid phosphatidylinositol-4,5-bisphosphate (PtdIns(4,5)P(2) ) is not well understood. The Arabidopsis genome encodes two type A phosphatidylinositol-4-phosphate (PI4P) 5-kinases, PIP5K10 and PIP5K11, which are exclusively expressed in pollen and produce PtdIns(4,5)P(2) in vitro. Fluorescence-tagged PIP5K10 and PIP5K11 localized to lateral subapical plasma membrane microdomains in tobacco pollen tubes in a pattern closely resembling the distribution of PtdIns(4,5)P(2,) with the exception of notably weaker association at the extreme apex. Overexpression of PIP5K10 or PIP5K11 in tobacco pollen tubes resulted in severe tip swelling and altered actin fine structure similar to that reported for overexpression of tobacco Nt-Rac5, a monomeric GTPase known to regulate the actin cytoskeleton. Increased sensitivity of Arabidopsis pip5k10 pip5k11 double mutant pollen tubes to Latrunculin B (LatB) further supports a role for type A PI4P 5-kinases in controlling the actin cytoskeleton. Despite the disruption of both its type A PI4P 5-kinases, the pip5k10 pip5k11 double mutant was fertile, indicating that one of the remaining type B PI4P 5-kinase isoforms might be functionally redundant with PIP5K10 and PIP5K11. Antagonistic effects of PIP5K11 and the Nt-Rac5-specific guanine nucleotide dissociation inhibitor, Nt-RhoGDI2, on tip swelling observed in coexpression-titration experiments indicate a link between PtdIns(4,5)P(2) and Rac-signaling in pollen tubes. The data suggest that type A PI4P 5-kinases influence the actin cytoskeleton in pollen tubes in part by counteracting Nt-RhoGDI2, possibly contributing to the control of the pool of plasma membrane-associated Nt-Rac5.  相似文献   

11.
PI 3-kinases and PTEN: how opposites chemoattract   总被引:25,自引:0,他引:25  
Comer FI  Parent CA 《Cell》2002,109(5):541-544
Phosphatidylinositol lipids, such as PI(4,5)P2 and PI(3,4,5)P3, are key mediators in diverse intracellular signaling pathways. Two recent reports examine how the metabolism of these lipids by phosphatidylinositol 3-kinases and the PTEN 3-phosphoinositide phosphatase may coordinate G protein coupled signaling pathways during eukaryotic chemotaxis.  相似文献   

12.
Receptor-activated phosphoinositide (PI) 3-kinases produce PtdIns(3, 4,5)P(3) and its metabolite PtdIns(3,4)P(2) that function as second messengers in membrane recruitment and activation of target proteins. The cytohesin and centaurin protein families are potential targets for PtdIns(3,4,5)P(3) that also regulate and interact with Arf GTPases. Consequently, these families are poised to transduce PI 3-kinase activation into coordinated control of Arf-dependent pathways. Proposed downstream events in PI 3-kinase-regulated Arf cascades include modulation of vesicular trafficking and the actin cytoskeleton.  相似文献   

13.
Skeletal muscle and kidney enriched inositol phosphatase (SKIP) is an inositol polyphosphate 5-phosphatase that hydrolyzes phosphatidylinositol 3,4,5-trisphosphate [PI(3,4,5)P3] to downregulate intracellular levels. In this study, we show that SKIP inhibits phosphoinositide 3-kinase signaling in insulin-stimulated CHO cells. Ectopic expression of SKIP did not inhibit insulin-induced PI(3,4,5)P3 generation but did rapidly decrease insulin-induced intracellular PI(3,4,5)P3 levels compared with those in control cells. Further, insulin-induced phosphorylation of some downstream targets such as Akt and p70 S6 kinase was markedly inhibited by the ectopic expression of SKIP, whereas phosphorylation of mitogen-activated protein kinase was not. In contrast, downregulation of intracellular SKIP levels by antisense oligonucleotides dramatically enhanced Akt (protein kinase B) phosphorylation in response to insulin, suggesting that endogenous SKIP downregulates insulin signaling. SKIP also markedly inhibited GLUT4 translocation and membrane ruffle formation. We conclude that SKIP preferentially regulates glucose transport and actin cytoskeletal rearrangement among a variety of PI(3,4,5)P3 downstream events.  相似文献   

14.
We have recently demonstrated the involvement of phospholipase D (PLD) in actin polymerization during mammalian sperm capacitation. In the present study, we investigated the involvement of phosphatidylinositol 3- and 4-kinases (PI3K and PI4K) in actin polymerization, as well as the production of PIP(2(4,5)), which is a known cofactor for PLD activation, during bovine sperm capacitation. PIK3R1 (p85 alpha regulatory subunit of PI3K) and PIKCB (PI4K beta) in bovine sperm were detected by Western blotting and immunocytochemistry. Wortmannin (WT) inhibited PI3K and PI4K type III at concentrations of 10 nM and 10 microM, respectively. PI4K activity and PIP(2(4,5)) production were blocked by 10 microM WT but not by 10 nM WT, whereas PI3K activity and PIP(3(3,4,5)) production were blocked by 10 nM WT. Moreover, spermine, which is a known PI4K activator and a component of semen, activated sperm PI4K, resulting in increased cellular PIP(2(4,5)) and F-actin formation. The increases in PIP(2(4,5)) and F-actin intracellular levels during sperm capacitation were mediated by PI4K but not by PI3K activity. Activation of protein kinase A (PKA) by dibutyryl cAMP enhanced PIP(2(4,5)), PIP(3(3,4,5)), and F-actin formation, and these effects were mediated through PI3K. On the other hand, activation of PKC by phorbol myristate acetate enhanced PIP(2(4,5)) and F-actin formation mediated by PI4K activity, while the PI3K activity and intracellular PIP(3(3,4,5)) levels were reduced. These results suggest that two alternative pathways lead to PI4K activation: indirect activation by PKA, which is mediated by PI3K; and activation by PKC, which is independent of PI3K activity. Our results also suggest that spermine, which is present in the ejaculate, regulates PI4K activity during the capacitation process in vivo.  相似文献   

15.
Phosphoinositide (PI) 3-kinases have been characterized as enzymes involved in receptor signal transduction in mammalian cells and in a complex which mediates protein trafficking in yeast. PI 3-kinases linked to receptors with intrinsic or associated tyrosine kinase activity are heterodimeric proteins, consisting of p85 adaptor and p110 catalytic subunits, which can generate the 3-phosphorylated forms of phosphatidylinositol (PtdIns), PtdIns4P and PtdIns(4,5)P2 as potential second messengers. Yeast Vps34p kinase, however, has a substrate specificity restricted to PtdIns and is a PtdIns 3-kinase. Here the molecular characterization of a new human PtdIns 3-kinase with extensive sequence homology to Vps34p is described. PtdIns 3-kinase does not associate with p85 and phosphorylates PtdIns, but not PtdIns4P or PtdIns(4,5)P2. In vivo PtdIns 3-kinase is in a complex with a cellular protein of 150 kDa, as detected by immunoprecipitation from human cells. Protein sequence analysis and cDNA cloning show that this 150 kDa protein is highly homologous to Vps15p, a 160 kDa protein serine/threonine kinase associated with yeast Vps34p. These results suggest that the major components of the yeast Vps intracellular trafficking complex are conserved in humans.  相似文献   

16.
Eosinophils play a central role in the pathogenesis of parasitic infections, atopic diseases, and bullous dermatoses. To understand the regulative function of phosphatidylinositol 3-kinases in cell responses of eosinophils, phospholipid metabolism and production of reactive oxygen metabolites were followed after stimulation with C5a. Measurements of phosphatidylinositol lipids and analysis of deacylated products of separated lipid extracts showed fast and transient formation of phosphatidylinositol 3,4,5-trisphosphate (PIP(3)). Cell studies in the presence of the tyrosine kinase blocker genistein indicated that C5a-stimulated PIP(3) formation occurred independently of tyrosine kinase activity. To analyze the function of PI4,5P(2)-3-kinase in eosinophils, the influence of wortmannin and LY294002 on production of reactive oxygen metabolites was studied. Both compounds inhibited with similar concentration dependency C5a-induced formation of PIP(3) and production of reactive oxygen metabolites. In summary, these data showed for the first time the involvement of PI4,5P(2)-3-kinase in the production of reactive oxygen metabolites in eosinophils.  相似文献   

17.
Listeria monocytogenes is a bacterial pathogen that induces its own entry into a broad range of mammalian cells through interaction of the bacterial surface protein InlB with the cellular receptor Met, promoting an actin polymerization/depolymerization process that leads to pathogen engulfment. Phosphatidylinositol bisphosphate (PI[4,5]P(2)) and trisphosphate (PI[3,4,5]P(3)) are two major phosphoinositide species that function as molecular scaffolds, recruiting cellular effectors that regulate actin dynamics during L. monocytogenes infection. Because the phosphatidylinositol 5'-phosphatase OCRL dephosphorylates PI(4,5)P(2) and to a lesser extent PI(3,4,5)P(3), we investigated whether this phosphatase modulates cell invasion by L. monocytogenes. Inactivation of OCRL by small interfering RNA (siRNA) leads to an increase in the internalization levels of L. monocytogenes in HeLa cells. Interestingly, OCRL depletion does not increase but rather decreases the surface expression of the receptor Met, suggesting that OCRL controls bacterial internalization by modulating signaling cascades downstream of Met. Immuno-fluorescence microscopy reveals that endogenous and overexpressed OCRL are present at L. monocytogenes invasion foci; live-cell imaging additionally shows that actin depolymerization coincides with EGFP-OCRL-a accumulation around invading bacteria. Together, these observations suggest that OCRL promotes actin depolymerization during L. monocytogenes infection; in agreement with this hypothesis, OCRL depletion leads to an increase in actin, PI(4,5)P(2), and PI(3,4,5)P(3) levels at bacterial internalization foci. Furthermore, in cells knocked down for OCRL, transfection of enzymatically active EGFP-OCRL-a (but not of a phosphatase-dead enzyme) decreases the levels of intracellular L. monocytogenes and of actin associated with invading bacteria. These results demonstrate that through its phosphatase activity, OCRL restricts L. monocytogenes invasion by modulating actin dynamics at bacterial internalization sites.  相似文献   

18.
The effects of phenylarsine oxide and a monoclonal antibody directed against type II phosphatidylinositol 4-kinase (PI4K) on the N-formyl-methionyl-leucyl-phenylalanine (fMLP)-stimulated respiratory burst and the PI4K activity in neutrophils were investigated. Fluorescence microscopic imaging showed that the antibody labeled with IANBD amide (N,N'-dimethyl-N-(iodoacetyl)-N'-(7-nitrobenz-2-oxa-1,3-diazol-4-yl)ethylenediamine) could enter into the cytosol possibly by endocytosis. It was found that the antibody inhibited the fMLP-stimulated respiratory burst but had little effect on the phorbol myristate acetate-activated respiratory burst in neutrophils, whereas phenylarsine oxide inhibited both. It was found that even at higher concentration, the antibody could not completely inhibit the cell response. Using cells preincubated with human immunoglobulin G of the same concentration as the control, the maximal inhibition of the fMLP-stimulated respiratory burst by the antibody against type II PI4K was found to be about 70%, whereas the PI4K activity was inhibited by only about 40%. The discrepancy in depressing the cell response and the enzyme activity may be the result of depletion of the phosphatidylinositol 4,5-bisphosphate or phosphatidylinositol 3,4,5-trisphosphate pools during the incubation of cells with the antibody. Both the 40% inhibition of PI4K activity and 70% depression of the respiratory burst by the type II PI4K antibody may imply that at least 40% of the phosphatidylinositol 4,5-biphosphate was synthesized promptly by all forms of PI4K and phosphatidylinositol-4-phosphate 5-kinase in the fMLP-activated cells. The results suggest that PI4K plays a central role in either phospholipase C or PI3K signaling and that PI3K, PI4K, and phosphatidylinositol 4-phosphate 5-kinase must be considered as an integrated family for the phosphatidylinositol 3,4,5-trisphosphate initiated signaling.  相似文献   

19.
Agonist-stimulated production of phosphatidylinositol 3,4,5-trisphosphate [PtdIns(3,4,5)P3], is considered the primary output signal of activated phosphoinositide (PI) 3-kinase. The physiological targets of this novel phospholipid and the identity of enzymes involved in its metabolism have not yet been established. We report here the identification of two enzymes which hydrolyze the 5-position phosphate of PtdIns(3,4,5)P3, forming phosphatidylinositol (3,4)-bisphosphate. One of these enzymes is the 75 kDa inositol polyphosphate 5-phosphatase (75 kDa 5-phosphatase), which has previously been demonstrated to metabolize inositol 1,4,5-trisphosphate [Ins(1,4,5)P3], inositol 1,3,4,5-tetrakisphosphate [Ins(1,3,4,5)P4] and phosphatidylinositol 4,5-bisphosphate [PtdIns(4,5)P2]. We have identified a second PtdIns(3,4,5)P3 5-phosphatase in the cytosolic fraction of platelets, which forms a complex with the p85/p110 form of PI 3-kinase. This enzyme is immunologically and chromatographically distinct from the platelet 43 kDa and 75 kDa 5-phosphatases and is unique in that it removes the 5-position phosphate from PtdIns(3,4,5)P3, but does not metabolize PtdIns(4,5)P2, Ins(1,4,5)P3 or Ins(1,3,4,5)P4. These studies demonstrate the existence of multiple PtdIns(3,4,5)P3 5-phosphatases within the cell.  相似文献   

20.
The type I phosphatidylinositol 4-phosphate 5-kinases (PI4P5K) phosphorylate phosphatidylinositol 4-phosphate [PI(4)P] to produce phosphatidylinositol 4,5-bisphosphate [PI(4,5)P2]. PI(4,5)P2 has been implicated in signal transduction, receptor mediated endocytosis, vesicle trafficking, cytoskeletal structure, and membrane ruffling. However, the specific type I enzymes associated with the production of PI(4,5)P2 for the specific cellular processes have not been rigorously defined. Murine PI4P5K type Ibeta (mPIP5K-Ibeta) was implicated in receptor mediated endocytosis through the isolation of a truncated and inactive form of the enzyme that blocked the ligand-dependent downregulation of the colony-stimulating factor-1 receptor. The present study shows that enforced expression of mPIP5K-Ibeta in 293T cells resulted in the accumulation of large vesicles that were linked to an endosomal pathway. Similar results were obtained after the expression of the PI(4,5)P2-binding pleckstrin homology (PH) domain of phospholipase-Cdelta (PLC-delta). Analysis of the conserved domains of mPIP5K-Ibeta led to the identification of dimerization domains in the N- and C-terminal regions. Enforced expression of the individual dimerization domains interfered with the proper subcellular localization of mPIP5K-Ibeta and the PLC-delta-PH domain and blocked the accumulation of the endocytic vesicles induced by these proteins. In addition to regulating early steps in endocytosis, these results suggest that mPIP5K-Ibeta acts through PI(4,5)P2 to regulate endosomal trafficking and/or fusion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号