首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
《Aquatic Botany》2002,72(3-4):249-260
The capability of Chara beds to act as nutrient sinks in shallow lakes is reviewed. Under favorable conditions charophytes form dense meadows. Biomass and nutrient content in such beds are comparable or even higher than in beds of vascular aquatic macrophytes. As some Chara species are capable of overwintering, the nutrient storage in plant biomass may extend beyond the growing season. Some commonly observed phenomena in vascular plants (nutrient uptake and mobilization of nutrients from the sediment) appear to be unlikely or negligible in Characeae. Charophytes have been reported to decompose slower than their vascular counterparts prolonging nutrient storage in plant biomass.Charophytes may also indirectly affect nutrient cycling in lakes. Utilization of bicarbonate is accompanied by precipitation of calcite during periods of intensive photosynthesis, favoring immobilization of P by binding in the crystal structure or sorption on sedimenting mineral particles. Charophytes are able to deliver oxygen to the sediment, thus potentially enhancing nitrification/denitrification processes and preventing iron-bound sediment phosphorus from being released to the overlying water. Furthermore, dense Chara meadows restrict sediment resuspension, consequently blocking an important internal source of nutrients to planktonic algae. We conclude that Chara meadows probably are an efficient nutrient trap in shallow lakes.  相似文献   

2.
Water quality of the shallow, mesotrophic, and macrophyte-dominated Lake Kaljasjärvi has been monitored at three to four year intervals since 1978. During the monitoring period, surface-water total phosphorus (TP) concentrations have typically varied between 20 and 25 g P l–1. However, elevated total phosphorus concentrations were measured in 1987, 1991, and 1999. Diatom-based reconstruction of the historical lake-water TP concentrations was therefore employed to study the recent development of the lake. However, the diatom-TP model did not predict the high measured phosphorus concentrations despite the changes observable in diatom assemblages. In addition, the ratio of sedimentary diatom remains to chrysophycean stomatocysts declined towards the top of the sediment core, indicating decreasing trophy rather than eutrophication. Analysis of sedimentary pigments and phosphorus fractions, used to examine further the changes, also produced results that contradicted the simple eutrophication hypothesis. In particular, the proportion of chlorophyll derivatives instead of carotenoids increased and there was a rise in the concentration of refractory instead of NaOH-extracted phosphorus. These features appear to be related to the extensive littoral areas of the lake since enhanced littoral production can explain both the observed changes in sediment chemistry and the low diatom-inferred TP (DI-TP). Littoral primary producers are suggested to have benefited from the increased phosphorus inputs to the lake, transferring some of the phosphorus to the detrital pool and contributing to the increased pigment concentrations of sedimentary organic matter. High proportions of non-planktonic diatoms in the samples lower DI-TP because periphytic taxa are assigned low TP optima in the inference models used. Abundant aquatic macrophytes may also have made the lake resistant to eutrophication by assimilating nutrients, providing refuge for zooplankton, and having an allelopathic effect on phytoplankton. Since 1980, however, the sedimentary diatom assemblages also indicate increasingly eutrophic conditions. Additional loading from numerous cottages during the last 20 years seems to have caused observable changes in the phytoplankton communities.  相似文献   

3.
  1. The classic island biogeography model (IBM) predicts highest species richness in large, connected habitats due to colonisation and reduced risk of extinction. Promoting large, connected habitats has subsequently become a common theme in conservation biology.
  2. However, the IBM does not account for direct and indirect interactions among species. For example, planktivorous and benthivorous fish may reduce biodiversity in shallow lakes by inducing shifts to a turbid‐water lake state with low habitat complexity.
  3. We assessed relationships between species richness, landscape features, fish biomass and lake state in 104 shallow lakes in Minnesota, U.S.A. First, we tested whether lake size and connectivity influenced species richness of fish and biomass of planktivores and benthivores (fish biomass). We subsequently tested whether fish biomass affected the probability that lakes were in turbid versus clear‐water states. Finally, we tested whether species richness of macrophytes and taxon richness of aquatic invertebrates showed stronger relationships with lake size and connectivity or with fish biomass and lake state.
  4. Fish richness and biomass both increased with lake size and were higher in connected basins. Fish biomass, in turn, increased the probability that lakes would be turbid. In contrast, macrophyte and invertebrate richness were unrelated to lake size or connectivity. Instead, macrophyte richness was best predicted by lake state, while invertebrate richness was predicted by lake state and fish biomass. Richness of both macrophytes and invertebrates was higher in clear lakes, and invertebrate richness was inversely related to fish biomass.
  5. Our results indicate the IBM poorly explains the diversity of macrophytes and invertebrates in shallow lakes, with diversity more strongly driven by biotic interactions and influences associated with fish. We suggest that ecological implications of increased connectivity and lake size should be considered in future conservation strategies for shallow lakes.
  相似文献   

4.
The sclerophyllous, evergreen vegetation found in Mexico under tropical climate is named 'Mexical' (MEX) and presents many traits that have been thought to converge under a Mediterranean climate. Flowering phenology is strongly similar across Mediterranean-type ecosystems (MTEs) and this paper investigates MEX plant phenology in this context. The common history of the vegetation and the differences in the climatic conditions experienced by MEX and MTE taxa provide an ideal scenario to infer the relative importance of natural selection and historical constraints in the phenological response of plants to climatic conditions. This study has involved collecting field and bibliographic data on flowering phenology of MEX communities to detect (1) similarities at the community level between MTEs and MEX, (2) similarities between Tertiary and Quaternary taxa in MTEs and MEX, and (3) similarities between congeneric taxa from MEX and MTEs (taxa sharing a common ancestor but having evolved under different climates). Flowering in MEX does not occur mainly in spring, as in MTEs, but in summer, suggesting a response that maximizes water use in the rainy season. Flowering phenology of MEX species differed from their MTE congeneric species, suggesting that even though a common ancestor is shared, environmental pressures have led to different phenological responses in MEX and MTE plants. The flowering season for species that originated in the Tertiary and Quaternary did not differ in MEX, as expected, because of climatic uniformity along the whole time line. In MTEs, flowering differences between Tertiary and Quaternary species were not congruent, suggesting that the balance between the historical constraints and the selective force of the Mediterranean climate is different among the three MTEs, and a particular explanation is needed for each. © 2002 The Linnean Society of London, Botanical Journal of the Linnean Society , 2002, 138 , 297–303.  相似文献   

5.
Geomorphic research across the semi-arid and wet-dry tropics of northern Australia has highlighted the role of the regions’ estuaries as a “canary in the coalmine” for climate variations, with dramatic structural shifts over the Holocene. This behaviour highlights the region’s potential sensitivity to climate change and suggests the need for careful identification and interpretation of dynamics in the tropical and sub-tropical regions. However, analysis of change in these regions requires care, as a number of the basic tools applied to interpreting estuarine change in temperate regions are obscured, invalid or simply unavailable when applied in lower latitudes. This study provides a synthesis from a range of investigations across northern Australia and identifies characteristics to be considered when interpreting or predicting sub-millennial estuarine change in these regions.  相似文献   

6.
We investigated the relative importance of flood defenses and other environmental variables for the cladoceran and copepod communities in floodplain water bodies in Southeastern Norway. The water bodies covered gradients of size, distance to the river and water chemistry, and half of them were located behind flood defenses. The effects of environmental variables on the communities were analyzed using redundancy analysis. The set of environmental variables accounted for more of the explained variation in the cladoceran community than in the copepod community. Water quality was much more important than flooding-related variables for both communities. Although cladoceran species richness was slightly higher in water bodies outside flood defenses, total nitrogen, total organic carbon (TOC), and water body area were the most important factors for the cladocerans. Macrophyte coverage was the most important variable for both species richness and community structure of copepods. Although our results show that water quality and spatial/structural variables are more important than flood defenses in structuring the communities, the effect of TOC on the cladoceran community could likely be mediated through effects of flood defense on TOC. Prospects for a continued anthropogenic pressure on river floodplains raise concern for the future of these unique ecosystems.  相似文献   

7.
Fifty-six unrelated Japanese patients with insulin-dependent diabetes mellitus (IDDM) were HLA-typed, and restriction fragment length polymorphism (RFLP) analysis was performed after enzyme digestion with Bam HI and Taq I by using both DR and DQ probes. As previously reported, increased frequencies of Bw54, Cw1, DR4, and DRw53, which are in strong linkage disequilibrium in the Japanese population and make the characteristic Japanese haplotype, were confirmed. DQw4, a new allele of the DQ system recognized by the monoclonal antibody HU-46 and in linkage disequilibrium with this haplotype, presented the highest IDDM association. The RFLP analysis also showed the strongest correlation to IDDM when the DQ probe was applied. These results indicate that HLA-DQ might play the most important role in the development of IDDM in Japanese as well as in Caucasians. The correlation of DQ amino acid sequences strongly associated with IDDM in Japanese are discussed in this study, and contrasting results were found when such sequences were compared with those of Caucasians.Abbreviations used in this paper IDDM insulin-dependent diabetes mellitus - RFLP restriction fragment length polymorphism - Asp aspartic acid - Asp-57 aspartic acid at the 57th residue of the DQ chain - non-Asp-57 nonaspartic acid at the 57th residue of the DQ chain - R.R. relative risk of Woolf and Haldane  相似文献   

8.
1. The restoration of deep lakes has traditionally focused on reducing the external phosphorus loading. 2. Following the diversion of sewage effluent, that led to marked reductions in nutrient concentrations in its main inflow, Rostherne Mere has shown no reduction in phosphorus or chlorophyll a concentrations. A shallow lake upstream (Little Mere), however, has shown a marked response to effluent diversion. 3. Nutrient budgets for Rostherne Mere reveal that sewage effluent was by far the most significant external source of total phosphorus and that diffuse drainage from the catchment was the most significant external source of dissolved inorganic nitrogen. Phosphorus loads from groundwater and a bird roost were insignificant. Internal sources of phosphorus were, however, considerable and were largely responsible for the observed delay in recovery. 4. Phosphorus limitation of phytoplankton biomass may never be attainable because of substantial internal and diffuse sources of phosphorus, combined with a long retention time. Nitrogen is likely to be more important in limiting phytoplankton biomass. Control of diffuse nitrogen sources may therefore be more effective in the restoration of the deeper lakes of this region.  相似文献   

9.
Körner  Sabine  Dugdale  Tony 《Hydrobiologia》2003,506(1-3):497-501
Hydrobiologia - Re-establishing a stable submerged vegetation is considered an important tool to restore shallow eutrophic lakes. Enhanced turbidity and sediment re-suspension as well as grazing by...  相似文献   

10.
What does it mean to identify a protein in proteomics?   总被引:18,自引:0,他引:18  
The annotation of the human genome indicates the surprisingly low number of approximately 40,000 genes. However, the estimated number of proteins encoded by these genes is two to three orders of magnitude higher. The ability to unambiguously identify the proteins is a prerequisite for their functional investigation. As proteins derived from the same gene can be largely identical, and might differ only in small but functionally relevant details, protein identification tools must not only identify a large number of proteins but also be able to differentiate between close relatives. This information can be generated by mass spectrometry, an approach that identifies proteins by partial analysis of their digestion-derived peptides. Information gleaned from databases fills in the missing sequence information. Because both sequence databases and experimental data are limited, a certain ambiguity often remains concerning which sequence variant(s) and modification(s) are present. As the common denominator of all the isoforms is a gene, in our opinion, it would be more accurate to state that a product of this particular gene rather than a certain protein has been identified by mass spectrometry.  相似文献   

11.
12.
1. Seasonal relationships between macrophyte and phytoplankton populations may alter considerably as lakes undergo eutrophication. Understanding of these changes may be key to the interpretation of ecological processes operating over longer (decadal‐centennial) timescales. 2. We explore the seasonal dynamics of macrophytes (measured twice in June and August) and phytoplankton (measured monthly May–September) populations in 39 shallow lakes (29 in the U.K. and 10 in Denmark) covering broad gradients for nutrients and plant abundance. 3. Three site groups were identified based on macrophyte seasonality; 16 lakes where macrophyte abundance was perennially low and the water generally turbid (‘turbid lakes’); 7 where macrophyte abundance was high in June but low in August (‘crashing’ lakes); and 12 where macrophyte abundance was high in both June and August (‘stable’ lakes). The seasonal behaviour of the crashing and turbid lakes was extremely similar with a consistent increase in nutrient concentrations and chlorophyll‐a over May–September. By contrast in the stable lakes, seasonal changes were dampened with chlorophyll‐a consistently low (<10–15 μg L?1) over the entire summer. The crashing lakes were dominated by one or a combination of Potamogeton pusillus, Potamogeton pectinatus and Zannichellia palustris, whereas Ceratophyllum demersum and Chara spp. were more abundant in the stable lakes. 4. A long‐term loss of macrophyte species diversity has occurred in many shallow lakes affected by eutrophication. One common pathway is from a species‐rich plant community with charophytes to a species‐poor community dominated by P. pusillus, P. pectinatus and Z. palustris. Such compositional changes may often be accompanied by a substantial reduction in the seasonal duration of plant dominance and a greater tendency for incursions by phytoplankton. We hypothesise a slow‐enacting (10–100 s years) feedback loop in nutrient‐enriched shallow lakes whereby increases in algal abundance are associated with losses of macrophyte species and hence different plant seasonal strategies. In turn such changes may favour increased phytoplankton production thus placing further pressure on remaining macrophytes. This study blurs the distinction between so‐called turbid phytoplankton‐dominated and clear plant‐dominated shallow lakes and suggests that plant loss from them may be a gradual process.  相似文献   

13.
14.
1. Lake restoration from eutrophication often rests on a simple paradigm that restriction of phosphorus sources will result in recovery of former relatively clear‐water states. This view has apparently arisen from early successful restorations of deep lakes in catchments of poorly weathered rocks. Lakes in the lowlands, however, particularly shallow ones, have proved less tractable to restoration. This study of three lowland lakes provides insights that illuminate a more complex picture. 2. The lakes lie in a sequence along a single stream in a mixed urban and rural landscape. Severely deoxygenating effluent from an overloaded sewage treatment works was diverted from the catchment in 1991. Effects on two lakes, Little Mere (zmax <2 m) and Rostherne Mere (zmax 31 m) were followed until 2002. Mere Mere (zmax = 8 m), upstream of the former works, acted as a comparison for changes in water chemistry. Mere Mere showed no change in total phosphorus (TP), total inorganic nitrogen, or planktonic chlorophyll a concentrations. Increased winter rainfall was associated with higher winter soluble reactive phosphorus (SRP) and ammonium concentrations in its water. 3. Little Mere changed from a deoxygenated, highly enriched, fishless system, with large populations of Daphnia magna Straus, clear water and about 40% aquatic plant cover, to a slightly less clear system following diversion. Daphnia magna was replaced by D. hyalina Leydig as fish recolonised. Spring peaks of chlorophyll a declined but summer concentrations increased significantly. Annual mean chlorophyll a concentrations thus showed no change. Submerged plants became more abundant (up to 100% cover), with fluctuating community composition from year to year. Summer release of SRP from the sediment was substantial and has not decreased since 1993. The summer phytoplankton was apparently controlled by nitrogen availability perhaps with some influence of zooplankton grazing. SRP was always very abundant. The lake appeared to have reached a quasi‐stable state by 2002. 5. Rostherne Mere showed a steady decline in TP and SRP concentrations following effluent diversion apparently as a result of steady dilution by water with lower phosphorus concentration. Decline in phosphorus concentrations was much less rapid than expected because of internal remobilisation from the hypolimnion and sediments. There have been no changes in chlorophyll a concentration or of nitrogen availability and by 2002 the phytoplankton probably remained limited by a combination of mixing, grazing and nitrogen. 6. A seeming paradox is, thus, that immense changes in phosphorus budgets have shown no consequences for phytoplankton chlorophyll concentrations in either of the lakes, although the seasonal distribution has altered in Little Mere. Although these case studies deviate from others, for both shallow and deep lakes, they represent distinctive situations rather than undermining conventional models.  相似文献   

15.
16.
Abstract. Different measures of species abundance, particularly cover and biomass, are often used as if they were interchangeable. We ask to what extent the measure of abundance affects conclusions reached in plant community ecology. The test data comprised 35 plots, each 1 m × 1 m, on serpentine vegetation in Tuscany, Italy, in which both cover and biomass were measured. The measure of abundance used made rather little difference when plots were examined in terms of the rank abundance of the species present, and little difference to the results of a DCA-ordination. Likewise, species showed similar variation across plots in cover as in biomass. In calculating species diversity, agreement between measures of abundance was lower, but still good. For evenness, the correlation between cover and biomass results was lower again, though more so with some indices than with others. For the shape of the RAD (Relative Abundance Distribution), cover and biomass gave quite different results, the Zipf-Mandelbrot RAD model most commonly giving the best fit to the cover data, but the General lognormal model to the biomass data. These tendencies can be related to the intrinsic characteristics of cover and biomass as measures of abundance. The parameters of the model fits also differed between abundance measures. We conclude that the importance of using biomass as the measure of abundance depends on the ecological feature being examined. The difference between the two measures may be greater in other vegetation; very little information is available. In the current state of knowledge it is dangerous to use another measure as a surrogate for biomass.  相似文献   

17.
18.
19.
During spring and summer 2003, we measured a variety of chemical and biological parameters in five medium-sized, Mediterranean cage farms that exploit semi-offshore conditions, and controlled the supply of fodder. The objective was to assess whether modern cage farms proliferating at semi-offshore sites exert environmental impact levels equivalent to the levels described from more traditional cage farms located in shallow, sheltered sites. In the water column, we examined the concentration of dissolved inorganic nutrients and heterotrophic bacteria in both surface and near-bottom water. At the bottom, we examined the concentrations of benthic chlorophyll a, phaeophytin and organic matter in sediments, the granulometric structure of the sediment, and the taxonomic (at the family level) abundance of benthic macroinvertebrates. For most parameters, we found no substantial differences between farm and control sites. Rather, most variation was explained as a function of depth (surface versus bottom water) or season (spring versus summer conditions). Deviations of farm values from control values, when they occurred, were small and did not indicate any significant impact on either bacterioplankton or benthic chlorophyll. Only one of the five farms studied exerted a detectable impact on the benthic macroinvertebrate community immediately under the cages. These results suggest that medium-sized fish farms located on semi-exposed western Mediterranean coasts have fewer environmental impacts than traditional fish farms located in shallow, sheltered sites. Impact characterization in these new farms may require refinement of the standard approach to deal with rapid dispersal of effluents and sub-lethal levels of environmental disturbance.  相似文献   

20.
In this article we verified the hypothesis that precipitation is the main nutrient source in an inlet-less lake. We tested this hypothesis by calculating the water and nutrient (phosphorus and nitrogen) balances of a lake located in a hypsographically diverse moraine landscape (northern Poland). All components of the water and nutrient budgets were measured independently, including precipitation and ground water fluxes. The investigations showed that although precipitation constituted about a half or more of the annual water balance in this inlet-less lake, the ground water inflow and outflow play the most important role in the balance of nutrients. Therefore, critical nutrient loads calculated according to the methodology developed within the OECD Eutrophication Programme, which was focused mostly on drainage-type lakes, appeared inadequate in the case of this small seepage lake. Moreover, studies showed that throughout the investigations, a continuous ground water flow-through occurred in the lake. It questions the possibility of calculating the ground water flow simply as a difference between surface inflows and outflows.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号