首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
2.
3.
PML与基因组稳定性   总被引:3,自引:0,他引:3  
基因组稳定性同肿瘤的发生、发展密切相关,维护基因组稳定性对于细胞行使正常的生理功能是至关重要的.早幼粒细胞白血病蛋白PML(promyelocytic leukemia)主要借助分子中RBCC结构,同近50种有重要功能的蛋白相互作用而形成PML-NBs(PML nuclear bodies).PML-NBs是与核基质结合的、动态的、亚核多蛋白复合物,它作为区室化核结构(compartmentalized nuclear architecture)——染色质间区室(interchromatin compartment)的功能单位,满足了真核基因高层次表达调控模式的时空要求.最新的研究证明:PML是基因组稳定性“守门人”——p53分子的搭档分子,同样在基因组稳定性调控中发挥着重要的功能作用.它协同p53参与了DNA损伤反应所诱发的细胞凋亡,还可组织多种DNA修复分子参与DNA损伤修复,在DNA损伤反应中具有重要作用;此外,PML还通过调控aurora A的活性参与中心体复制检查点调控,借助调控survivin的表达参与有丝分裂纺锤体组装检查点调控,在染色体复制和细胞分裂中均显示了重要的调控作用.而当PML表达缺失或不足时则与多种肿瘤的发生、发展相关联,因此PML分子在维护基因组稳定性中具有重要功能作用,本文仅就相关的最新研究进展予以概述  相似文献   

4.
5.
6.
Aurora‐A is a serine/threonine kinase that has oncogenic properties in vivo. The expression and kinase activity of Aurora‐A are up‐regulated in multiple malignancies. Aurora‐A is a key regulator of mitosis that localizes to the centrosome from the G2 phase through mitotic exit and regulates mitotic spindle formation as well as centrosome separation. Overexpression of Aurora‐A in multiple malignancies has been linked to higher tumor grade and poor prognosis through mechanisms that remain to be defined. Using an unbiased proteomics approach, we identified the protein nuclear mitotic apparatus (NuMA) as a robust substrate of Aurora‐A kinase. Using a small molecule Aurora‐A inhibitor in conjunction with a reverse in‐gel kinase assay (RIKA), we demonstrate that NuMA becomes hypo‐phosphorylated in vivo upon Aurora‐A inhibition. Using an alanine substitution strategy, we identified multiple Aurora‐A phospho‐acceptor sites in the C‐terminal tail of NuMA. Functional analyses demonstrate that mutation of three of these phospho‐acceptor sites significantly diminished cell proliferation. In addition, alanine mutation at these sites significantly increased the rate of apoptosis. Using confocal immunofluorescence microscopy, we show that the NuMA T1804A mutant mis‐localizes to the cytoplasm in interphase nuclei in a punctate pattern. The identification of Aurora‐A phosphorylation sites in NuMA that are important for cell cycle progression and apoptosis provides new insights into Aurora‐A function. J. Cell. Biochem. 114: 823–830, 2013. © 2012 Wiley Periodicals, Inc.  相似文献   

7.
The establishment of bipolar spindles during meiotic divisions ensures faithful chromosome segregation to prevent gamete aneuploidy. We analyzed centriole duplication, as well as centrosome maturation and separation during meiosis I and II using mouse spermatocytes. The first round of centriole duplication occurs during early prophase I, and then, centrosomes mature and begin to separate by the end of prophase I to prime formation of bipolar metaphase I spindles. The second round of centriole duplication occurs at late anaphase I, and subsequently, centrosome separation coordinates bipolar segregation of sister chromatids during meiosis II. Using a germ cell‐specific conditional knockout strategy, we show that Polo‐like kinase 1 and Aurora A kinase are required for centrosome maturation and separation prior to metaphase I, leading to the formation of bipolar metaphase I spindles. Furthermore, we show that PLK1 is required to block the second round of centriole duplication and maturation until anaphase I. Our findings emphasize the importance of maintaining strict spatiotemporal control of cell cycle kinases during meiosis to ensure proficient centrosome biogenesis and, thus, accurate chromosome segregation during spermatogenesis.  相似文献   

8.
Neuroblastoma is one of the most common cancers in children. Neuroblastoma differentiation is linked to the presence of the promyelocytic leukemia (PML) protein. Retinoic acid, a powerful differentiation-inducer in vitro , is a potent agent for the treatment of neuroblastoma. Using two different human neuroblastoma cell lines, SH-SY5Y and LA-N-5, we show here that PML protein leads to the formation of nuclear bodies (PML-NB) after only 1 h of retinoic acid treatment and that this formation is mediated by the extracellular signal-regulated kinase (ERK) pathway. Inhibition of protein kinase C also leads to formation of PML-NB via the ERK pathway. Both sumoylation and phosphorylation of PML in an ERK-dependent pathway are also required for formation of PML-NB. Finally, we show that PML-NB formation in neuroblastoma cells is associated with neurite outgrowth. These results support the proposal that the formation of PML-NB is correlated with the differentiation of neuroblastoma cells.  相似文献   

9.
The promyelocytic leukemia gene (PML) encodes a growth/tumor suppressor protein that is essential for the induction of apoptosis in response to various apoptotic signals. The mechanism by which PML plays a role in the regulation of cell death is still unknown. In the current study, we demonstrate that PML negatively regulated the SAPK2/p38 signaling pathway by sequestering p38 from its upstream kinases, MKK3, MKK4, and MKK6, whereas PML did not affect the SAPK1/c-Jun NH(2)-terminal kinase pathway. PML associated with p38 both in vitro and in vivo and the carboxyl terminus of PML mediated the interaction. In contrast to other studies of PML and PML-nuclear bodies (NB), our study shows that the formation of PML-NBs was not required for PML to suppress p38 activity because PML was still able to bind and inhibit p38 activity under the conditions in which PML-NBs were disrupted. In addition, we show that the promotion of Fas-induced cell death by PML correlated with the extent of p38 inhibition by PML, suggesting that PML might regulate apoptosis through manipulating SAPK2/p38 pathways. Our findings define a novel function of PML as a negative regulator of p38 kinase and provide further understanding on the mechanism of how PML induces multiple pathways of apoptosis.  相似文献   

10.
Control of centrin stability by Aurora A   总被引:2,自引:0,他引:2  
Aurora A is an oncogenic serine/threonine kinase which can cause cell transformation and centrosome amplification when over-expressed. Human breast tumors show excess Aurora A and phospho-centrin in amplified centrosomes. Here, we show that Aurora A mediates the phosphorylation of and localizes with centrin at the centrosome, with both proteins reaching maximum abundance from prophase through metaphase, followed by their precipitous loss in late stages of mitosis. Over-expression of Aurora A results in excess phospho-centrin and centrosome amplification. In contrast, centrosome amplification is not seen in cells over-expressing Aurora A in the presence of a recombinant centrin mutant lacking the serine phosphorylation site at residue 170. Expression of a kinase dead Aurora A results in a decrease in mitotic index and abrogation of centrin phosphorylation. Finally, a recombinant centrin mutation that mimics centrin phosphorylation increases centrin's stability against APC/C-mediated proteasomal degradation. Taken together, these results suggest that the stability of centrin is regulated in part by Aurora A, and that excess phosphorylated centrin may promote centrosome amplification in cancer.  相似文献   

11.
12.
Centrosome duplication is indispensable for the formation of the bipolar mitotic spindle. Surprisingly, even if DNA replication or mitosis is inhibited, centrosome duplication can still occur [1] [2] [3] [4] [5]. Thus, it remains unknown how centrosome duplication is coordinated with the cell cycle. Here, we show that centrosome duplication requires cyclin-dependent kinase 2 (Cdk2) in mammalian cells. We have found that in Chinese hamster ovary (CHO) cells, whereas centrosome duplication is not inhibited by hydroxyurea (HU) treatment, which arrests the cells in S phase, it is inhibited by mimosine treatment, which arrests the cells in late G1 phase. Cdk2 activity was higher in HU-treated cells than in mimosine-treated cells. Remarkably, inhibition of the Cdk2 activity in HU-treated cells with butyrolactone I or roscovitine [6], or by expression of the Cdk inhibitor p21(Waf1/Cip1), blocked the continued centrosome duplication. Moreover, overexpression of Cdk2 reversed the inhibition of centrosome duplication by mimosine treatment. These results indicate a requirement of Cdk2 activity for centrosome duplication and therefore suggest an underlying mechanism for the coordination of centrosome duplication with the cell cycle.  相似文献   

13.
Acute promyelocytic leukemia (APL), a subtype of acute myeloid leukemia, is the prototype of a cancer that can be cured by differentiation therapy using combined retinoic acid (RA) and chemotherapy. Acute promyelocytic leukemia is caused by chromosomal translocations, which in the large majority of cases generate the prototypic promyelocytic leukemia-retinoic-acid receptor alpha (PML-RARalpha) an oncogenic fusion protein formed from the retinoic-acid receptor alpha and the so-called PML protein. The fusion protein leads to the deregulation of wild type PML and RARalpha function, thus inducing the differentiation block and an altered survival capacity of promyelocytes of affected patients. A plethora of studies have revealed molecular details that account for the oncogenic properties of acute promyelocytic leukemia fusion proteins and the events that contribute to the therapy-induced differentiation and apoptosis of patients' blasts. Illustrating the beneficial mechanisms of action of retinoids for acute promyelocytic leukemia patients this review goes on to discuss a plethora of recently recognized molecular paradigms by which retinoids and rexinoids, alone or in combination with other compounds, regulate growth, differentiation and apoptosis also in non-acute promyelocytic leukemia cells, highlighting their potential as drugs for cancer therapy and prevention.  相似文献   

14.
Aurora A kinase localizes to centrosomes and is required for centrosome maturation and spindle assembly. Here we describe a microtubule-independent role for Aurora A and centrosomes in nuclear envelope breakdown (NEBD) during the first mitotic division of the C. elegans embryo. Aurora A depletion does not alter the onset or kinetics of chromosome condensation, but dramatically lengthens the interval between the completion of condensation and NEBD. Inhibiting centrosome assembly by other means also lengthens this interval, albeit to a lesser extent than Aurora A depletion. By contrast, centrosomally nucleated microtubules and the nuclear envelope-associated motor dynein are not required for timely NEBD. These results indicate that mitotic centrosomes generate a diffusible factor, which we propose is activated Aurora A, that promotes NEBD. A positive feedback loop, in which an Aurora A-dependent increase in centrosome size promotes Aurora A activation, may temporally couple centrosome maturation to NEBD during mitotic entry.  相似文献   

15.
Previously we reported that the expression of promyelocytic leukemia (PML)-retinoic acid receptor alpha (RARα) fusion gene, which is caused by specific translocation (15;17) in acute promyelocytic leukemia, can enhance constitutive autophagic activity in leukemic and nonleukemic cells, and PML overexpression can sequestrate part of microtubule-associated protein light chain 3 (LC3) protein in PML nuclear bodies, suggesting that LC3 protein also distributes into nuclei although it is currently thought to function primarily in the cytoplasm, the site of autophagosomal formation. However, its potential significance of nucleoplasmic localizations remains greatly elusive. Here we demonstrate that PML interacts with LC3 in a cell type-independent manner as assessed by Co-IP assay and co-localization observation. Overexpressed PML significantly coprecipitates with endogenous and nuclear LC3 protein. Furthermore, a fraction of endogenous PML protein is found to be co-localized with LC3 protein under steady state condition, which is further enhanced by IFNα induction, indicating that PML up-regulation potentiates this interaction. Additionally, DsRed-PML associates with EGFP-LC3 during telophase and G1 phase but not in metaphase and anaphase. Two potential LC3-interacting region (LIR) motifs in PML are required for interaction of PML with LC3 while this association is independent of autophagic activity. Finally, we show that interaction between PML and LC3 contributes to cell growth inhibition function of PML. Considering that PML is an important tumor suppressor, we propose that nuclear portion of LC3 protein may associate with PML to control cell growth for prevention and inhibition of cancer occurrence and development.  相似文献   

16.
The functional association of NPM1 with Aurora kinases is well documented. Surprisingly, although NPM1 is a well characterized phosphoprotein, it is unknown whether it is a substrate of Aurora kinases. We have found that Aurora kinases A and B can phosphorylate NPM1 at a single serine residue, Ser125, in vitro and in vivo. Phosphorylated-S125-NPM1 (pS125-NPM1) localizes to the midbody region during late cytokinesis where it colocalizes with Aurora B. The overexpression of mutant (S125A) NPM1 resulted in the deregulation of centrosome duplication and mitotic defects possibly due to cytokinesis failure. These data suggest that Aurora kinase B-mediated phosphorylation of NPM1 plays a critical role during mitosis, which could have wider implications in oncogenesis.  相似文献   

17.
Aurora kinases are eukaryotic serine/threonine protein kinases that regulate key events associated with chromatin condensation, centrosome and spindle function and cytokinesis. Elucidating the roles of Aurora kinases in apicomplexan parasites is crucial to understand the cell cycle control during Plasmodium schizogony or Toxoplasma endodyogeny. Here, we report on the localization of two previously uncharacterized Toxoplasma Aurora‐related kinases (Ark2 and Ark3) in tachyzoites and of the uncharacterized Ark3 orthologue in Plasmodium falciparum erythrocytic stages. In Toxoplasma gondii, we show that TgArk2 and TgArk3 concentrate at specific sub‐cellular structures linked to parasite division: the mitotic spindle and intranuclear mitotic structures (TgArk2), and the outer core of the centrosome and the budding daughter cells cytoskeleton (TgArk3). By tagging the endogenous PfArk3 gene with the green fluorescent protein in live parasites, we show that PfArk3 protein expression peaks late in schizogony and localizes at the periphery of budding schizonts. Disruption of the TgArk2 gene reveals no essential function for tachyzoite propagation in vitro, which is surprising giving that the P. falciparum and P. berghei orthologues are essential for erythrocyte schizogony. In contrast, knock‐down of TgArk3 protein results in pronounced defects in parasite division and a major growth deficiency. TgArk3‐depleted parasites display several defects, such as reduced parasite growth rate, delayed egress and parasite duplication, defect in rosette formation, reduced parasite size and invasion efficiency and lack of virulence in mice. Our study provides new insights into cell cycle control in Toxoplasma and malaria parasites and highlights Aurora kinase 3 as potential drug target.  相似文献   

18.
19.
Aurora family kinases play pivotal roles in several steps during mitosis. Specifically, Aurora A kinase is an important regulator of bipolar mitotic spindle formation and chromosome segregation. Like other members of the Aurora family, Aurora A kinase is also regulated by post-translational modifications. Here, we show that a previously undescribed E3 ligase component belonging to the SCF (Skp-Cullin1-F-box protein) E3 ligase family, SCFFBXL7, impairs cell proliferation by mediating Aurora A polyubiquitination and degradation. Both Aurora A and FBXL7 co-localize within the centrosome during spindle formation. FBXL7 ectopic expression led to G2/M phase arrest in transformed epithelia, resulting in the appearance of tetraploidy and mitotic arrest with circular monopolar spindles and multipolar spindle formation. Interestingly, FBXL7 specifically interacts with Aurora A during mitosis but not in interphase, suggesting a regulatory role for FBXL7 in controlling Aurora A abundance during mitosis.Key words: F-box protein, centrosome, mitosis, Aurora A  相似文献   

20.
Upon damage of DNA in eukaryotic cells, several repair and checkpoint proteins undergo a dramatic intranuclear relocalization, translocating to nuclear foci thought to represent sites of DNA damage and repair. Examples of such proteins include the checkpoint kinase ATR (ATM and Rad3-related) as well as replication protein A (RPA), a single-stranded DNA binding protein required in DNA replication and repair. Here, we used a microscopy-based approach to investigate whether the damage-induced translocation of RPA is an active process regulated by ATR. Our data show that in undamaged cells, ATR and RPA are uniformly distributed in the nucleus or localized to promyelocytic leukemia protein (PML) nuclear bodies. In cells treated with ionizing radiation, both ATR and RPA translocate to punctate, abundant nuclear foci where they continue to colocalize. Surprisingly, an ATR mutant that lacks kinase activity fails to relocalize in response to DNA damage. Furthermore, this kinase-inactive mutant blocks the translocation of RPA in a cell cycle-dependent manner. These observations demonstrate that the kinase activity of ATR is essential for the irradiation-induced release of ATR and RPA from PML bodies and translocation of ATR and RPA to potential sites of DNA damage.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号