首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 500 毫秒
1.
Demographic effects of extreme winter weather in the barn owl   总被引:1,自引:0,他引:1  
Extreme weather events can lead to immediate catastrophic mortality. Due to their rare occurrence, however, the long-term impacts of such events for ecological processes are unclear. We examined the effect of extreme winters on barn owl (Tyto alba) survival and reproduction in Switzerland over a 68-year period (∼20 generations). This long-term data set allowed us to compare events that occurred only once in several decades to more frequent events. Winter harshness explained 17 and 49% of the variance in juvenile and adult survival, respectively, and the two harshest winters were associated with major population crashes caused by simultaneous low juvenile and adult survival. These two winters increased the correlation between juvenile and adult survival from 0.63 to 0.69. Overall, survival decreased non-linearly with increasing winter harshness in adults, and linearly in juveniles. In contrast, brood size was not related to the harshness of the preceding winter. Our results thus reveal complex interactions between climate and demography. The relationship between weather and survival observed during regular years is likely to underestimate the importance of climate variation for population dynamics.  相似文献   

2.
Few studies have quantitatively projected changes in demography in response to climate change, yet doing so can provide important insights into the processes that may lead to population declines and changes in species distributions. Using a long‐term mark‐recapture data set, we examined the influence of multiple direct and indirect effects of weather on adult and juvenile survival for a population of Song Sparrows (Melospiza melodia) in California. We found evidence for a positive, direct effect of winter temperature on adult survival, and a positive, indirect effect of prior rainy season precipitation on juvenile survival, which was consistent with an effect of precipitation on food availability during the breeding season. We used these relationships, and climate projections of significantly warmer and slightly drier winter weather by the year 2100, to project a significant increase in mean adult survival (12–17%) and a slight decrease in mean juvenile survival (4–6%) under the B1 and A2 climate change scenarios. Together with results from previous studies on seasonal fecundity and postfledging survival in this population, we integrated these results in a population model and projected increases in the population growth rate under both climate change scenarios. Our results underscore the importance of considering multiple, direct, and indirect effects of weather throughout the annual cycle, as well as differences in the responses of each life stage to climate change. Projecting demographic responses to climate change can identify not only how populations will be affected by climate change but also indicate the demographic process(es) and specific mechanisms that may be responsible. This information can, in turn, inform climate change adaptation plans, help prioritize future research, and identify where limited conservation resources will be most effectively and efficiently spent.  相似文献   

3.
The intensification and increased frequency of weather and climate extremes are emerging as one of the most important aspects of climate change. Using a quantitative genetic model, we explore the effects of increasing environmental stochasticity and its interplay with genetic variation and selection pressure on population dynamics and evolution of a fitness-related trait. We use simulations with variations in trend (i.e., directional change) and stochasticity (i.e., increase in variance) of a climate variable defining a phenotypic optimum, and various hypotheses on mutational variance and strength of selection on a phenotypic trait. We let the population reach mutation–selection balance and then we linearly increase over simulation time both the mean and the variance of the statistical distribution of the climate variable. Higher variance of climate variables increases the probability of extreme climatic events, i.e. events that are both statistically rare and with potentially high ecological impact, that is, causing episodes of massive mortality in the population.Our analysis shows that the population is able to track the directional component of the optimum for low increases of variability, while for high increases the tracking is reduced. Persistence of the population depends quite strongly on the selection pressure and decreases with increasing variance of the climate variable. Higher mutational variance does not substantially decrease the risk of extinction of a population.  相似文献   

4.
Climate models forecast increasing climatic variation and more extreme events, which could increase the variability in animal demographic rates. More variable demographic rates generally lead to lower population growth and can be detrimental to wild populations, especially if the particular demographic rates affected are those to which population growth is most sensitive. We investigated the population dynamics of a metapopulation of 25 colonies of a semi-arid bird species, the sociable weaver Philetairus socius, and how it was influenced by seasonal weather during 1993–2014. We constructed an integrated population model which estimated population sizes similar to observed population counts, and allowed us to estimate annual fecundity and recruitment. Variance in fecundity contributed most to variance in population growth, which showed no trend over time. No weather variables explained overall demographic variation at the population level. However, a separate analysis of the largest colony showed a clear decline with a high extinction probability (0.05 to 0.33) within 5 years after the study period. In this colony, juvenile survival was lower when summers were hot, and adult survival was lower when winters were cold. Rainfall was also negatively correlated with adult survival. These weather effects could be due to increased physiological demands of thermoregulation and rainfall-induced breeding activity. Our results suggest that the dynamics of the population on the whole are buffered against current weather variation, as individual colonies apparently react in different ways. However, if more and increasingly extreme weather events synchronize colony dynamics, they are likely to have negative effects.  相似文献   

5.
1. Quantifying the pattern of temporal and spatial variation in demography, and identifying the factors that cause this variation, are essential steps towards understanding the structure and dynamics of any population. 2. One critical but understudied demographic rate is pre-breeding survival. We used long-term colour-ringing data to quantify temporal (among-year) and spatial (among-nest site) variation in pre-breeding survival in red-billed choughs (Pyrrhocorax pyrrhocorax) inhabiting Islay, Scotland, and identified environmental correlates of this variation. 3. Random-effects capture-mark-recapture models demonstrated substantial temporal and spatial process variance in first-year survival; survival from fledging to age 1 year varied markedly among choughs fledged in different years and fledged from different nest sites. Spatial variance exceeded temporal variance across choughs fledged from well-studied nest sites. 4. The best-supported models of temporal variation suggested that first-year survival was higher in years following high tipulid larvae abundance and when weather conditions favoured increased invertebrate productivity and/or availability to foraging choughs. These variables explained up to 80% of estimated temporal process variance. 5. The best-supported models of spatial variation suggested that first-year survival was higher in choughs fledged from nest sites that were further from exposed coasts and closer to flocking areas, and surrounded by better habitat and higher chough density. These variables explained up to 40% of estimated spatial process variance. 6. Importantly, spatio-temporal models indicated interactive effects of weather, tipulid abundance, local habitat and local chough density on first-year survival, suggesting that detrimental effects of poor weather and low tipulid abundance may be reduced in choughs fledged from nest sites surrounded by better foraging habitat and lower chough density. 7. These analyses demonstrate substantial temporal and small-scale spatial variation in pre-breeding survival, a key demographic rate, and indicate that this variation may reflect interactive effects of weather, prey abundance, habitat and geography. These patterns illustrate the value of holistic models of demographic variation, and indicate environmental factors that may limit the growth rate of Islay's protected chough population.  相似文献   

6.
Detailed studies on mammals and birds have shown that the effects of climate variation on population dynamics often depend on population composition, because weather affects different subsets of a population differently. It is presently unknown whether this is also true for ectothermic animals such as reptiles. Here we show such an interaction between weather and demography for an ectothermic vertebrate by examining patterns of survival and reproduction in six populations of a threatened European snake, the asp viper ( Vipera aspis ), over six to 17 years. Survival was lowest among juvenile and highest among adult snakes. The estimated annual probability for females to become gravid ranged from 26% to 60%, and was independent of whether females had reproduced in the year before or not. Variation in juvenile survival was strongly affected by winter temperature, whereas adult survival was unaffected by winter harshness. A matrix population model showed that winter weather affected population dynamics predominantly through variation in juvenile survival, although the sensitivity of the population growth rate to juvenile survival was lower than to adult survival. This study on ectothermic vipers revealed very similar patterns to those found in long-lived endothermic birds and mammals. Our results thus show that climate and life history can interact in similar ways across biologically very different vertebrate species, and suggest that these patterns may be very general.  相似文献   

7.
Weather extremes are one important element of ongoing climate change, but their impacts are poorly understood because they are, by definition, rare events. If the frequency and severity of extreme weather events increase, there is an urgent need to understand and predict the ecological consequences of such events. In this study, we aimed to quantify the effects of snow storms on nest survival in Antarctic petrels and assess whether snow storms are an important driver of annual breeding success and population growth rate. We used detailed data on daily individual nest survival in a year with frequent and heavy snow storms, and long term data on petrel productivity (i.e., number of chicks produced) at the colony level. Our results indicated that snow storms are an important determinant of nest survival and overall productivity. Snow storm events explained 30% of the daily nest survival within the 2011/2012 season and nearly 30% of the interannual variation in colony productivity in period 1985–2014. Snow storms are a key driver of Antarctic petrel breeding success, and potentially population dynamics. We also found state‐dependent effects of snow storms and chicks in poor condition were more likely to die during a snow storm than chicks in good condition. This stresses the importance of considering interactions between individual heterogeneity and extreme weather events to understand both individual and population responses to climate change.  相似文献   

8.
Preserving peripheral populations is a key conservation issue because of the adaptive potential to environmental change they provide for the species as a whole. Yet, peripheral populations are often small and isolated, i.e. more vulnerable to stochastic events and prone to extinction. We studied a peripheral population of Hoopoe (Upupa epops), a rare insectivorous farmland bird, in the Swiss Alps. We first investigated the effect of weather variation on food provisioning to chicks by Hoopoe parents. Second, while accounting for density-dependence, we tested the extent to which breeding success is governed by weather circumstances and assessed the possible consequences of climate variation on population growth. Provisioning rate and provisioned prey biomass were negatively affected by adverse weather (cool, rainy days), were higher in males and also increased with brood size. Much smaller proportions of molecrickets (Gryllotalpa gryllotalpa; the most profitable prey locally, constituting 93% of chicks’ food biomass) were provisioned on days with adverse weather, irrespective of brood size. Rainfall prior to hatching and during the first days of chick life had a negative impact on their survival, and there was a positive effect of temperature on chick survival just before fledging. Reproductive output was negatively affected by precipitation during the hatching period, but was enhanced by warm temperature just before hatching and in the last days before fledging. Our model showed that the variable reproductive output has a strong impact on the population growth: a succession of adverse, rainy springs would cause a rapid decline of the population. This case study confirms that conservation efforts may be obliterated if risks linked to increasing climate variability are not properly accounted for in the management of small peripheral populations.  相似文献   

9.
Anthropogenic activities such as uncontrolled deforestation and increasing greenhouse gas emissions are responsible for triggering a series of environmental imbalances that affect the Earth's complex climate dynamics. As a consequence of these changes, several climate models forecast an intensification of extreme weather events over the upcoming decades, including heat waves and increasingly severe drought and flood episodes. The occurrence of such extreme weather will prompt profound changes in several plant communities, resulting in massive forest dieback events that can trigger a massive loss of biodiversity in several biomes worldwide. Despite the gravity of the situation, our knowledge regarding how extreme weather events can undermine the performance, survival, and distribution of forest species remains very fragmented. Therefore, the present review aimed to provide a broad and integrated perspective of the main biochemical, physiological, and morpho‐anatomical disorders that may compromise the performance and survival of forest species exposed to climate change factors, particularly drought, flooding, and global warming. In addition, we also discuss the controversial effects of high CO2 concentrations in enhancing plant growth and reducing the deleterious effects of some extreme climatic events. We conclude with a discussion about the possible effects that the factors associated with the climate change might have on species distribution and forest composition.  相似文献   

10.
Understanding demographic processes will be essential to construct robust models of population responses to climate change. We show that survival is related to the strength of the North Atlantic Oscillation in five out of ten British resident passerine species, and explore the importance of biologically more specific variables (duration of winter frosts and snow periods; occurrence of cold, wet days; spring temperature; and summer drought). The most important variables differed between species in relation to differences in foraging strategy. In almost all cases, first-year survival was influenced by weather more than was the survival of adult birds. Particularly vulnerable species, such as the Wren Troglodytes troglodytes , may exhibit a 25% reduction in juvenile survival rates due to adverse weather within the range experienced in the last 30 years; variation in survival by 10% or more is commonplace in most species. Thus, climate influences on food availability may provide the mechanism by which populations will alter under changed climatic conditions, though the presence of density dependence may reduce the impact of this on long-term population trajectories.  相似文献   

11.
Ecologists are increasingly aware of the importance of environmental variability in natural systems. Climate change is affecting both the mean and the variability in weather and, in particular, the effect of changes in variability is poorly understood. Organisms are subject to selection imposed by both the mean and the range of environmental variation experienced by their ancestors. Changes in the variability in a critical environmental factor may therefore have consequences for vital rates and population dynamics. Here, we examine ≥90‐year trends in different components of climate (precipitation mean and coefficient of variation (CV); temperature mean, seasonal amplitude and residual variance) and consider the effects of these components on survival and recruitment in a population of Eurasian beavers (n = 242) over 13 recent years. Within climatic data, no trends in precipitation were detected, but trends in all components of temperature were observed, with mean and residual variance increasing and seasonal amplitude decreasing over time. A higher survival rate was linked (in order of influence based on Akaike weights) to lower precipitation CV (kits, juveniles and dominant adults), lower residual variance of temperature (dominant adults) and lower mean precipitation (kits and juveniles). No significant effects were found on the survival of nondominant adults, although the sample size for this category was low. Greater recruitment was linked (in order of influence) to higher seasonal amplitude of temperature, lower mean precipitation, lower residual variance in temperature and higher precipitation CV. Both climate means and variance, thus proved significant to population dynamics; although, overall, components describing variance were more influential than those describing mean values. That environmental variation proves significant to a generalist, wide‐ranging species, at the slow end of the slow‐fast continuum of life histories, has broad implications for population regulation and the evolution of life histories.  相似文献   

12.
Climate change can markedly impact biology, population ecology, and spatial patterns of eruptive insects due to the direct influence of temperature on insect development and population success. The mountain pine beetle Dendroctonus ponderosae (Coleoptera: Curculionidae), is a landscape‐altering insect that infests forests of North America. Abundant availability of host trees due to altered disturbance regimes has facilitated an unprecedented, landscape‐wide outbreak of this pest in British Columbia and Alberta, Canada, during the past decade. A previous outbreak in the 1980s, in central British Columbia, collapsed due to host depletion and extreme cold weather events. Despite the importance of such extreme weather events and other temperature‐related signals in modulating an outbreak, few landscape‐level models have studied the associations of extreme cold events with outbreak occurrences. We studied the individual associations of several biologically‐relevant cold temperature variables, and other temperature/degree‐day terms, with outbreak occurrences in a spatial‐temporal logistic regression model using data from the current outbreak. Timing, frequency, and duration of cold snaps had a severe negative association with occurrence of an outbreak in a given area. Large drops in temperature (>10°C) or extreme winter minimum temperatures reduced the outbreak probability. We then used the model to apply eight different climate change scenarios to the peak year of the current outbreak. Our scenarios involved combinations of increasing annual temperature and different variances about this trend. Our goal was to examine how spatial outbreak pattern would have changed in the face of changing thermal regime if the underlying outbreak behaviour remained consistent. We demonstrate that increases in mean temperature by 1°C to 4°C profoundly increased the risk of outbreaks with effects first being manifested at higher elevations and then at increasing latitudes. However, increasing the variance associated with a mean temperature increase did not change the overall trend in outbreak potential.  相似文献   

13.
Whole-ecosystem interactions and feedbacks constrain ecosystem responses to environmental change. The effects of these constraints on responses to climate trends and extreme weather events have been well studied. Here we examine how these constraints respond to changes in day-to-day weather variability without changing the long-term mean weather. Although environmental variability is recognized as a critical factor affecting ecological function, the effects of climate change on day-to-day weather variability and the resultant impacts on ecosystem function are still poorly understood. Changes in weather variability can alter the mean rates of individual ecological processes because many processes respond non-linearly to environmental drivers. We assessed how these individual-process responses to changes in day-to-day weather variability interact with one another at an ecosystem level. We examine responses of arctic tundra to changes in weather variability using stochastic simulations of daily temperature, precipitation, and light to drive a biogeochemical model. Changes in weather variability altered ecosystem carbon, nitrogen, and phosphorus stocks and cycling rates in our model. However, responses of some processes (e.g., respiration) were inconsistent with expectations because ecosystem feedbacks can moderate, or even reverse, direct process responses to weather variability. More weather variability led to greater carbon losses from land to atmosphere; less variability led to higher carbon sequestration on land. The magnitude of modeled ecosystem response to weather variability was comparable to that predicted for the effects of climate mean trends by the end of the century.  相似文献   

14.
As climate change continues to alter temperature and precipitation patterns, numerous species have declined. However, populations of some species that show responses to climate change, such as eastern bluebirds (Sialia sialis), have increased or remained stable nationwide. To understand how species are adapting to climate change, we estimated demographic parameters and their responses to climatic variability, using nesting and banding-recapture data between 2003 and 2018 in a northeastern Arkansas eastern bluebird population. Increasing variability in precipitation in the nonbreeding season negatively affected hatchability. Hatching success was negatively affected by increasing variability in maximum temperatures and the number of hot days during the breeding season, but positively affected by increasing winter snow depth. Adult survival was positively affected by increasing snow depth and variability in the number of hot days during the breeding season, but negatively affected by increasing variability in nonbreeding season temperatures. Our results demonstrate that for this study population, annual breeding parameters, though canalized against interannual environmental variation, were affected by seasonal climatic variability. Although climate change may benefit bluebird survival due to increasing variability in winter temperatures and the number of hot days, climatic variability negatively affected breeding parameters and is expected to increase. Because breeding parameters are typically the drivers of population growth rate in short-lived species, these results raise concern for the future of this population of eastern bluebirds.  相似文献   

15.
Crop responses to climatic variation   总被引:6,自引:0,他引:6  
The yield and quality of food crops is central to the well being of humans and is directly affected by climate and weather. Initial studies of climate change on crops focussed on effects of increased carbon dioxide (CO2) level and/or global mean temperature and/or rainfall and nutrition on crop production. However, crops can respond nonlinearly to changes in their growing conditions, exhibit threshold responses and are subject to combinations of stress factors that affect their growth, development and yield. Thus, climate variability and changes in the frequency of extreme events are important for yield, its stability and quality. In this context, threshold temperatures for crop processes are found not to differ greatly for different crops and are important to define for the major food crops, to assist climate modellers predict the occurrence of crop critical temperatures and their temporal resolution. This paper demonstrates the impacts of climate variability for crop production in a number of crops. Increasing temperature and precipitation variability increases the risks to yield, as shown via computer simulation and experimental studies. The issue of food quality has not been given sufficient importance when assessing the impact of climate change for food and this is addressed. Using simulation models of wheat, the concentration of grain protein is shown to respond to changes in the mean and variability of temperature and precipitation events. The paper concludes with discussion of adaptation possibilities for crops in response to drought and argues that characters that enable better exploration of the soil and slower leaf canopy expansion could lead to crop higher transpiration efficiency.  相似文献   

16.
基于中国气象局国家气象信息中心提供的澜沧江区域1961—2011年50年气象资料,采用EMD(Empirical Mode Decomposition)分解、均生函数逐步回归模型、相关分析等方法,探讨了澜沧江流域极端天气灾害的变化特征,及其区域极端灾害变化和全球海温异常ENSO(El Nio/La Nia-Southern Oscillation)之间的联系。结果表明:(1)该区域降水和暴雨频次存在多尺度特征,降水量存在2a、7a、15a的变化周期,且主周期为准2 a。(2)降水量和暴雨频度序列的IMF1和IMF2周期在2—7 a之间,与ENSO在年际变化上的信号相吻合,NINO(El Nio)指数无论春夏秋冬或年际都与暴雨和干旱灾害频次呈现负相关,而SOI(Southern Oscillation Index)指数则呈现正相关,其中,NINO指数与干旱相关性指数在秋冬和年际接近-0.3。(3)澜沧江流域暴雨和干旱灾害与ENSO有重要联系,且随着气温升高干旱灾害频次明显增加。研究结果显示区域极端气温灾害的变化与全球气候变暖有某种关联,是全球气候变化的区域响应表现形式之一。  相似文献   

17.
Disturbances of climatic and ecological systems can present risks to human health, which are becoming more evident from health studies linked to climate variability, landuse change and global climate change. Waterborne disease agents, such as Giardia cysts and Cryposporidium oocysts have been positively correlated with rainfall. El Niño-related extreme weather conditions can have a significant impact on vector- and water-borne diseases. The linkages between weather, terrestrial ecology and human health have been discovered for some diseases, such as rodent-borne hantavirus. Marine ecology also plays a role in determining human health risks, such as from cholera, and other enteric pathogens. Deforestation and ensuing changes in landuse, human settlement, commercial development, road construction, and water control systems singly, and in combination have been accompanied by increases in or emergence of diseases like malaria and schistosomiasis in some regions of the world. Long-term climate change may increase the frequency of heat waves and potentially air pollution episodes, increase the number of extreme weather events, cause coastal flooding and salination of fresh water aquifers, and displace coastal settlements. Ultimately, a two-pronged approach (empirical and modeling studies) is required to better understand these linkages between climato-logical and ecological change as determinants of disease.  相似文献   

18.
Extreme weather events are becoming more frequent, severe, and/or widespread as a consequence of anthropogenic climate change. While the economic and ecological implications of these changes have received considerable attention, the role of evolutionary processes in determining organismal responses to these critical challenges is currently unknown. Here we develop a novel theoretical framework that explores how alternative pathways for adaptation to rare selection events can influence population‐level vulnerabilities to future changes in the frequency, scope, and intensity of environmental extremes. We begin by showing that different life histories and trait expression profiles can shift the balance between additive and multiplicative properties of fitness accumulation, favoring different evolutionary responses to identical environmental phenomena. We then demonstrate that these different adaptive outcomes lead to predictable differences in population‐level vulnerabilities to rapid increases in the frequency, intensity, or scope of extreme weather events. Specifically, we show that when the primary mode of fitness accumulation is additive, evolution favors ignoring environmental extremes and lineages become highly vulnerable to extinction if the frequency or scope of extreme weather events suddenly increases. Conversely, when fitness accumulates primarily multiplicatively, evolution favors bet‐hedging phenotypes that cope well with historical extremes and are instead vulnerable to sudden increases in extreme event intensity. Our findings address a critical gap in our understanding of the potential consequences of rare selection events and provide a relatively simple rubric for assessing the vulnerabilities of any population of interest to changes in a wide variety of extreme environmental phenomena.  相似文献   

19.
Although the problem of plant invasions is expected to increase with climate change, there is as yet little experimental evidence, in particular, for the effects of extreme weather events. We established communities of European meadow species, which were subjected to warming and extreme event (drought and deluge) treatments in a factorial design at an experimental garden in Zurich, Switzerland. Phylogenetically matched pairs of native and alien species (Bromus erectus, B. inermis, Trifolium pratense, T. hybridum, Lactuca serriola, and Conyza canadensis) were introduced into the communities to test if invader performance is favored by warming and extreme events, and if alien invaders perform better than native colonizers. With a warming of on average 0.3?°C, a higher cover of native plant communities was observed, while drought decreased cover in the short-term and lowered biomass. Germination, survival, and growth of the introduced species were lower under elevated temperature. Survival of all pairs and growth of Trifolium was greater in drought pots, while deluge had no effect. While the alien species showed a faster rate of increase in the number of leaves, mortality of alien species was greater than of native species. Overall, the performance of the focal species varied much more among taxonomic groups than native/alien provenances. The results suggest that with climate change, different types of extreme events will differ in the severity of their effects on native plant communities. Meanwhile, the effects of climate change on plant invasions are more likely to operate indirectly through the impacts on native vegetation.  相似文献   

20.
How temperate forests will respond to climate change is uncertain; projections range from severe decline to increased growth. We conducted field tests of sessile oak (Quercus petraea), a widespread keystone European forest tree species, including more than 150 000 trees sourced from 116 geographically diverse populations. The tests were planted on 23 field sites in six European countries, in order to expose them to a wide range of climates, including sites reflecting future warmer and drier climates. By assessing tree height and survival, our objectives were twofold: (i) to identify the source of differential population responses to climate (genetic differentiation due to past divergent climatic selection vs. plastic responses to ongoing climate change) and (ii) to explore which climatic variables (temperature or precipitation) trigger the population responses. Tree growth and survival were modeled for contemporary climate and then projected using data from four regional climate models for years 2071–2100, using two greenhouse gas concentration trajectory scenarios each. Overall, results indicated a moderate response of tree height and survival to climate variation, with changes in dryness (either annual or during the growing season) explaining the major part of the response. While, on average, populations exhibited local adaptation, there was significant clinal population differentiation for height growth with winter temperature at the site of origin. The most moderate climate model (HIRHAM5‐EC; rcp4.5) predicted minor decreases in height and survival, while the most extreme model (CCLM4‐GEM2‐ES; rcp8.5) predicted large decreases in survival and growth for southern and southeastern edge populations (Hungary and Turkey). Other nonmarginal populations with continental climates were predicted to be severely and negatively affected (Bercé, France), while populations at the contemporary northern limit (colder and humid maritime regions; Denmark and Norway) will probably not show large changes in growth and survival in response to climate change.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号