首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Since virus-specific cytotoxic T lymphocytes (CTLs) play a critical role in preventing the spread of hepatitis C virus (HCV), vaccine-based HCV-specific CTL induction could be a promising strategy to treat HCV-infected patients. In this study, we tried to identify HCV2a-derived epitopes, which can induce human leukocyte antigen (HLA)-A24-restricted and peptide-specific CTLs. Peripheral blood mononuclear cells of HCV2a-infected patients or healthy donors were stimulated in vitro with HCV2a-derived peptides, which were prepared based on the HLA-A24 binding motif. As a result, three peptides (HCV2a 576-584, HCV2a 627-635, and HCV2a 1085-1094) efficiently induced peptide-specific CTLs from HLA-A24(+) HCV2a-infected patients as well as healthy donors. The cytotoxicity was exhibited by peptide-specific CD8(+) T cells in an HLA-A24-restricted manner. In addition, the HCV2a 627-635 peptide was frequently recognized by immunoglobulin G of HCV2a-infected patients. These results indicate that the identified three HCV2a peptides might be applicable to peptide-based immunotherapy for HLA-A24(+) HCV2a-infected patients.  相似文献   

2.
Because cytotoxic T lymphocytes (CTLs) play an important role in the specific immunotherapy of hepatitis C virus (HCV) infection, a series of CTL epitopes has been defined from HCV genotype 1a or 1b protein. Here, we attempted to identify HCV2a-derived epitopes that are capable of inducing HLA-A2-restricted and peptide-specific CTLs. Peripheral blood mononuclear cells (PBMCs) of HLA-A2+ HCV2ainfected patients or healthy donors were stimulated in vitro with each of the HCV2a-derived peptides, which were prepared based on the HLA-A2-binding motif, and their peptide-specific and HLA-A2-restricted cytotoxicities were examined. The HCV2a 432-441, HCV2a 716-724, and HCV2a 2251-2260 peptides were found to efficiently induce peptide-specific CTLs from the PBMCs of HLA-A2+ HCV2ainfected patients. Cytotoxicity was mainly mediated by CD8+ T cells in a HLA class I-restricted manner. These results indicate that the HCV2a 432-441, HCV2a 716-724, and HCV2a 2251-2260 peptides might be applicable for peptide-based immunotherapy of HLA-A2+ HCV2a-infected patients.  相似文献   

3.
Previously, we found that human papillomavirus type 16 (HPV-16) E5 protein is a tumor rejection antigen and can induce cytotoxic T-lymphocyte (CTL) activity. Therefore, in this study, human leukocyte antigen A*0201 (HLA-A*0201)-restricted human CTL epitopes of HPV-16 E5 protein were identified using a bioinformatics approach, and the abilities of these predicted peptides to induce an immune response in HLA-A*0201 transgenic mice were confirmed by assaying E5-specific CTLs and in vitro-generated CTLs from normal peripheral blood T lymphocytes of HLA-A2-positive human donors. Second, the CTL responses to HLA-A*0201 CTL epitopes (E5 63-71 and E7 11-20) were examined in HPV-16-infected patients with HLA-A2. Third, the effect of HLA-A-type alleles on CTL activities in response to the entire E5 and E7 proteins was examined in cervical cancer patients. E5 and E7 peptides (but not the whole proteins) stimulated E5- and E7-specific CTL recall responses in HPV-16- and HLA-A2-positive cervical cancer patients, and HPV-16 E5 and E7 proteins stimulated na?ve T cells in HPV-16-negative cervical cancer patients with HLA-A11 and -A24 haplotypes. In summary, this is the first demonstration that E5 63-71 is an HLA-A*0201-restricted T-cell epitope of HPV-16 E5.  相似文献   

4.
Peptide-based specific immunotherapy has resulted in tumor regression in some melanoma patients. However, tumor Ags and peptides for specific immunotherapy, except for treatment of melanomas, have not yet been well identified. In this study, we report a gene encoding a new squamous cell carcinoma (SCC) Ag recognized by cells of the HLA-A24-restricted and tumor-specific CTL line. This gene with 3958-bp length was transcribed from the chromosome 6q22 with six exons, and its mRNA was ubiquitously expressed in both SCCs and normal tissues, and partly expressed in adenocarcinomas. The deduced 958-aa sequence encoded by this gene showed no similarity to any known amino acid sequences. This gene product had a characteristic of an endoplasmic reticulum-resident protein. A 100-kDa protein was detected in the vast majority of SCCs from various tissues, in majority of renal cell carcinomas and brain tumors, and in about one-third of melanomas and adenocarcinomas from various organs other than the breast. In contrast, it was not expressed at all in any of the normal cells or tissues tested, including the testis and fetal liver. Three different peptides at positions 93-101, 161-169, and 899-907 of this Ag were recognized by this CTL line, and all of them induced HLA-A24-restricted and tumor-specific CTLs from PBMCs of SCC patients. Therefore, these peptides may be useful for peptide-based specific immunotherapy of HLA-A24+ patients with SCC in various organs, as well as for treatment of other cancer.  相似文献   

5.
Gene MAGE-A3 encodes tumor-specific antigenic peptides recognized by T cells on many tumors. MAGE-A3 peptides presented by HLA class I molecules have been identified using CD8 lymphocytes stimulated with cells that either expressed gene MAGE-A3 or were pulsed with candidate peptides. One antigen identified with the latter method is peptide MAGE-A3(195-203) IMPKAGLLI, presented by HLA-A24 molecules. It has been used to vaccinate advanced cancer patients. Here, we have used HLA/peptide tetramers to detect T cells recognizing this peptide. Their frequency was estimated to be 2 x 10(-8) of the blood CD8 cells in non-cancerous HLA-A24(+) individuals, which is tenfold lower than the reported frequencies of T cells against other MAGE peptides. In the blood of a patient vaccinated with MAGE-A3, the estimated frequency was 5 x 10(-7). Anti-MAGE-3.A24 cytolytic T cell clones were derived, that lysed peptide-pulsed cells with half-maximal effect at the low concentration of 500 pM. However, these CTL did not recognize a panel of HLA-A24(+) tumor cells that expressed MAGE-A3 at levels similar to those found in HLA-A1(+) tumor cells recognized by anti-MAGE-3.A1 CTLs. Furthermore, 293-EBNA cells transfected with MAGE-A3 and HLA-A24 constructs were hardly recognized by the anti-MAGE-3.A24 CTL clones. These results suggest that peptide MAGE-A3(195-203) is poorly processed and is not an appropriate target for cancer immunotherapy.  相似文献   

6.
Severe acute respiratory syndrome (SARS) is a highly contagious and life-threatening disease that emerged in China in November 2002. A novel SARS-associated coronavirus was identified as its principal etiologic agent; however, the immunopathogenesis of SARS and the role of special CTLs in virus clearance are still largely uncharacterized. In this study, potential HLA-A*0201-restricted spike (S) and nucleocapsid protein-derived peptides were selected from an online database and screened for potential CTL epitopes by in vitro refolding and T2 cell-stabilization assays. The antigenicity of nine peptides which could refold with HLA-A*0201 molecules was assessed with an IFN-gamma ELISPOT assay to determine the capacity to stimulate CTLs from PBMCs of HLA-A2(+) SARS-recovered donors. A novel HLA-A*0201-restricted decameric epitope P15 (S411-420, KLPDDFMGCV) derived from the S protein was identified and found to localize within the angiotensin-converting enzyme 2 receptor-binding region of the S1 domain. P15 could significantly enhance the expression of HLA-A*0201 molecules on the T2 cell surface, stimulate IFN-gamma-producing CTLs from the PBMCs of former SARS patients, and induce specific CTLs from P15-immunized HLA-A2.1 transgenic mice in vivo. Furthermore, significant P15-specific CTLs were induced from HLA-A2.1-transgenic mice immunized by a DNA vaccine encoding the S protein; suggesting that P15 was a naturally processed epitope. Thus, P15 may be a novel SARS-associated coronavirus-specific CTL epitope and a potential target for characterization of virus control mechanisms and evaluation of candidate SARS vaccines.  相似文献   

7.
In order to broaden the possibility for anti-HER-2/neu (HER-2) immune targeting, it is important to identify HLA-A24 restricted peptide epitopes derived from HER-2, since HLA-A24 is one of the most common alleles in Japanese and Asian people. In the present study, we have screened HER-2-derived, HLA-A24 binding peptides for cytotoxic T lymphocyte (CTL) epitopes. A panel of HER-2-derived peptides with HLA-A24 binding motifs and the corresponding analogs designed to enhance HLA-A24 binding affinity were selected. Identification of HER-2-reactive and HLA-A24 restricted CTL epitopes were performed by a reverse immunology approach. To induce HER-2-reactive and HLA-A24 restricted CTLs, PBMCs from healthy donors were repeatedly stimulated with monocytes-derived, mature DCs pulsed with HER-2 peptide. Subsequent peptide-induced T cells were tested for the specificity by enzyme linked immunospot, cytotoxicity and tetramer assays. CTL clones were then obtained from the CTL lines by limiting dilution. Of the peptides containing HLA-A24 binding motifs, 16 peptides (nine mers) including wild type peptides (IC50<1,000 nM) and substituted analog peptides (IC50<50 nM) were selected for the present study. Our studies show that an analog peptide, HER-2(905AA), derived from HER-2(905) could efficiently induce HER-2-reactive and HLA-A24 restricted CTLs. The reactivity of the HER-2(905AA)-induced CTL (CTL905AA) was confirmed by different CTL assays. The CTL905AA clones also were able to lyse HER-2(+), HLA-A24(+) tumor cells and cytotoxicity could be significantly reduced in cold target inhibition assays using cold targets pulsed with the HER-2(905) wild type peptide as well as the inducing HER-2(905AA) analog peptide. A newly identified HER-2(905) peptide epitope is naturally processed and presented as a CTL epitope on HER-2 overexpressing tumor cells, and an MHC anchor-substituted analog, HER-2(905AA), can efficiently induce HER-2-specific, HLA-A24 restricted CTLs.  相似文献   

8.
To investigate the effects of anchor substitutions in SYT-SSX junction peptide, an HLA-A24 anchor residue (position 9) of the SYT-SSX B peptide (GYDQIMPKK) was substituted to more favorable residues according to the HLA-A24-binding motif. Among four substitutes constructed, a substitute with isoleucine (termed K9I peptide) most apparently enhanced the affinity for HLA-A24 molecule. Subsequent in vitro CTL induction analysis using PBMCs of 15 HLA-A24(+) synovial sarcoma patients revealed that the original B peptide allowed to induce synovial sarcoma-specific CTLs from 7 patients (47%), whereas such CTLs were inducible from 12 patients (80%) with K9I peptide. Moreover, the extent of cytotoxicity against HLA-A24(+) synovial sarcoma cell lines was higher in K9I peptide-induced CTLs than B peptide-induced CTLs. Influence of anchor substitution on peptide/TCR interaction was evaluated by cytotoxicity assays against autologous cells and tetramer analysis. CTLs induced from a synovial sarcoma patient using K9I peptide did not lyse autologous PHA blasts or EBV-infected B cells. In vitro stimulations of PBMCs from 5 HLA-A24(+) synovial sarcoma patients with K9I peptide increased the frequency of T cells reacting with both HLA-A24/K9I peptide tetramer and HLA-A24/B peptide tetramer. In contrast, the frequency of T cells reacting with HLA/HIV-derived peptide tetramer remained low. These findings support the validity in design of anchor residue substitution in SYT-SSX fusion gene-derived peptide, and provide a potential clue to the current stagnation in vaccination trials of fusion gene-derived natural junction peptides.  相似文献   

9.

Background

Prostate cancer is the most common cancer among elderly men in the US, and immunotherapy has been shown to be a promising strategy to treat patients with metastatic castration-resistant prostate cancer. Efforts to identify novel prostate specific tumor antigens will facilitate the development of effective cancer vaccines against prostate cancer. Prostate-specific G-protein coupled receptor (PSGR) is a novel antigen that has been shown to be specifically over-expressed in human prostate cancer tissues. In this study, we describe the identification of PSGR-derived peptide epitopes recognized by CD8+ T cells in an HLA-A2 dependent manner.

Methodology/Principal Findings

Twenty-one PSGR-derived peptides were predicted by an immuno-informatics approach based on the HLA-A2 binding motif. These peptides were examined for their ability to induce peptide-specific T cell responses in peripheral blood mononuclear cells (PBMCs) obtained from either HLA-A2+ healthy donors or HLA-A2+ prostate cancer patients. The recognition of HLA-A2 positive and PSGR expressing LNCaP cells was also tested. Among the 21 PSGR-derived peptides, three peptides, PSGR3, PSGR4 and PSGR14 frequently induced peptide-specific T cell responses in PBMCs from both healthy donors and prostate cancer patients. Importantly, these peptide-specific T cells recognized and killed LNCaP prostate cancer cells in an HLA class I-restricted manner.

Conclusions/Significance

We have identified three novel HLA-A2-restricted PSGR-derived peptides recognized by CD8+ T cells, which, in turn, recognize HLA-A2+ and PSGR+ tumor cells. The PSGR-derived peptides identified may be used as diagnostic markers as well as immune targets for development of anticancer vaccines.  相似文献   

10.
The androgen receptor (AR) is a hormone receptor that plays a critical role in prostate cancer, and depletion of its ligand has long been the cornerstone of treatment for metastatic disease. Here, we evaluate the AR ligand-binding domain (LBD) as an immunological target, seeking to identify HLA-A2-restricted epitopes recognized by T cells in prostate cancer patients. Ten AR LBD-derived, HLA-A2-binding peptides were identified and ranked with respect to HLA-A2 affinity and were used to culture peptide-specific T cells from HLA-A2+ prostate cancer patients. These T-cell cultures identified peptide-specific T cells specific for all ten peptides in at least one patient, and T cells specific for peptides AR805 and AR811 were detected in over half of patients. Peptide-specific CD8+ T-cell clones were then isolated and characterized for prostate cancer cytotoxicity and cytokine expression, identifying that AR805 and AR811 CD8+ T-cell clones could lyse prostate cancer cells in an HLA-A2-restricted fashion, but only AR811 CTL had polyfunctional cytokine expression. Epitopes were confirmed using immunization studies in HLA-A2 transgenic mice, in which the AR LBD is an autologous antigen with an identical protein sequence, which showed that mice immunized with AR811 developed peptide-specific CTL that lyse HLA-A2+ prostate cancer cells. These data show that AR805 and AR811 are HLA-A2-restricted epitopes for which CTL can be commonly detected in prostate cancer patients. Moreover, CTL responses specific for AR811 can be elicited by direct immunization of A2/DR1 mice. These findings suggest that it may be possible to elicit an anti-prostate tumor immune response by augmenting CTL populations using AR LBD-based vaccines.  相似文献   

11.

Background

A large number of human tumor-associated antigens that are recognized by CD8+ T cells in a human leukocyte antigen class I (HLA-I)-restricted fashion have been identified. Special AT-rich sequence binding protein 1 (SATB1) is highly expressed in many types of human cancers as part of their neoplastic phenotype, and up-regulation of SATB1 expression is essential for tumor survival and metastasis, thus this protein may serve as a rational target for cancer vaccines.

Methodology/Principal Findings

Twelve SATB1-derived peptides were predicted by an immuno-informatics approach based on the HLA-A*02 binding motif. These peptides were examined for their ability to induce peptide-specific T cell responses in peripheral blood mononuclear cells (PBMCs) obtained from HLA-A*02+ healthy donors and/or HLA-A*02+ cancer patients. The recognition of HLA-A*02+ SATB1-expressing cancer cells was also tested. Among the twelve SATB1-derived peptides, SATB1565–574 frequently induced peptide-specific T cell responses in PBMCs from both healthy donors and cancer patients. Importantly, SATB1565–574-specific T cells recognized and killed HLA-A*02+ SATB1+ cancer cells in an HLA-I-restricted manner.

Conclusions/Significance

We have identified a novel HLA-A*02-restricted SATB1-derived peptide epitope recognized by CD8+ T cells, which, in turn, recognizes and kills HLA-A*02+ SATB1+ tumor cells. The SATB1-derived epitope identified may be used as a diagnostic marker as well as an immune target for development of cancer vaccines.  相似文献   

12.
Purpose Prostate cancer refractory to hormonal manipulation requires new treatment modalities. In the present study we attempted to identify prostate stem cell antigen (PSCA)-derived peptides immunogenic in HLA-A2+ prostate cancer patients in order to develop peptide-based immunotherapy against hormone-refractory prostate cancer (HRPC).Methods Eleven different PSCA-derived peptides, which were prepared based on the HLA-A2 binding motif, were examined to determine whether they would be recognized by cellular and humoral immune responses in 12 HLA-A2+ patients (11 with HRPC and 1 with non-HRPC).Results Among the PSCA-derived peptides, PSCA 7–15 and PSCA 21–30 peptides effectively induced HLA-A2-restricted peptide-specific and tumor-reactive cytotoxic T lymphocytes (CTLs) from peripheral blood mononuclear cells (PBMCs) of HLA-A2+ patients. The PSCA 21–30 peptide was capable of inducing peptide-specific CTLs in both cancer patients and healthy donors, whereas the PSCA 7–15 peptide was immunogenic in only cancer patients. Immunoglobulin G (IgG) reactive to the PSCA 21–30 peptide was detected in plasma of most patients and healthy donors, whereas IgG reactive to PSCA 7–15 was undetectable in all cases. These results indicate that the former peptide elicits both cellular and humoral immune responses in both patients and healthy donors, whereas the latter elicits only cellular responses in patients.Conclusion These two PSCA peptides should be considered for use in clinical trials of immunotherapy for HLA-A2+ HRPC patients.  相似文献   

13.
Carcinoembryonic antigen (CEACAM5) is commonly overexpressed in human colon cancer. Several antigenic peptides recognized by cytolytic CD8+ T-cells have been identified and used in colon cancer phase-I vaccination clinical trials. The HLA-A*0201-binding CEA694–702 peptide was recently isolated from acid eluted MHC-I associated peptides from a human colon tumor cell line. However, the immunogenicity of this peptide in humans remains unknown. We found that the peptide CEA694–702 binds weakly to HLA-A*0201 molecules and is ineffective at inducing specific CD8+ T-cell responses in healthy donors. Immunogenic-altered peptide ligands with increased affinity for HLA-A*0201 were identified. Importantly, the elicited cytolytic T lymphocyte (CTL) lines and clones cross-reacted with the wild-type CEA694–702 peptide. Tumor cells expressing CEA were recognized in a peptide and HLA-A*0201 restricted fashion, but high-CEA expression levels appear to be required for CTL recognition. Finally, CEA-specific T-cell precursors could be readily expanded by in vitro stimulation of peripheral blood mononuclear cell (PBMC) from colon cancer patients with altered CEA peptide. However, the CEA-specific CD8+ T-cell clones derived from cancer patients revealed low-functional avidity and impaired tumor-cell recognition. Together, using T-cells to demonstrate the processing and presentation of the peptide CEA694-702, we were able to corroborate its presentation by tumor cells. However, the low avidity of the specific CTLs generated from cancer patients as well as the high-antigen expression levels required for CTL recognition pose serious concerns for the use of CEA694-702 in cancer immunotherapy.  相似文献   

14.
Peptides of human melanomas recognized by CD8+ CTLs have been identified, but the nature of those of nonmelanoma tumors remains to be elucidated. Previously, we established a gastric signet ring cell carcinoma HST-2 and HLA-A31 (A*31012)-restricted autologous CTL clone, TcHST-2. In the present study, we determined the natural antigenic peptides of HST-2 cells. The purified preparation of acid-extracted Ags was submitted to the peptide sequencer, and one peptide, designated F4.2 (Tyr-Ser-Trp-Met-Asp-Ile-Ser-Cys-Trp-Ile), appeared to be immunogenic. To confirm the antigenicity of F4.2 further, we constructed an expression minigene vector (pF4.2ss) coding adenovirus E3, a 19-kDa protein signal sequence plus F4.2. An introduction of pF4.2ss minigene to HST-2 and HLA-A31(+) allogeneic tumor cells clearly enhanced and induced the TcHST-2 reactivity, respectively. Furthermore, when synthetic peptides of F4.2 C-terminal-deleted peptides were pulsed to HST-2 cells, F4.2-9 (nonamers), but not F4.2-8 or F4.2-7 (octamer or heptamer, respectively), enhanced the reactivity of TcHST-2, suggesting that the N-terminal ninth Trp might be a T cell epitope. This was confirmed by lack of antigenicity when using synthetic substituted peptides as well as minigenes coding F4.2 variant peptides with Ala or Arg at the ninth position of F4.2. Meanwhile, it was indicated that the sixth position Ile was critically important for the binding to HLA-A31 molecules. Thus, our data indicate that F4.2 may work as an HLA-A31-restricted natural antigenic peptide recognized by CTLs.  相似文献   

15.
We have previously reported several CTL epitopes derived from the hepatitis B viral X Ag (HBx). In this study, we evaluated whether HBx-specific CTLs can be effectively used in adoptive cancer immunotherapy. To validate the possibility, four peptides containing a HLA-A2.1-restricted binding consensus motif were identified from the HBx protein and tested for their ability to activate CTL from PBMCs isolated from chronic carriers of HBV (n = 12). We selected two highly potent epitopes, HBx 52-60 (HLSLRGLFV) and HBx 115-123 (CLFKDWEEL), that are capable of inducing Ag-specific cytotoxic T cells in patient PBMCs. For adoptive immunotherapy using HBx-specific CTLs, we generated CTL clones restricted to the HBx 52-60 or HBx 115-123 peptide using a limiting dilution technique. LC-46, an HBx 52-60-specific clone, is CD62L(-)CD69(+)CD45RO(+)CD45RA(-)CD25(dim) and is stained by IFN-gamma (approximately 92%), IL-2 (30%), and TNF-alpha (56%), but not by IL-5, IL-10, IL-12, or TNF-beta, indicating that the cells are fully activated T cytotoxic 1-type cells. When LC-46 cells were adoptively transferred into xenografted nude mice bearing human hepatomas expressing HLA-A2.1 molecules and intracellular HBx proteins, the tumors were eradicated. Taken together, our data provide solid evidence for the feasibility of adoptive immunotherapy with HBx-sensitized CTLs in hepatitis disease, including hepatocellular carcinoma (HCC).  相似文献   

16.
We have previously reported that 90K/Mac-2 binding protein (M2BP) was highly expressed in lung cancer and that M2BP-specific immunity was observed in many of cancer patients. In this study, we analyzed the ability of 11 M2BP-derived oligopeptides with an HLA-A*0201-binding motif to induce M2BP-specific cytotoxic T lymphocytes (CTL) from peripheral blood lymphocytes of normal donors by in vitro stimulation. One of the CTLs that were induced using M2BP216-224 (RIDITLSSV) produced interferon-gamma in response to HLA-A2-positive T2 cells pulsed with the same peptide and lysed MDA-MB-231 cells expressing both M2BP and HLA-A2. The cytolytic activities were blocked by antibodies against HLA class I or CD8. These findings suggest that M2BP216-224 is naturally processed from the native M2BP in cancer cells and recognized by M2BP-specific CTLs in an HLA-A2 restriction. We first identified M2BP-derived CTL epitopes that may be useful as a target antigenic epitope in clinical immunotherapy of cancer.  相似文献   

17.
Identification of cytotoxic T lymphocyte (CTL) epitopes from additional tumor antigens is essential for the development of specific immunotherapy of malignant tumors. CML28, a recently discovered cancer-testis (CT) antigen from chronic myelogenous leukemia, is considered to be a promising target of tumor-specific immunotherapy. Because HLA-A*0201 is one of the most common histocompatibility molecule in Chinese, we aim at identifying CML28 peptides presented by HLA-A*0201. A panel of CML28-derived antigenic peptides was predicted using a computer-based program. Four peptides with highest predicted score were synthesized and tested for their binding affinities to HLA-A*0201 molecule. Then these peptides were assessed for their immunogenicity to elicit specific immune responses mediated by CTLs both in vitro, from PBMCs sourced from four healthy HLA-A*0201+ donors, and in vivo, in HLA-A*0201 transgenic mice. One of the tested peptides, CML28(173–181), induced peptide-specific CTLs in vitro as well as in vivo, which could specifically secrete IFN-γ and lyse major histocompatibility complex (MHC)-matched tumor cell lines endogenously expressing CML28 antigen and CML28(173–181) pulsed Jurkat-A2/Kb cells, respectively. These results demonstrate that CML28(173–181) is a naturally processed and presented CTL epitope with HLA-A*0201 motif and has a promising immunogenicity both in vitro and in vivo. As CML28 is expressed in a large variety of histological tumors besides chronic myelogenous leukemia, we propose that the newly identified epitope, CML28(173–181), would be of potential use in peptide-based, cancer-specific immunotherapy against a broad spectrum of tumors.  相似文献   

18.
HLA-A2402-restricted and carcinoembryonic-antigen(CEA)-specific cytotoxic T lymphocytes (CTL) were induced by culturing human peripheral blood mononuclear cells (PBMC) on formalin-fixed autologous adhesive PBMC that had been loaded with CEA-bound latex beads. The CTL killed the CEA-producing HLA-type matched cancer cells, but not the non-producers of CEA, at an effector/target ratio of 10 within 24 h. On the basis of available HLA-A24-binding peptides, we have also attempted to identify the epitope peptide recognized by the CTL. The peptide CEA652(9), TYACFVSNL, stimulated the CTL most strongly when pulsed on HLA-A2402-expressing target cells. The other nine peptides so far tested were also active, but less efficient in their effect on CTL. The CTL failed to kill target cells pulsed with the HLA-A2-binding CEA peptide, CAP-1. The CTL were also generated on the fixed adherent cells previously pulsed with the peptide CEA652(9). Cytotoxic activity of the CTL was inhibited by monoclonal antibodies against CD3, CD8, and MHC class I molecules. These results suggest that human autologous CTL will be inducible on the autologous fixed PBMC without use of the cultured target cancer cells if tumor antigenic protein is available. Received: 31 December 1997 / Accepted: 4 May 1998  相似文献   

19.
20.
The molecular basis of T-cell-mediated recognition of ovarian cancer cells remains to be fully addressed. In this study we investigated HLA class I restriction and directed antigens of cytotoxic T lymphocytes (CTL) at the sites of ovarian cancer. Three HLA-class-I-restricted CTL lines were established from the tumor sites of ovarian cancer by culturing tumor-infiltrating lymphocytes or tumor-associated ascitic lymphocytes with interleukin-2: (1) HLA-A2402-restricted and ovarian-adenocarcinoma-specific CTL, (2) HLA-A2-restricted CTL recognizing histologically different cancers, and (3) HLA-B52-restricted and ovarian-cancer-specific CTL. HLA-A0201, HLA-A0206 and HLA-A0207 tumor cells were lysed by the HLA-A2-restricted CTL. HLA-B52 restriction of the third CTL line was confirmed by the transfection of HLA-B5201 cDNA into the tumor cells. The HLA-A2-restricted CTL recognized the SART-1, but not the MAGE-1 or MAGE-3 antigen. These results may facilitate a better understanding of the molecular basis of tumor-specific immunity at the tumor site of ovarian cancer. Received: 30 December 1998 / Accepted: 2 March 1999  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号