首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Abstract: Using a whole-cell binding procedure with long incubations at low temperature and subsequent acid stripping, we have characterized an atypical endothelin (ET) receptor in primary rat cortical astrocyte cultures. We found the following: (a) no competition for 125I-ET-1 binding by the ETA antagonists BQ-123 and LU 135252 or the ETB agonist IRL 1620; (b) weak competition by the ETB antagonist BQ-788 and by the predominant ETB ligand ET-3; (c) potent synergistic competition of ETA and ETB ligands in combination for 125I-ET-1 binding; (d) potent competition of ET-1 with any of the radioligands used, 125I-ET-1, 125I-IRL 1620, and [3H]BQ-123; (e) lack of competition of IRL 1620 and BQ-123 with the respective other radioligand; (f) shifting of the amount of acid-strippable 125I-ET-1 binding from 20 to 80% by ETB ligands and to 4% by ETA ligands; and (g) as a control, typical ETA and ETB binding characteristics of the RAT-1 fibroblast and the U373MG astrocytoma cell line, respectively, under our assay conditions. The unusual binding properties of astrocytic ET receptors described in this study appear to be the result of several binding sites in the receptor for different ET ligands or ligand epitopes.  相似文献   

2.
Abstract: Specific endothelin (ET) binding sites were characterized in membranes prepared from human cerebral cortices using binding assay and cross-linking analysis. The presence of immunoreactive (IR) ET-1 was studied by radioimmunoassay. Saturation binding experiments revealed that the K D and B max for 125I-ET-1 and 125l-ET-3 to membranes from gray matter were 25 ± 6 pM and 115 ± 15 fmol/mg of protein and 24 ± 5 p M and 108 ± 13 fmol/mg of protein, respectively. Similar results were obtained for white matter. In the presence of 10 n M sarafotoxin-6c, which is selective for ETB receptors, 125I-ET-1 and 125l-ET-3 binding was totally abolished. However, in the presence of 1 μ M BQ123, which is selective for ETAreceptors, both bindings were not affected. These results suggest that the human cerebral cortex contains only ETBreceptors. Cross-linking of 125I-ET-1 and 125l-ET-3 to membranes with disuccinimidyl suberate resulted in the labeling of two bands of 48 and 31 kDa. Concentrations of IR-ET-1 in the gray and white matter were 7.0 ± 3.2 and 2.5 ± 1.7 fmol/g wet weight, respectively. The demonstration of high-affinity ETB receptors and the presence of IRET-1 suggest that the peptide may act as a neurotransmitter or neuromodulator in the human cerebral cortex.  相似文献   

3.
Abstract: We examined endothelin (ET) receptors in the hippocampus CA1 subfields of stroke-prone spontaneously hypertensive rats subjected to a 10-min bilateral carotid occlusion and reperfusion. When delayed neuronal death had occurred in the pyramidal cell layer at 7 days after transient forebrain ischemia, the quantitative receptor autoradiographic method we used revealed a dramatic increase in number of 125I-ET-1 binding sites in the hippocampus CA1 subfields. The highest number of de novo binding sites appeared in the area corresponding anatomically to the pyramidal cell layer with neuronal death. These binding sites were characteristically the ETB receptor. The de novo 125I-ET-1 binding was mainly present on microglia aggregating with a high density in the damaged pyramidal cell layer. As ET-1- and ET-3-like immunoreactivities were highly expressed within astrocytes in damaged neural tissue, the possibility that microglia with the ETB receptor are activated to participate in the pathophysiology of ischemia-related neural tissue damage by astrocytic ET-1 and ET-3 produced in response to transient forebrain ischemia would have to be considered.  相似文献   

4.
Abstract: Using a combination of library screening and nested PCR based on a partial human serotonin 5-HT4 receptor sequence, we have cloned the complete coding region for a human 5-HT4 receptor. The sequence shows extensive similarity to the published porcine 5-HT4A and rat 5-HT4L receptor cDNA; however, in comparison with the latter, we find an open reading frame corresponding to only 388 amino acids instead of 406 amino acids. This difference is due to a frame shift caused by an additional cytosine found in the human sequence after position 1,154. Moreover, we also found the same additional cytosine in the rat 5-HT4 sequence. We confirmed the occurrence of the sequence by examining this part of the sequence in genomic DNA of 10 human volunteers and in rat genomic DNA. Based on a part of the genomic 5-HT4 receptor sequence that was identified in the cloning process, there seem to be at least two possible splice sites in the coding region of the gene. The human 5-HT4 receptor, transiently expressed in COS-7 cells, showed radioligand binding properties similar to 5-HT4 receptors in guinea pig striatal tissue. [3H]GR 113808 revealed K D values of 0.15 ± 0.01 n M for the human receptor and 0.3 ± 0.1 n M in the guinea pig tissue. Binding constants were determined for four investigated 5-HT4 antagonists and three agonists, and appropriate binding inhibition constants were found in each case. Stimulation of transfected COS-7 cells with 5-HT4-specific agonists caused an increase in cyclic AMP levels.  相似文献   

5.
6.
Abstract: Astrocytes have been shown to express endothelin (ET) receptors functionally coupled, via different heterotrimeric G proteins, to several intracellular pathways. To assess the relative contribution of each subtype in the astrocytic responses to ET-1, effects of BQ123, an antagonist selective for the ET receptor subtype A (ETA-R), and IRL1620, an agonist selective for the ET receptor subtype B (ETB-R), were investigated in primary cultures of rat astrocytes. Binding experiments indicated that the ETB-R is the predominant subtype in these cells. Inhibition of forskolin-stimulated cyclic AMP production was observed under ETB-R stimulation. Bordetella pertussis toxin (PTX) pretreatment completely abolished this effect, indicating that this pathway is coupled to the ETB-R via Gi protein. Increases of tyrosine phosphorylation of cellular proteins, stimulation of mitogen-activated protein kinase (MAPK), and DNA synthesis were also found to be mediated by the ETB-R, but through PTX-insensitive G protein. IRL1620-induced MAPK activation involved the adapter proteins Shc and Grb2 and the serine/threonine kinase Raf-1. This study reveals that the various effects of ET-1 in astrocytes are mediated by the ETB-R, which couples to multiple signaling pathways including the MAPK cascade.  相似文献   

7.
Abstract: The B2 bradykinin receptor purified from rat uterus has an apparent molecular mass of 81 kDa. This is higher than the value of 42 kDa estimated from the sequence data of rat and human B2 receptors. Carbohydrate analysis of the rat B2 bradykinin receptor indicated that it was a sialoglycoprotein with three N-linked complex oligosaccharide side chains. This was consistent with the sequence, which has three potential glycosylation sites. The receptor did not appear to possess O-linked carbohydrate side chains. Removal of the N-linked carbohydrates with endo-β- N -acetylglucosaminidase yielded a core protein of 42–44 kDa. The presence of these N-linked carbohydrates explains the discrepancy between the molecular size of the purified receptor protein and that estimated from the sequence. The sequence of the rat receptor suggests an isoelectric point of about pH 7.0, but the purified receptor had an isoelectric point of pH 4.5–4.7. Sialic acid residues on the N-linked side chains are likely to be responsible for the acidic nature of the rat receptor. Carbohydrate does not appear to play a role in ligand-receptor interactions, as deglycosylation did not alter the affinity of the B2 bradykinin receptor for bradykinin or the B2-selective antagonist HOE-140.  相似文献   

8.
18F-Setoperone, a sensitive radioligand for brain serotonin 5-HT2 receptor positron emission tomography studies, is metabolized into 18F-labeled metabolites, which participate in blood 18F radioactivity. Its main metabolite, identified as reduced 18F-setoperone, was synthesized and studied in humans to determine if 18F-labeled metabolites of 18F-setoperone (a) enter into the brain, (b) bind to the 5-HT2 receptor, and (c) explain the increase of 18F radioactivity in the free fraction in blood measured following 18F-setoperone injection. After reduced 18F-setoperone injection, the brain-to-blood 18F radioactivity concentration ratio (a) was low, at the beginning, indicating that this metabolite did not cross the blood-brain barrier; (b) was increased thereafter, with a higher radioactivity level in the choroid plexus than in brain tissue, suggesting a blood-CSF barrier crossing due to radioligand hydrophilicity; and (c) showed similar kinetics for cerebellum and frontal cortex, indicating that radioactive metabolites of 18F-setoperone did not bind to the 5-HT2 receptor. Because hydrophilic 18F-labeled metabolites of 18F-setoperone increased 18F radioactivity in the free fraction in blood, we quantified the relation between 18F-setoperone metabolism and free fraction kinetics in blood. A significant negative correlation was found between metabolism and free fraction rate constants in blood, showing it was possible to predict the 18F-setoperone metabolism rate using free fraction kinetics in blood. This will allow us to avoid the use of radio-TLC, a reference method that is difficult to use when multiple samples must be analyzed. A hydrophilic positron-emitter radioligand could also be used to study the blood-CSF barrier.  相似文献   

9.
Abstract: Previous radioligand binding studies have demonstrated human platelet serotonin2A (5-HT2A) receptor binding sites. Pharmacological similarities between platelet and frontal cortex 5-HT2A receptor binding parameters have been demonstrated. However, it is not clear whether the platelet 5-HT2A receptor primary structure is identical to that of the brain receptor. Three overlapping cDNAs were obtained to span completely the coding region of the 5-HT2A receptor. These clones were sequenced with external and internal primers. The nucleotide sequence of human platelet 5-HT2A cDNA was identical to that reported for the human frontal cortex 5-HT2A receptor, except for nucleotide 102 (T → C), which has been reported to represent a normal DNA polymorphism that does not alter the amino acid sequence. This finding may have implications in the study of neuropsychiatric disorders for which altered platelet 5-HT2A receptor binding has been demonstrated.  相似文献   

10.
Abstract: The hypothesis that P-glycoprotein plays a functional role at the brain capillary endothelium, which makes up the blood-brain barrier in vivo, is based largely on immunocytochemical studies showing immunoreactive P-glycoprotein localized to either isolated brain microvessels or microvessels within tissue sections. The present studies use the MRK16 monoclonal antibody to human P-glycoprotein to demonstrate that the pattern of immunolocalization of P-glycoprotein in microvessels of human or primate brain is similar to the pattern of immunolocalization of an astrocyte protein, glial fibrillary acidic protein. In contrast, the discontinuous staining pattern of MRK16 is not colocalized with the continuous immunostaining of the brain endothelial GLUT1 glucose transporter. The MRK16 antibody was radiolabeled with [125I]-iodine, and 125I-MRK16 avidly bound isolated human brain capillaries via a saturable mechanism. However, the 125I-MRK16 antibody was not taken up by primate brain capillaries in vivo following intravenous injection. In conclusion, these studies provide evidence that P-glycoprotein does not play a functional role at the luminal membrane of the brain capillary endothelium in vivo, and that a principal site of immunoreactive P-glycoprotein in brain microvasculature is localized to astrocyte foot processes.  相似文献   

11.
Abstract: The GABAA receptor is a heterooligomeric protein complex composed of multiple receptor subunits. Developmental changes in the pattern of expression of 11 GABAA receptor subunits in individual rat embryonic hippocampal neurons on days 1–21 in culture and acutely dissociated hippocampal neurons from postnatal day (PND) 5 rat pups were investigated using the technique of single-cell mRNA amplification. We demonstrate that multiple GABAA receptor subunits are expressed within individual hippocampal neurons, with most cells simultaneously expressing α1, α2, α5, β1, and γ2 mRNAs. Further, relative expression of several GABAA receptor subunit mRNAs changes significantly in embryonic hippocampal neurons during in vitro development, with the relative abundance (compared with β-actin) of α1, α5, and γ2 mRNAs increasing 2.3-, 2.7-, and 3.8-fold, respectively, from days 1 to 14, and β1 increasing 5-fold from days 1 to 21. In situ hybridization with antisense digoxigenin-labeled α1, β1, and γ2 RNA probes demonstrates a similar increase in expression of subunit mRNAs as embryonic hippocampal neurons mature in vitro. Relative abundances of α1, β1, and γ2 subunit mRNAs in acutely dissociated PND 5 hippocampal neurons are also significantly greater than in embryonic day 17 neurons on day 1 in vitro and exceed the peak values seen in cultured neurons on days 14–21, suggesting that GABAA receptor subunit mRNA expression within individual hippocampal neurons follows a similar, if somewhat delayed, developmental pattern in vitro compared with in vivo. These findings suggest that embryonic hippocampal neuronal culture provides a useful model in which to study the developmental regulation of GABAA receptor expression and that developmental changes in GABAA receptor subunit expression may underlie some of the differences in functional properties of GABAA receptors in neonatal and mature hippocampal neurons.  相似文献   

12.
Numerous data suggested that the pharmacological and biochemical properties of 5-hydroxytryptamine1A (5-HT1A) receptors exhibit some regional differences in the CNS, notably within the raphe nuclei compared with various forebrain areas (such as the hippocampus). This possibility has been further investigated in the dorsal raphe nucleus and two areas within the hippocampus, the dentate gyrus and the CA1 area, using the quantitative autoradiographic technique. The potencies of 5'-guanylylimidodiphosphate to inhibit the specific binding of 125I-Bolton-Hunter-8-methoxy-2-(N-propyl-N-propylamino)tetralin (125I-BH-8-MeO-N-PAT) to 5-HT1A sites and of N-ethylmaleimide to block these sites irreversibly were identical in the dorsal raphe nucleus and the hippocampal areas in rat brain sections. In contrast, slight but significant differences were noted in the pH dependence and pharmacological properties of 5-HT1A sites labeled by 125I-BH-8-MeO-N-PAT in these three regions. Similarly, heat denaturation experiments and tissue exposure to either phospholipase A2 or the alkylating agent 8-methoxy-2-(N-2'-chloropropyl,N-propyl)aminotetraline revealed regional differences in the properties of 5-HT1A sites. However, in most cases, the observed variations were of greater amplitude between the CA1 area and the dentate gyrus, where 5-HT1A sites are located postsynaptically, than between any one of these areas and the dorsal raphe nucleus where they act as (presynaptic) somatodendritic autoreceptors. These data further support that subtypes of 5-HT1A receptors probably exist in the rat brain, but this heterogeneity seems unrelated to the pre- or post-synaptic location of these receptors.  相似文献   

13.
Abstract: Stable expression of the human type 1α metabotropic glutamate (mGlu1α) receptor was achieved in Chinese hamster ovary cells using an isopropyl-β- d -thiogalactoside (IPTG)-repressible expression system. Treatment of the cells with IPTG resulted in a time- and concentration-dependent induction of receptor expression. Maximal expression was obtained after treatment of the cells with 100 µ M IPTG for 20 h, leading to a marked increase in receptor immunoreactivity detected by western blot, >30-fold stimulation of 3H-labelled inositol phosphate (3H-InsP) production, and a robust increase in intracellular calcium concentration in single cells after stimulation with 20 µ M quisqualate. The basal level of 3H-InsP accumulation in cells induced with IPTG was increased by two- to threefold as compared with control cells; however, this basal activity was found to be dependent on glutamate released by the cells into the incubation medium. Following IPTG treatment, stable expression of the mGlu1α receptor was maintained for at least 1 week. Taken together, these results clearly indicate the advantages of working with an inducible expression system when studying the biochemical and pharmacological properties of the human mGlu1α receptor in transfected cells.  相似文献   

14.
15.
Abstract: Ethanol dependence and tolerance involve perturbation of GABAergic neurotransmission. Previous studies have demonstrated that ethanol treatment regulates the function and expression of GABAA receptors throughout the CNS. Conceivably, changes in receptor function may be associated with alterations of subunit composition. In the present study, a comprehensive (1–12 weeks) ethanol treatment paradigm was used to evaluate changes in GABAA receptor subunit expression in several brain regions including the cerebellum, cerebral cortex, ventral tegmental area (VTA) (a region implicated in drug reward/dependence), and the hippocampus (a region involved in memory/cognition). Expression of α1 and α5 subunits was regulated by ethanol in a region-specific and time-dependent manner. Following 2–4 weeks of administration, cortical and cerebellar α1 and α5 subunit immunoreactivity was reduced. In the VTA, levels of α1 subunit immunoreactivity were significantly decreased after 12 weeks but not 1–4 weeks of treatment. Hippocampal α1 subunit immunoreactivity and mRNA content were also significantly reduced after 12 but not after 4 weeks of treatment. In contrast, α5 mRNA content was increased in this brain region. These data indicate that chronic ethanol administration alters GABAA receptor subunit expression in the VTA and hippocampus, effects that may play a role in the abuse potential and detrimental cognitive effects of alcohol.  相似文献   

16.
Neuropeptide Y (NPY) elicits a plethora of physiological effects by interacting with several distinct G protein-coupled receptors. Activation of one of these receptors, the NPY Y5 receptor, is thought to result in increased food intake, anticonvulsant effects, attenuation of opiate withdrawal, inhibition of neuronal activity, and alteration of renal function. Several alternatively spliced human and rat NPY Y5 receptor cDNAs have been isolated that use different combinations of exons in the 5'-untranslated region. The various human NPY Y5 receptor cDNAs appear to be differentially expressed in different brain regions. The level of human NPY Y5 receptor expressed transiently in COS1 cells was significantly influenced by the sequence of the 5'-untranslated region. These results indicate that alternative splicing in the 5'-untranslated region of the human and rat NPY Y5 receptor genes occurs in a tissue-specific manner and is one mechanism by which cells control the level of NPY Y5 receptor expression.  相似文献   

17.
Abstract: The human NK1 tachykinin receptor in the astrocytoma cell line U 373 MG was characterized using selective agonists and antagonists described for this receptor in the rat. Specific [3H]substance P binding sites were present on cell homogenates, whereas [3H]neurokinin A or [3H]-senktide binding sites were absent. The binding was saturable and reversible. The binding of [3H]substance P was inhibited by very low concentrations of [L-Pro9]substance P and [Sar9,Met(O2)11]substance P; septide was ∼ 1,000-fold less potent. The most potent peptide antagonist was trans -4-hydroxy-1-(1 H -indol-3-ylcarbonyl)-L-prolyl- N -methyl- N -(phenylmethyl)-L-tyrosineamide. The rank order of potency for the nonpeptide antagonists was ( S , S )-CP 96,345 > (±)-CP 96,345 > (±)-2-chlorobenzylquinuclidinone > ( R , R )-CP 96,345 > RP 67580 > RP 68651. In [3H]-inositol-labeled cells, substance P stimulated phosphatidylinositol turnover. A good correlation was found when the abilities of NK1 receptor agonists for stimulating inositol phosphate production and for inhibiting [3H]substance P binding were compared. Similarly, the binding and functional assays were well correlated for the antagonists. As a result of its high sensitivity and selectivity, the U 373 MG cell line thus appears an excellent tool for investigating the pharmacology of the human NK1 receptor.  相似文献   

18.
Abstract: A serotonin 5-HT3 receptor was functionally expressed to high levels and on a large scale in mammalian cells with the Semliki Forest virus system. Conditions were optimized to maximize detergent solubilization of the receptor, while preserving ligand binding activity. An efficient one-step purification yielding ∼50% of the histidine-tagged 5-HT3 receptor was achieved with immobilized metal ion chromatography. The expressed receptor, in both membranes and purified preparations, exhibited wild-type ligand binding properties, characterized by one class of binding sites. The purity of the receptor was shown by sodium dodecyl sulfate-polyacrylamide gel electrophoresis, yielding a single band at 65 kDa, and was confirmed by the specific ligand binding activity of ∼5 nmol/mg of protein. Deglycosylation of the receptor reduced the estimated relative molecular mass to 49 kDa. The apparent molecular mass of the functional receptor complex was determined by size exclusion chromatography to be 280 kDa, suggesting that the 5-HT3 receptor is a pentameric homooligomer. The secondary structure of the 5-HT3 receptor as determined by circular dichroism appeared to consist of mainly α-helices (50%) and β-strands (24%), with minor contributions from nonregular structure (9%). The binding of either agonist or antagonist did not alter the secondary structure of the receptor.  相似文献   

19.
Abstract: Serotonin (5-hydroxytryptamine; 5-HT) 5-HT2A and 5-HT2C receptors belong to the class of phosphoinositide-specific phospholipase C (PLC)-linked receptors. Conditions were established for measuring 5-HT2A-linked and 5-HT2C-linked PLC activity in membranes prepared from previously frozen rat frontal cortex and caudate. In the presence of Ca2+ (300 nM) and GTPγS (1 µM), 5-HT increased PLC activity in caudate membranes. Pharmacological analysis using the selective 5-HT2A antagonist, spiperone, and the nonselective 5-HT2A/2C antagonist, mianserin, demonstrated that over half of the 5-HT-stimulated PLC activity was due to stimulation of 5-HT2C receptors as opposed to 5-HT2A receptors. Radioligand binding assays with [3H]RP 62203 and [3H]-mesulergine were used to quantify 5-HT2A and 5-HT2C sites, respectively, in caudate. From these data, the Bmax for caudate 5-HT2A sites and 5-HT2C sites was 165.4 ± 9.7 fmol/mg of protein and 49.7 ± 3.3 fmol/mg of protein, respectively. In contrast to that in caudate, PLC activity in frontal cortex was stimulated by 5-HT in a manner that was inhibited by the 5-HT2A-selective antagonists, spiperone and ketanserin. Taken together, the results indicate that 5-HT2A- and 5-HT2C-linked PLC activity can be discerned in brain regions possessing both receptor subtypes using membranes prepared from previously frozen tissue. More importantly, significant 5-HT2C-mediated phosphoinositide hydrolysis was observed in caudate, despite the relatively low density of 5-HT2C sites. The significance of these observations with respect to the physiological function of 5-HT2C receptors is discussed.  相似文献   

20.
Abstract: Previous research has shown that chronic ethanol consumption dramatically alters GABAA receptor α1 and α4 subunit gene expression in the cerebral cortex and GABAA receptor α1 and α6 subunit gene expression in the cerebellum. However, it is not yet known if chronic ethanol consumption produces similar alterations in GABAA receptor gene expression in other brain regions. One brain region of interest is the hippocampus because it has recently been shown that a subset of GABAA receptors in the hippocampus is responsive to pharmacologically relevant concentrations of ethanol. Therefore, we directly compared the effects of chronic ethanol consumption on GABAA receptor subunit gene expression in the hippocampus and cerebral cortex. Furthermore, we investigated whether the duration of ethanol consumption (14 or 40 days) would influence regulation of GABAA receptor gene expression in these two brain regions. Chronic ethanol consumption produced a significant increase in the level of GABAA receptor α4 subunit peptide in the hippocampus following 40 days but not 14 days. The relative expression of hippocampal GABAA receptor α1, α2, α3, α2/3, or γ2 was not altered by either period of chronic ethanol exposure. In marked contrast, chronic ethanol consumption for 40 days significantly increased the relative expression of cerebral cortical GABAA receptor α4 subunits and significantly decreased the relative expression of cerebral cortical GABAA receptor α1 subunits. This finding is consistent with previous results following 14 days of chronic ethanol consumption. Hence, chronic ethanol consumption alters GABAA receptor gene expression in the hippocampus but in a different manner from that in either the cerebral cortex or the cerebellum. Furthermore, these alterations are dependent on the duration of ethanol exposure.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号