首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In previous studies, we provided evidence for uptake of glutathione (GSH) by the dicarboxylate and the 2-oxoglutarate carriers in rat kidney mitochondria. To investigate further the role of these two carriers, GSH transport activity was enriched from rabbit kidney mitochondria and functionally reconstituted into phospholipid vesicles. Starting with 200 mg of mitoplast protein, 2 mg of partially enriched proteins were obtained after Triton X-114 solubilization and hydroxyapatite chromatography. The reconstituted proteoliposomes catalyzed butylmalonate-sensitive uptake of [(14)C]malonate, phenylsuccinate-sensitive uptake of [(14)C]2-oxoglutarate, and transport activity with [(3)H]GSH. The initial rate of uptake of 5 mM GSH was approximately 170 nmol/min per mg protein, with a first-order rate constant of 0.3 min(-1), which is very close to that previously determined in freshly isolated rat kidney mitochondria. The enrichment procedure resulted in an approximately 60-fold increase in the specific activity of GSH transport. Substrates and inhibitors for the dicarboxylate and the 2-oxoglutarate carriers (i.e., malate, malonate, 2-oxoglutarate, butylmalonate, phenylsuccinate) significantly inhibited the uptake of [(3)H]GSH, whereas most substrates for the tricarboxylate and monocarboxylate carriers had no effect. GSH uptake exhibited an apparent K(m) of 2.8 mM and a V(max) of 260 nmol/min per mg protein. Analysis of mutual inhibition between GSH and the dicarboxylates suggested that the dicarboxylate carrier contributes a somewhat higher proportion to overall GSH uptake and that both carriers account for 70 to 80% of total GSH uptake. These results provide further evidence for the function of the dicarboxylate and 2-oxoglutarate carriers in the mitochondrial transport of GSH.  相似文献   

2.
Glutathione (GSH) is transported into renal mitochondria by the dicarboxylate (DIC; Slc25a10) and 2-oxoglutarate carriers (OGC; Slc25a11). To determine whether these carriers function similarly in liver mitochondria, we assessed the effect of competition with specific substrates or inhibitors on GSH uptake in isolated rat liver mitochondria. GSH uptake was uniphasic, independent of ATP hydrolysis, and exhibited Km and Vmax values of 4.08 mM and 3.06 nmol/min per mg protein, respectively. Incubation with butylmalonate and phenylsuccinate inhibited GSH uptake by 45-50%, although the individual inhibitors had no effect, suggesting in rat liver mitochondria, the DIC and OGC are only partially responsible for GSH uptake. H4IIE cells, a rat hepatoma cell line, were stably transfected with the cDNA for the OGC, and exhibited increased uptake of GSH and 2-oxoglutarate and were protected from cytotoxicity induced by H2O2, methyl vinyl ketone, or cisplatin, demonstrating the protective function of increased mitochondrial GSH transport in the liver.  相似文献   

3.
The mitochondrial functional defects occurring in the early stages of nephrotoxic renal injury secondary to mercuric chloride have been characterized. No loss of cellular integrity or major mitochondrial structural alterations occurred within the first 3 h after a subcutaneous injection of 5 mg/kg of HgCl2. At 3 h, levels of Hg2+ in renal cortex and isolated renal cortical mitochondria were 1.87 and 0.72 nmol/mg of protein, respectively. Much evidence suggested that this Hg2+ had reached the mitochondria in situ and not during the isolation process. Mitochondria isolated beginning 1 h after treatment with HgCl2 showed depressed ADP uptake. At 2 h, inhibitions of State 3 and 2,4-dinitrophenol uncoupled respiration were detected. Inhibition of 2,4-dinitrophenol-activated mitochondrial ATPase activity was present when measured on mitochondria isolated at 3 h. These effects were not reversed by 2 mM dithioerythritol, 50 mg/ml of albumin or 5 mM MgCl2. Analysis of the data in the context of information available on the in vitro effects of HgCl2 (Weinberg, J. M., Harding, P. G., and Humes, H. D. (1982) J. Biol. Chem. 257, 60-67) indicated that the mitochondrial functional effects could not be attributed to interaction of the mitochondria with Hg2+ during their isolation. These studies implicate compromised mitochondrial bioenergetic function as one of the earliest intracellular effects of Hg2+ in the production of nephrotoxicity but suggest that the intracellular process involves events in addition to those seen with direct exposure of mitochondria to Hg2+ in vitro.  相似文献   

4.
We tested the hypothesis that the respiratory function of skeletal muscle mitochondria is impaired by lactic acidosis and elevated concentrations of P(i). The rate of respiration of chemically skinned fiber bundles from rat soleus muscle was measured at [P(i)] (brackets denote concentration) and pH values similar to those at rest (3 mM P(i), pH 7.0) and high-intensity exercise (20 mM P(i), pH 6.6). Respiration was measured in the absence of ADP and after sequential additions of 0.1 mM ADP, 20 mM creatine (Cr; V(Cr)), and 4 mM ADP. Respiration at 0.1 mM ADP increased after addition of Cr. However, V(Cr) was 23% lower (P < 0.05) during high-intensity conditions than during resting conditions. V(Cr) was also reduced when P(i) or H(+) was increased separately (P < 0.05). Respiration in the absence of ADP and after additions of 0.1 mM ADP and 4 mM ADP was not affected by changes in [P(i)] or [H(+)]. The response was similar, irrespective of when acidosis was induced (i.e., quiescent or actively respiring mitochondria). In conclusion, Cr-stimulated respiration is impaired by increases in [H(+)] and [P(i)] corresponding to those in exercising muscle. Although the reduced Cr-stimulated respiration could be compensated for by increased [ADP], this might have implications for intracellular homeostasis.  相似文献   

5.
Calcium uptake into bovine epididymal spermatozoa is enhanced by introducing phosphate in the suspending medium (Babcock et al. (1975) J. Biol. Chem. 250, 6488-6495). This effect of phosphate is found even at a low extracellular Ca2+ concentrations (i.e., 5 microM) suggesting that phosphate is involved in calcium transport via the plasma membrane. Bicarbonate (2 mM) cannot substitute for phosphate, and a relatively high bicarbonate concentration (20 mM) causes partial inhibition of calcium uptake in absence of Pi. In the presence of 1-2 mM phosphate, 20 mM bicarbonate enhances Ca2+ uptake. The data indicate that the plasma membrane of bovine spermatozoa contains two carriers for Ca2+ transport: a phosphate-independent Ca2+ carrier that is stimulated by bicarbonate and a phosphate-dependent Ca2+ carrier that is inhibited by bicarbonate. Higher phosphate concentrations (i.e., 10 mM) inhibit Ca2+ uptake into intact cells (compared to 1.0 mM phosphate) and this inhibition can be relieved partially by 20 mM bicarbonate. This effect of bicarbonate is inhibited by mersalyl. Calcium uptake into the cells is enhanced by adding exogenous substrates to the medium. There is no correlation between ATP levels in the cells and Ca2+ transport into the cell. ATP levels are high even without added exogenous substrate and this ATP level is almost completely reduced by oligomycin, suggesting that ATP can be synthesized in the mitochondria in the absence of exogenous substrate. Calcium transport into the sperm mitochondria (washed filipin-treated cells) is absolutely dependent upon the presence of phosphate and mitochondrial substrate. Bicarbonate cannot support Ca2+ transport into sperm mitochondria. There is good correlation between Ca2+ uptake into intact epididymal sperm and into sperm mitochondria with the various substrates used. This indicates that the rate of calcium transport into the cells is determined by the rate of mitochondrial Ca2+ uptake and respiration with the various substrates.  相似文献   

6.
Human placenta was shown to contain practically all known types of aminooxidase, i.e., Membrane-bound and soluble monoamine oxidases A that predominantly oxidize serotonin (Km approximately 0.05 and 0.2 mM) and tyramine (Km approximately 0.03 and 0.085 mM), partly oxidize phenylethylamine (Km approximately 0.013 and 0.1 mM) and slightly oxidize benzylamine; Monoamine oxidase B and its intermediate form, B', with equal sensitivity towards the inhibitors, Lilly 51641 and deprenyl. The main substrates for these enzymes are phenylethylamine (Km = 0.011 mM for the membrane-bound and 0.019 mM for the soluble enzymes); Membrane-bound and soluble benzylamine oxidases that are stable to MAO inhibitors but are highly labile towards semicarbazide and aminoguanidine and that predominantly oxidize benzylamine. The Km value for the soluble enzyme is 0.19 mM, its specific activity is 0.058 nmol aldehyde/min/mg protein, which markedly exceeds that for serum benzylamine oxidase (i.e., 0.014 nmol/min/mg) and thus excludes its serum origin; Diamine oxidase that oxidizes putrescine (Km = 0.025 mM), histamine and cadaverine and only slightly oxidizes benzylamine. One characteristic feature of the placenta is the presence of soluble MAO as well as MAO incorporated into the endoplasmic reticulum membrane (microsomes). In all probability, these enzymes are precursors of the mitochondrial enzyme. The concentration of MAO A in the mitochondria is approximately 1.3%, that in microsomes--approximately 1%, kcat = 270 and 320 min-1, respectively.  相似文献   

7.
The uptake of C4 dicarboxylates by cells from exponential cultures of Rhodopseudomonas spheroides followed saturation kinetics at concentrations below 100 muM with Km values for succinate, malate, and fumarate of 2.7, 2.3, and 0.8, respectively. Corresponding Vmax values of 50, 52, and 67.5 nmol/min per mg of protein at 20 C were obtained. Each of these compounds interfered competitively with uptake of the others, and a common transport system appears to be involved. Fructose-grown cells took up C4 dicarboxylates only at very low rates, and pyruvate-grown cells took up C4 dicarboxylates at one-third the rates found with succinate-grown cultures. Malonate and maleate inhibited uptake less severely, and aspartate and alpha-ketoglutarate had no effect at 100-fold excess. Divalent metals stimulated uptake. Light or respiration was required for uptake, and entered materials were rapidly converted to other metabolities, notably amino acids. Pyruvate entry appeared to be mediated by several systems, of which only one could be resolved kinetically. This system had a Km of 13 muM and Vmax of 5.6 nmol/min per mg of protein at 20 C. A number of related mono- and dicarboxylates interfered with pyruvate uptake. The pyruvate uptake system was distinguishable from the C4 dicarboxylate system by the absence of divalent cation stimulation and by substrate and inhibitor specificity.  相似文献   

8.
Qualitative and quantitative measures of mitochondrial function were performed in rats selectively bred 15 generations for intrinsic aerobic high running capacity (HCR; n = 8) or low running capacity (LCR; n=8). As estimated from a speed-ramped treadmill exercise test to exhaustion (15 degrees slope; initial velocity of 10 m/min, increased 1 m/min every 2 min), HCR rats ran 10 times further (2,375+/-80 m) compared with LCR rats (238+/-12 m). Fiber bundles were obtained from the soleus and chemically permeabilized. Respiration was measured 1) in the absence of ADP, 2) in the presence of a submaximally stimulating concentration of ADP (0.1 mM ADP, with and without 20 mM creatine), and 3) in the presence of a maximally stimulating concentration of ADP (2 mM). Although non-ADP-stimulated and maximally ADP-stimulated rates of respiration were 13% higher in HCR compared with LCR, the difference was not statistically significant (P>0.05). Despite a similar rate of respiration in the presence of 0.1 mM ADP, HCR rats demonstrated a higher rate of respiration in the presence of 0.1 mM ADP+20 mM creatine (HCR 33% higher vs. LCR, P<0.05). Thus mitochondria from HCR rats exhibit enhanced mitochondrial sensitivity to creatine (i.e., the ability of creatine to decrease the Km for ADP). We propose that increased respiratory sensitivity to ADP in the presence of creatine can effectively increase muscle sensitivity to ADP during exercise (when creatine is increased) and may be, in part, a contributing factor for the increased running capacity in HCR rats.  相似文献   

9.
Renal mitochondrial glutathione transport   总被引:1,自引:0,他引:1  
Freshly isolated tightly coupled rabbit renal cortical mitochondria rapidly accumulated glutathione (GSH) against an electrical and concentration gradient, and in the presence and absence of pyruvate/malate, succinate, antimycin A, or FCCP. Mitochondrial GSH uptake was dependent on medium GSH concentration, was not saturable, and reached equilibrium within 1 min of addition. Mitochondrial GSH uptake was partially inhibited by glycine, ophthalmic acid, and serine but not glutamate, cysteine, gamma-glutamyl-glutamate, or proline. These results show that 1) mitochondrial GSH uptake is by both a carrier-mediated process and by diffusion, and 2) the GSH carrier system has structural specificity with the glycine residue being a recognition site.  相似文献   

10.
Neuronal death in response to excitotoxic levels of glutamate is dependent upon mitochondrial Ca2+ accumulation and is associated with a drop in ATP levels and a loss in ionic homeostasis. Yet the mapping of temporal events in mitochondria subsequent to Ca2+ sequestration is incomplete. By isolating mitochondria from primary cultures, we discovered that glutamate treatment of cortical neurons for 10 min caused 44% inhibition of ADP-stimulated respiration, whereas the maximal rate of electron transport (uncoupler-stimulated respiration) was inhibited by approximately 10%. The Ca2+ load in mitochondria from glutamate-treated neurons was estimated to be 167 +/- 19 nmol/mg protein. The glutamate-induced Ca2+ load was less than the maximal Ca2+ uptake capacity of the mitochondria determined in vitro (363 +/- 35 nmol/mg protein). Comparatively, mitochondria isolated from cerebellar granule cells demonstrated a higher Ca2+ uptake capacity (686 +/- 71 nmol/mg protein) than the cortical mitochondria, and the glutamate-induced load of Ca2+ was a smaller percentage of the maximal Ca2+ uptake capacity. Thus, this study indicated that Ca(2+)-induced impairment of mitochondrial ATP production is an early event in the excitotoxic cascade that may contribute to decreased cellular ATP and loss of ionic homeostasis that precede commitment to neuronal death.  相似文献   

11.
The aim of the study was to investigate whether there is transmembrane transport of intact glutathione ([3H]-GSH, 0.1 μCi) in rat and human type II pneumocytes (T2P), and if this transport might be dependent on the redox state of the extracellular fluid. The T2P were pretreated with acivicin (250 μM) to inhibit γ-glutamyl-transferase activity and with L-buthionine-[SR]-sulfoximine (1 mM) to inhibit intracellular GSH synthesis. After 48 h in culture, initial GSH influx rate was 0.70 ± 0.20 nmol/min/mg protein (37°C) and 0.35 ± 0.04 nmol/min/mg protein (4°C) during the first 5 min in rat T2P. In human T2P, the initial GSH influx rate was 0.36 ± 0.30 nmol/min/mg protein (37°C) and 0.32 ± 0.06 nmol/min/mg protein (4°C) during the first 10 min. Thereafter no further influx was found. The influx of 1 mM GSH in freshly isolated rat and human T2P in suspension was 2.3 ± 0.3 and 1.2 ± 0.3 nmol/mg protein after 15 min at 37°C, and 2.8 ± 0.2 and 1.0 ± 0.3 nmol/mg protein at 4°C, respectively. When GSH influx was studied at different concentrations between 0 and 40 mM, a linear increase without saturation or difference between 37°C and 4°C was found. Preexposure to ouabain had no effect on GSH influx. Efflux of GSH was stimulated and influx inhibited by preexposure of the cells to reduced thiols, while disulphides inhibited efflux and favoured inward uptake. Thus, in human and rat T2P a GSH-carrier exists which operates as an effluxer. At GSH concentrations in the physiological range no uptake is seen, but some uptake can be observed at GSH concentrations above normal physiological levels. The uptake appears to be energy-independent and non-saturable. Efflux of GSH is stimulated and influx inhibited by reduced thiols, while disulphides inhibit the efflux and favour inward uptake. GSH uptake in T2P thus may depend on concentration gradients and driving forces, such as the redox state of the extracellular fluid.  相似文献   

12.
Buthionine sulfoximine (BSO) inhibits the synthesis of glutathione (GSH), the major nonprotein sulfhydryl (NPSH) present in most mammalian cells. BSO concentrations from 1 microM to 0.1 mM reduced intracellular GSH at different rates, while BSO greater than or equal to 0.1 mM (i.e., 0.1 to 2.0 mM), resulting in inhibitor-enzyme saturation, depleted GSH to less than 10% of control within 10 hr at about equal rates. BSO exposures used in these experiments were not cytotoxic with the one exception that 2.0 mM BSO/24 hr reduced cell viability to approximately 50%. However, alterations in either the cell doubling time(s) or the cell age density distribution(s) were not observed with the BSO exposures used to determine its radiosensitizing effect. BSO significantly radiosensitized (ER = 1.41 with 0.1 mM BSO/24 hr) hypoxic, but not aerobic, CHO cells when the GSH and NPSH concentrations were reduced to less than 10 and 20% of control, respectively, and maximum radiosensitivity was even achieved with microM concentrations of BSO (ER = 1.38 with 10 microM BSO/24 hr). Furthermore, BSO exposure (0.1 mM BSO/24 hr) also enhanced the radiosensitizing effect of various concentrations of misonidazole on hypoxic CHO cells.  相似文献   

13.
The aim of the study was to investigate whether there is transmembrane transport of intact glutathione ([3H]-GSH, 0.1 μCi) in rat and human type II pneumocytes (T2P), and if this transport might be dependent on the redox state of the extracellular fluid. The T2P were pretreated with acivicin (250 μM) to inhibit γ-glutamyl-transferase activity and with L-buthionine-[SR]-sulfoximine (1 mM) to inhibit intracellular GSH synthesis. After 48 h in culture, initial GSH influx rate was 0.70 ± 0.20 nmol/min/mg protein (37°C) and 0.35 ± 0.04 nmol/min/mg protein (4°C) during the first 5 min in rat T2P. In human T2P, the initial GSH influx rate was 0.36 ± 0.30 nmol/min/mg protein (37°C) and 0.32 ± 0.06 nmol/min/mg protein (4°C) during the first 10 min. Thereafter no further influx was found. The influx of 1 mM GSH in freshly isolated rat and human T2P in suspension was 2.3 ± 0.3 and 1.2 ± 0.3 nmol/mg protein after 15 min at 37°C, and 2.8 ± 0.2 and 1.0 ± 0.3 nmol/mg protein at 4°C, respectively. When GSH influx was studied at different concentrations between 0 and 40 mM, a linear increase without saturation or difference between 37°C and 4°C was found. Preexposure to ouabain had no effect on GSH influx. Efflux of GSH was stimulated and influx inhibited by preexposure of the cells to reduced thiols, while disulphides inhibited efflux and favoured inward uptake. Thus, in human and rat T2P a GSH-carrier exists which operates as an effluxer. At GSH concentrations in the physiological range no uptake is seen, but some uptake can be observed at GSH concentrations above normal physiological levels. The uptake appears to be energy-independent and non-saturable. Efflux of GSH is stimulated and influx inhibited by reduced thiols, while disulphides inhibit the efflux and favour inward uptake. GSH uptake in T2P thus may depend on concentration gradients and driving forces, such as the redox state of the extracellular fluid.  相似文献   

14.
Mitochondrial pyruvate-supported respiration was studied in vitro under conditions known to exist following ischemia, i.e., elevated extramitochondrial Ca2+, Na+, and peroxide. Ca2+ alone (7-10 nmol/mg) decreased state 3 and increased state 4 respiration to 81 and 141% of control values, respectively. Sodium (15 mM) and/or tert-butyl hydroperoxide (tBOOH; up to 2,000 nmol/mg protein) alone had no effect on respiration; however, Na+ or tBOOH in combination with Ca2+ dramatically altered respiration. Respiratory inhibition induced by Ca2+ and tBOOH does not involve pyruvate dehydrogenase (PDH) inhibition since PDH flux increased linearly with tBOOH concentration (R = 0.96). Calcium potentiated tBOOH-induced mitochondrial NAD(P)H oxidation and shifted the redox state of cytochrome b from 67 to 47% reduced. Calcium (5.5 nmol/mg) plus Na+ (15 mM) decreased state 3 and increased state 4 respiratory rates to 55 and 202% of control values, respectively. Sodium- as well as tBOOH-induced state 3 inhibition required mitochondrial Ca2+ uptake because ruthenium red addition before Ca2+ addition negated the effect. The increase in state 4 respiration involved Ca2+ cycling since ruthenium red immediately returned state 4 rates back to control values. The mechanisms for the observed Ca2(+)-, Na(+)-, and tBOOH-induced alterations in pyruvate-supported respiration in vitro are discussed and a multifactorial etiology for mitochondrial respiratory dysfunction following cerebral ischemia in vivo is proposed.  相似文献   

15.
Transport of GSH was studied in isolated rat kidney cortical brush-border membrane vesicles in which gamma-glutamyltransferase had been inactivated by a specific affinity labeling reagent, L-(alpha S,5S)-alpha-amino-3-chloro-4,5-dihydro-5-isoxazoleacetic acid (AT-125). Transport of intact 2-3H-glycine-labeled GSH occurred into an osmotically active intravesicular space of AT-125-treated membranes. The initial rate of transport followed saturation kinetics with respect to GSH concentrations; an apparent Km of 0.21 mM and Vmax of 0.23 nmol/mg protein X 20 were calculated at 25 degrees C with a 0.1 M NaCl gradient (vesicle inside less than vesicle outside). Sodium chloride in the transport medium could be replaced with KCl without affecting transport activity. The rate of GSH uptake was enhanced by replacing KCl in the transport medium with K2SO4, providing a less permeant anion, and was reduced by replacing KCl with KSCN, providing a more permeant anion. The rate of GSH transport markedly decreased in the absence of a K+ gradient across the vesicular membranes and was enhanced by a valinomycin-induced K+ diffusion potential (vesicle-inside-positive). These results indicate that GSH transport is dependent on membrane potential and involves the transfer of negative charge. The rate of GSH transport was inhibited by S-benzyl glutathione but not by glycine, glutamic acid, and gamma-glutamyl-p-nitroanilide. When incubated with [2-3H]glycine-labeled GSH, intact untreated vesicles also accumulated radioactivity; the rate of uptake was significantly higher in a Na+ gradient than in a K+ gradient. Sodium-dependent transport, but not sodium-independent uptake, was almost completely inhibited by a high concentration of unlabeled glycine. At equilibrium, most of the radioactivity which accumulated in the intravesicular space was accounted for by free glycine. These results suggest that GSH which is secreted into the tubular lumen by a specific translocase in the lumenal membranes or filtered by the glomerulus may be degraded in situ by membranous gamma-glutamyltransferase and peptidase activities which hydrolyze peptide bonds of cysteinylglycine and its derivatives. The resulting free amino acids can be reabsorbed into tubule cells by sodium-dependent transport systems in renal cortical brush-border membranes.  相似文献   

16.
Oxalate, a metabolic end product, forms calcium oxalate deposits in the tissues under a variety of pathological conditions. In order to determine whether oxalate is able to penetrate the mitochondrial matrix, the uptake of oxalate by rat liver and kidney cortical mitochondria was characterized. Mitochondria did not swell in an iso-osmotic medium of ammonium oxalate unless a small amount of phosphate was provided. This phosphate-induced swelling was prevented by N-ethylmaleimide. The uptake of [14C]oxalate by liver and kidney mitochondria followed first order kinetics and was inhibited by mersalyl an inhibitor of the phosphate and dicarboxylate carriers. Accumulation of [14C]oxalate at equilibrium was significantly higher by mitochondria energized with succinate than by rotenone-inhibited mitochondria due to higher matrix pH as determined by the [14C]5,5'-dimethyloxazolidine-2, 4-dione distribution ratio. The velocity of oxalate accumulation by mitochondria was temperature dependent. The activation energy was 81.5 and 86.5 J/mol for liver and kidney mitochondria, respectively. In both types of mitochondria, the rate of oxalate uptake was hyperbolic with respect to the concentration of oxalate. The apparent Km was 28.8 +/- 0.6 and 13.4 +/- 1.2 mM and the Vmax 87.1 +/- 1.1 and 66.1 +/- 3.1 nmol X mg-1 X min-1 at 12 degrees C for liver and kidney mitochondria, respectively. Phenylsuccinate exhibited mixed inhibition of the rate of oxalate uptake. Oxalate exhibited also a mixed inhibition of the uptake and oxidation of malate by mitochondria. The data obtained provide evidence that oxalate is transported across the mitochondrial membrane by a phosphate-linked, carrier-mediated system similar to or identical to the dicarboxylate transporter.  相似文献   

17.
Proportions between oxidized and reduced glutathione forms were determined in vacuoles isolated from red beet (Beta vulgaris L.) taproots. The pool of vacuolar glutathione was compared with glutathione pools in isolated plastids and mitochondria. The ratio of glutathione forms was assessed by approved methods, such as fluorescence microscopy with the fluorescent probe monochlorobimane (MCB), high-performance liquid chromatography (HPLC), and spectrophotometry with 5,5′-dithiobis-2-nitrobenzoic acid (DTNB). The fluorescence microscopy revealed comparatively low concentrations of reduced glutathione (GSH) in vacuoles. The GSH content was 104 μM on average, which was lower than the GSH levels in mitochondria (448 μM) and plastids (379 μM). The content of reduced (GSH) and oxidized (GSSG) glutathione forms was quantified by means of HPLC and spectrophotometric assays with DTNB. The glutathione concentrations determined by HPLC in the vacuoles were 182 nmol GSH and 25 nmol GSSG per milligram protein. The respective concentrations of GSH and GSSG in the plastids were 112 and 6 nmol/mg protein and they were 228 and 10 nmol/mg protein in the mitochondria. The levels of GSH determined with DTNB were 1.5 times lower, whereas the amounts of GSSG were, by contrast, 1.5–2 times higher than in the HPLC assays. Although the glutathione redox ratios depended to some extent on the method used, the GSH/GSSG ratios were always lower for vacuoles than for plastids and mitochondria. In vacuoles, the pool of oxidized glutathione was higher than in other organelles.  相似文献   

18.
A number of plasticizers and lipid-lowering drugs induce peroxisomes and cause hepatocellular carcinoma in rodents by mechanisms which remain unknown. In this study, seven structurally dissimilar peroxisome proliferating agents were shown to uncouple oxidative phosphorylation in isolated rat liver mitochondria. For example, perfluorooctanoate (0.5 mM) increased succinate-induced (state 4) mitochondrial respiration by over 50% while stimulation of state 3 respiration with ADP was minimal (i.e., uncoupling occurred). Interestingly, compounds which are potent carcinogens in vivo (e.g., Wy-14,643 and perfluorooctanoate) were more powerful uncouplers of oxidative phosphorylation in vitro than weak tumor-causing agents (e.g., valproate). Uncoupling also occurred in vivo. Basal rates of oxygen uptake in perfused livers from chronically treated rats were increased from 137 +/- 7 mumol g-1/h in pair-fed controls to 153 +/- 5 mumol g-1/h after 2.5 months of feeding Wy-14,643 (0.1% w/v in diet). Concomitantly, rates of urea synthesis from ammonia, a process highly dependent on ATP supply, were reduced almost completely from 104 +/- 10 mumol g-1/h to 13 +/- 6 mumol g-1/h. Bile flow, another energy-dependent process, was also reduced significantly by treatment with Wy-14,643 in vivo for 24 h. Taken together, these data indicate that energy supply for cellular processes such as urea synthesis and bile flow was disrupted in vivo due to uncoupling of oxidative phosphorylation by Wy-14,643. It is proposed that peroxisomal proliferators accumulate in the liver where they uncouple mitochondrial oxidative phosphorylation and interfere with cellular energetics.  相似文献   

19.
Mitochondria from Trigonella foenum-graecum seedlings grown independently in the presence of either selenium (0.75 ppm) or mimosine (0.1 mM) exhibited respiration-stimulated energy-dependent uptake of Ca2+. Uptake studies were carried out independently at a series of Ca2+ concentrations at two different levels: (1) 1–20 μM and (2) 25–1500 μM. Levels of uptake were 50–100% higher in the mitochondria of seedlings of both the Se and mimosine groups. Detailed kinetic analyses revealed negative cooperative effects operative during uptake of Ca2+ at 25–1500 μM given in the medium. Hill coefficients for Ca2+ uptake by the mitochondria of different groups remained unchanged (nH, 0.75). Biphasic Scatchard plots were concave upward, suggestive of two classes of binding sites. High-affinity binding sites were estimated to be 16 nmol/mg protein with dissociation constant (K Ca) of 2.5×109 L/mol. In contrast, graphical analyses of the uptake of Ca2+ in the range 1–20 μM in the medium revealed cooperative effects of positive nature. The present study demonstrates mixed cooperative effects during Ca2+ uptake by mitochondria from seedlings of T. foenum-graecum  相似文献   

20.
Two distinctive sodium-dependent phosphate transport systems have been identified in early and late proximal tubules; a high-capacity process located only in outer cortical tissue, and a high affinity present in both outer cortical and outer medullary brush-border membranes (Km 0.1-0.25 mM). A third, sodium-independent, pH gradient-stimulated system (Vmax 4.7 +/- 0.3 nmol.mg-1.min-1, Km 0.15 +/- 0.002 mM) is present in the outer medulla, but absent in outer cortex. Brush-border vesicles were prepared from outer cortical and outer medullary tissue of pigs maintained on low (less than 0.05%), normal (0.4%), or high (4%) phosphate diets. Sodium-dependent phosphate uptake of the high-capacity system decreased (Vmax, 9.4 to 2.2 nmol.mg-1.min-1) from low to high phosphate diet, whereas uptake rates decreased about 50% in the high-affinity system. There were no changes in the respective Km values. The pH gradient-stimulated uptake also decreased (Vmax, 6.9 to 3.0 nmol.mg-1.min-1) with no change in mean Km value (0.15 +/- 0.001 mM) with dietary manipulation. Administration of 1 U parathyroid hormone prior to study resulted in a decrease in sodium-dependent uptake by 40-50% and in pH-dependent uptake (36%) with no change in the respective Km values. In conclusion, the antecedent dietary phosphate intake and parathyroid hormone administration appropriately alters phosphate uptake across the brush-border membrane of all three systems, sodium-dependent and pH gradient-stimulated phosphate transport.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号