首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
CymA (tetrahaem cytochrome c) is a member of the NapC/NirT family of quinol dehydrogenases. Essential for the anaerobic respiratory flexibility of shewanellae, CymA transfers electrons from menaquinol to various dedicated systems for the reduction of terminal electron acceptors including fumarate and insoluble minerals of Fe(III). Spectroscopic characterization of CymA from Shewanella oneidensis strain MR-1 identifies three low-spin His/His co-ordinated c-haems and a single high-spin c-haem with His/H(2)O co-ordination lying adjacent to the quinol-binding site. At pH 7, binding of the menaquinol analogue, 2-heptyl-4-hydroxyquinoline-N-oxide, does not alter the mid-point potentials of the high-spin (approximately -240 mV) and low-spin (approximately -110, -190 and -265 mV) haems that appear biased to transfer electrons from the high- to low-spin centres following quinol oxidation. CymA is reduced with menadiol (E(m) = -80 mV) in the presence of NADH (E(m) = -320 mV) and an NADH-menadione (2-methyl-1,4-naphthoquinone) oxidoreductase, but not by menadiol alone. In cytoplasmic membranes reduction of CymA may then require the thermodynamic driving force from NADH, formate or H2 oxidation as the redox poise of the menaquinol pool in isolation is insufficient. Spectroscopic studies suggest that CymA requires a non-haem co-factor for quinol oxidation and that the reduced enzyme forms a 1:1 complex with its redox partner Fcc3 (flavocytochrome c3 fumarate reductase). The implications for CymA supporting the respiratory flexibility of shewanellae are discussed.  相似文献   

2.
3.
The bacteria belonging to the genus Shewanella are facultative anaerobes that utilize a variety of terminal electron acceptors which includes soluble and insoluble metal oxides. The tetraheme c-type cytochrome isolated during anaerobic growth of Shewanella frigidimarina NCIMB400 ( Sfc) contains 86 residues and is involved in the Fe(III) reduction pathways. Although the functional properties of Sfc redox centers are quite well described, no structures are available for this protein. In this work, we report the solution structure of the reduced form of Sfc. The overall fold is completely different from those of the tetraheme cytochromes c 3 and instead has similarities with the tetraheme cytochrome recently isolated from Shewanella oneidensis ( Soc). Comparison of the tetraheme cytochromes from Shewanella shows a considerable diversity in their primary structure and heme reduction potentials, yet they have highly conserved heme geometry, as is the case for the family of tetraheme cytochromes isolated from Desulfovibrio spp.  相似文献   

4.
Shewanella spp. demonstrate great variability in the use of terminal electron acceptors in anaerobic respiration; these include nitrate, fumarate, DMSO, trimethylamine oxide, sulphur compounds and metal oxides. These pathways open up possible applications in bioremediation. The wide variety of respiratory substrates for Shewanella is correlated with the evolution of several multi-haem membrane-bound, periplasmic and outer-membrane c-type cytochromes. The 21 kDa c-type cytochrome CymA of the freshwater strain Shewanella oneidensis MR-1 has an N-terminal membrane anchor and a globular tetrahaem periplasmic domain. According to sequence alignments, CymA is a member of the NapC/NirT family. This family of redox proteins is responsible for electron transfer from the quinone pool to periplasmic and outer-membrane-bound reductases. Prior investigations have shown that the absence of CymA results in loss of the ability to respire with Fe(III), fumarate and nitrate, indicating that CymA is involved in electron transfer to several terminal reductases. Here we describe the expression, purification and characterization of a soluble, truncated CymA ('CymA). Potentiometric studies suggest that there are two pairs of haems with potentials of -175 and -261 mV and that 'CymA is an efficient electron donor for the soluble fumarate reductase, flavocytochrome c(3).  相似文献   

5.
The multi-heme cytochromes from Shewanella oneidensis associated with the dissimilatory metal reduction (DMR) pathway have been investigated using the technique of protein film voltammetry (PFV). Using PFV, we have interrogated each of the multi-heme cytochromes (MtrA, STC, and solubilized versions of the membrane-bound proteins CymA, OmcA, and MtrC) under identical conditions for the first time. Each cytochrome reveals a broad envelope of voltammetric response, indicative of multiple redox cofactors that span a range of potential of approximately 300 mV. Our studies show that, when considered as an aggregate pathway, the multiple hemes of the DMR cytochromes provide a "window" of operating potential for electron transfer to occur from the cellular interior to the exterior spanning values of -250 to 0 mV (at circumneutral values of pH). Similarly, each cytochrome supports interfacial electron transfer at rates on the order of 200 s(-1). These data are taken together to suggest a model of electron transport where a wide window of potential allows for charge transfer from the cellular interior to the exterior to support bioenergetics.  相似文献   

6.
The tetrahaem cytochrome isolated during anaerobic growth of Shewanella frigidimarina NCIMB400 is a small protein (86 residues) involved in electron transfer to Fe(III), which can be used as a terminal respiratory oxidant by this bacterium. A 3D solution structure model of the reduced form of the cytochrome has been determined using NMR data in order to determine the relative orientation of the haems. The haem core architecture of S. frigidimarina tetrahaem cytochrome differs from that found in all small tetrahaem cytochromes c(3) so far isolated from strict anaerobes, but has some similarity to the N-terminal cytochrome domain of flavocytochrome c(3) isolated from the same bacterium. NMR signals obtained for the four haems of S. frigidimarina tetrahaem cytochrome at all stages of oxidation were cross-assigned to the solution structure using the complete network of chemical exchange connectivities. Thus, the order in which each haem in the structure becomes oxidised was determined.  相似文献   

7.
The interaction of proteins implicated in dissimilatory metal reduction by Shewanella oneidensis MR-1 (outer membrane [OM] proteins OmcA, MtrB, and MtrC; OM-associated protein MtrA; periplasmic protein CctA; and cytoplasmic membrane protein CymA) were characterized by protein purification, analytical ultracentrifugation, and cross-linking methods. Five of these proteins are heme proteins, OmcA (83 kDa), MtrC (75 kDa), MtrA (32 kDa), CctA (19 kDa), and CymA (21 kDa), and can be visualized after sodium dodecyl sulfate-polyacrylamide gel electrophoresis by heme staining. We show for the first time that MtrC, MtrA, and MtrB form a 198-kDa complex with a 1:1:1 stoichiometry. These proteins copurify through anion-exchange chromatography, and the purified complex has the ability to reduce multiple forms of Fe(III) and Mn(IV). Additionally, MtrA fractionates with the OM through sucrose density gradient ultracentrifugation, and MtrA comigrates with MtrB in native gels. Protein cross-linking of whole cells with 1% formaldehyde show new heme bands of 160, 151, 136, and 59 kDa. Using antibodies to detect each protein separately, heme proteins OmcA and MtrC were shown to cross-link, yielding the 160-kDa band. Consistent with copurification results, MtrB cross-links with MtrA, forming high-molecular-mass bands of approximately 151 and 136 kDa.  相似文献   

8.
The interaction of proteins implicated in dissimilatory metal reduction by Shewanella oneidensis MR-1 (outer membrane [OM] proteins OmcA, MtrB, and MtrC; OM-associated protein MtrA; periplasmic protein CctA; and cytoplasmic membrane protein CymA) were characterized by protein purification, analytical ultracentrifugation, and cross-linking methods. Five of these proteins are heme proteins, OmcA (83 kDa), MtrC (75 kDa), MtrA (32 kDa), CctA (19 kDa), and CymA (21 kDa), and can be visualized after sodium dodecyl sulfate-polyacrylamide gel electrophoresis by heme staining. We show for the first time that MtrC, MtrA, and MtrB form a 198-kDa complex with a 1:1:1 stoichiometry. These proteins copurify through anion-exchange chromatography, and the purified complex has the ability to reduce multiple forms of Fe(III) and Mn(IV). Additionally, MtrA fractionates with the OM through sucrose density gradient ultracentrifugation, and MtrA comigrates with MtrB in native gels. Protein cross-linking of whole cells with 1% formaldehyde show new heme bands of 160, 151, 136, and 59 kDa. Using antibodies to detect each protein separately, heme proteins OmcA and MtrC were shown to cross-link, yielding the 160-kDa band. Consistent with copurification results, MtrB cross-links with MtrA, forming high-molecular-mass bands of approximately 151 and 136 kDa.  相似文献   

9.
Shewanella oneidensis MR-1 is a facultatively anaerobic bacterium capable of using soluble and insoluble forms of manganese [Mn(III/IV)] and iron [Fe(III)] as terminal electron acceptors during anaerobic respiration. To assess the structural association of two outer membrane-associated c-type decaheme cytochromes (i.e., OmcA [SO1779] and MtrC [SO1778]) and their ability to reduce soluble Fe(III)-nitrilotriacetic acid (NTA), we expressed these proteins with a C-terminal tag in wild-type S. oneidensis and a mutant deficient in these genes (i.e., Delta omcA mtrC). Endogenous MtrC copurified with tagged OmcA in wild-type Shewanella, suggesting a direct association. To further evaluate their possible interaction, both proteins were purified to near homogeneity following the independent expression of OmcA and MtrC in the Delta omcA mtrC mutant. Each purified cytochrome was confirmed to contain 10 hemes and exhibited Fe(III)-NTA reductase activity. To measure binding, MtrC was labeled with the multiuse affinity probe 4',5'-bis(1,3,2-dithioarsolan-2-yl)fluorescein (1,2-ethanedithiol)2, which specifically associates with a tetracysteine motif engineered at the C terminus of MtrC. Upon titration with OmcA, there was a marked increase in fluorescence polarization indicating the formation of a high-affinity protein complex (Kd < 500 nM) between MtrC and OmcA whose binding was sensitive to changes in ionic strength. Following association, the OmcA-MtrC complex was observed to have enhanced Fe(III)-NTA reductase specific activity relative to either protein alone, demonstrating that OmcA and MtrC can interact directly with each other to form a stable complex that is consistent with their role in the electron transport pathway of S. oneidensis MR-1.  相似文献   

10.
The Gram-negative bacterium Shewanella oneidensis MR-1 shows a remarkably versatile anaerobic respiratory metabolism. One of its hallmarks is its ability to grow and survive through the reduction of metallic compounds. Among other proteins, outer membrane decaheme cytochromes c OmcA and OmcB have been identified as key players in metal reduction. In fact, both of these cytochromes have been proposed to be terminal Fe(III) and Mn(IV) reductases, although their role in the reduction of other metals is less well understood. To obtain more insight into this, we constructed and analyzed omcA, omcB and omcA/omcB insertion mutants of S. oneidensis MR-1. Anaerobic growth on Fe(III), V(V), Se(VI) and U(VI) revealed a requirement for both OmcA and OmcB in Fe(III) reduction, a redundant function in V(V) reduction, and no apparent involvement in Se(VI) and U(VI) reduction. Growth of the omcB(-) mutant on Fe(III) was more affected than growth of the omcA(-) mutant, suggesting OmcB to be the principal Fe(III) reductase. This result was corroborated through the examination of whole cell kinetics of OmcA- and OmcB-dependent Fe(III)-nitrilotriacetic acid reduction, showing that OmcB is approximately 11.5 and approximately 6.3 times faster than OmcA at saturating and low nonsaturating concentrations of Fe(III)-nitrilotriacetic acid, respectively, whereas the omcA(-) omcB(-) double mutant was devoid of Fe(III)-nitrilotriacetic acid reduction activity. These experiments reveal, for the first time, that OmcA and OmcB are the sole terminal Fe(III) reductases present in S. oneidensis MR-1. Kinetic inhibition experiments further revealed vanadate (V(2)O(5)) to be a competitive and mixed-type inhibitor of OmcA and OmcB, respectively, showing similar affinities relative to Fe(III)-nitrilotriacetic acid. Neither sodium selenate nor uranyl acetate were found to inhibit OmcA- and OmcB-dependent Fe(III)-nitrilotriacetic acid reduction. Taken together with our growth experiments, this suggests that proteins other than OmcA and OmcB play key roles in anaerobic Se(VI) and U(VI) respiration.  相似文献   

11.
Dissimilatory reduction of metal (e.g. Fe, Mn) (hydr)oxides represents a challenge for microorganisms, as their cell envelopes are impermeable to metal (hydr)oxides that are poorly soluble in water. To overcome this physical barrier, the Gram-negative bacteria Shewanella oneidensis MR-1 and Geobacter sulfurreducens have developed electron transfer (ET) strategies that require multihaem c-type cytochromes (c-Cyts). In S. oneidensis MR-1, multihaem c-Cyts CymA and MtrA are believed to transfer electrons from the inner membrane quinone/quinol pool through the periplasm to the outer membrane. The type II secretion system of S. oneidensis MR-1 has been implicated in the reduction of metal (hydr)oxides, most likely by translocating decahaem c-Cyts MtrC and OmcA across outer membrane to the surface of bacterial cells where they form a protein complex. The extracellular MtrC and OmcA can directly reduce solid metal (hydr)oxides. Likewise, outer membrane multihaem c-Cyts OmcE and OmcS of G. sulfurreducens are suggested to transfer electrons from outer membrane to type IV pili that are hypothesized to relay the electrons to solid metal (hydr)oxides. Thus, multihaem c-Cyts play critical roles in S. oneidensis MR-1- and G. sulfurreducens-mediated dissimilatory reduction of solid metal (hydr)oxides by facilitating ET across the bacterial cell envelope.  相似文献   

12.
13.
Because of their cell surface locations, the outer membrane c-type cytochromes MtrC and OmcA of Shewanella oneidensis MR-1 have been suggested to be the terminal reductases for a range of redox-reactive metals that form poorly soluble solids or that do not readily cross the outer membrane. In this work, we determined the kinetics of reduction of a series of Fe(III) complexes with citrate, nitrilotriacetic acid (NTA), and EDTA by MtrC and OmcA using a stopped-flow technique in combination with theoretical computation methods. Stopped-flow kinetic data showed that the reaction proceeded in two stages, a fast stage that was completed in less than 1 s, followed by a second, relatively slower stage. For a given complex, electron transfer by MtrC was faster than that by OmcA. For a given cytochrome, the reaction was completed in the order Fe-EDTA > Fe-NTA > Fe-citrate. The kinetic data could be modeled by two parallel second-order bimolecular redox reactions with second-order rate constants ranging from 0.872 μM−1 s−1 for the reaction between MtrC and the Fe-EDTA complex to 0.012 μM−1 s−1 for the reaction between OmcA and Fe-citrate. The biphasic reaction kinetics was attributed to redox potential differences among the heme groups or redox site heterogeneity within the cytochromes. The results of redox potential and reorganization energy calculations showed that the reaction rate was influenced mostly by the relatively large reorganization energy. The results demonstrate that ligand complexation plays an important role in microbial dissimilatory reduction and mineral transformation of iron, as well as other redox-sensitive metal species in nature.  相似文献   

14.
The mechanisms underlying the use of insoluble electron acceptors by metal-reducing bacteria, such as Shewanella oneidensis MR-1, are currently under intensive study. Current models for shuttling electrons across the outer membrane (OM) of MR-1 include roles for OM cytochromes and the possible excretion of a redox shuttle. While MR-1 is able to release a substance that restores the ability of a menaquinone (MK)-negative mutant, CMA-1, to reduce the humic acid analog anthraquinone-2,6-disulfonate (AQDS), cross-feeding experiments conducted here showed that the substance released by MR-1 restores the growth of CMA-1 on several soluble electron acceptors. Various strains derived from MR-1 also release this substance; these include mutants lacking the OM cytochromes OmcA and OmcB and the OM protein MtrB. Even though strains lacking OmcB and MtrB cannot reduce Fe(III) or AQDS, they still release a substance that restores the ability of CMA-1 to use MK-dependent electron acceptors, including AQDS and Fe(III). Quinone analysis showed that this released substance restores MK synthesis in CMA-1. This ability to restore MK synthesis in CMA-1 explains the cross-feeding results and challenges the previous hypothesis that this substance represents a redox shuttle that facilitates metal respiration.  相似文献   

15.
When grown under anaerobic conditions, Shewanella putrefaciens MR-1 synthesizes multiple outer membrane (OM) cytochromes, some of which have a role in the use of insoluble electron acceptors (e.g., MnO2) for anaerobic respiration. The cytochromes OmcA and OmcB are localized to the OM and the OM-like intermediate-density membrane (IM) in MR-1. The components necessary for proper localization of these cytochromes to the OM have not been identified. A gene replacement mutant (strain MTRB1) lacking the putative OM protein MtrB was isolated and characterized. The specific cytochrome content of the OM of MTRB1 was only 36% that of MR-1. This was not the result of a general decline in cytochrome content, however, because the cytoplasmic membrane (CM) and soluble fractions were not cytochrome deficient. While OmcA and OmcB were detected in the OM and IM fractions of MTRB1, significant amounts were mislocalized to the CM. OmcA was also detected in the soluble fraction of MTRB1. While OmcA and OmcB in MR-1 fractions were resistant to solubilization with Triton X-100 in the presence of Mg2+, Triton X-100 readily solubilized these proteins from all subcellular fractions of MTRB1. Together, these data suggest that MtrB is required for the proper localization and insertion of OmcA and OmcB into the OM of MR-1. The inability of MTRB1 to properly insert these, and possibly other, proteins into its OM likely contributes to its marked deficiency in manganese(IV) and iron(III) reduction. While the localization of another putative OM cytochrome (MtrF) could not be directly determined, an mtrF gene replacement mutant exhibited wild-types rates of Mn(IV) and Fe(III) reduction. Therefore, even if MtrF were mislocalized in MTRB1, it would not contribute to the loss of metal reduction activity in this strain.  相似文献   

16.
AIM: To determine if the outer membrane (OM) cytochromes of the metal-reducing bacterium Shewanella oneidensis MR-1 are exposed on the cell surface. METHODS AND RESULTS: MR-1 cells were incubated with proteinase K or buffer and the resulting degradation of the OM cytochromes was examined by Western blotting. The periplasmic fumarate reductase (control) was not degraded. The OM cytochromes OmcA and OmcB were significantly degraded by proteinase K (71 and 31%, respectively). Immunofluorescence confirmed a prominent cell surface exposure of OmcA and a partial exposure of OmcB and the noncytochrome OM protein MtrB. CONCLUSIONS: The cytochromes OmcA and OmcB are exposed on the outer face of the OM. SIGNIFICANCE AND IMPACT OF THE STUDY: The cell surface exposure of these cytochromes could allow them to directly contact extracellular insoluble electron acceptors (e.g. manganese oxides) and is consistent with their in vivo role.  相似文献   

17.
18.
The mechanisms underlying the use of insoluble electron acceptors by metal-reducing bacteria, such as Shewanella oneidensis MR-1, are currently under intensive study. Current models for shuttling electrons across the outer membrane (OM) of MR-1 include roles for OM cytochromes and the possible excretion of a redox shuttle. While MR-1 is able to release a substance that restores the ability of a menaquinone (MK)-negative mutant, CMA-1, to reduce the humic acid analog anthraquinone-2,6-disulfonate (AQDS), cross-feeding experiments conducted here showed that the substance released by MR-1 restores the growth of CMA-1 on several soluble electron acceptors. Various strains derived from MR-1 also release this substance; these include mutants lacking the OM cytochromes OmcA and OmcB and the OM protein MtrB. Even though strains lacking OmcB and MtrB cannot reduce Fe(III) or AQDS, they still release a substance that restores the ability of CMA-1 to use MK-dependent electron acceptors, including AQDS and Fe(III). Quinone analysis showed that this released substance restores MK synthesis in CMA-1. This ability to restore MK synthesis in CMA-1 explains the cross-feeding results and challenges the previous hypothesis that this substance represents a redox shuttle that facilitates metal respiration.  相似文献   

19.
Shewanella oneidensis MR-1 is purported to express outer membrane cytochromes (e.g., MtrC and OmcA) that transfer electrons directly to Fe(III) in a mineral during anaerobic respiration. A prerequisite for this type of reaction would be the formation of a stable bond between a cytochrome and an iron oxide surface. Atomic force microscopy (AFM) was used to detect whether a specific bond forms between a hematite (Fe(2)O(3)) thin film, created with oxygen plasma-assisted molecular beam epitaxy, and recombinant MtrC or OmcA molecules coupled to gold substrates. Force spectra displayed a unique force signature indicative of a specific bond between each cytochrome and the hematite surface. The strength of the OmcA-hematite bond was approximately twice that of the MtrC-hematite bond, but direct binding to hematite was twice as favorable for MtrC. Reversible folding/unfolding reactions were observed for mechanically denatured MtrC molecules bound to hematite. The force measurements for the hematite-cytochrome pairs were compared to spectra collected for an iron oxide and S. oneidensis under anaerobic conditions. There is a strong correlation between the whole-cell and pure-protein force spectra, suggesting that the unique binding attributes of each cytochrome complement one another and allow both MtrC and OmcA to play a prominent role in the transfer of electrons to Fe(III) in minerals. Finally, by comparing the magnitudes of binding force for the whole-cell versus pure-protein data, we were able to estimate that a single bacterium of S. oneidensis (2 by 0.5 microm) expresses approximately 10(4) cytochromes on its outer surface.  相似文献   

20.
AIM: To determine if the outer membrane (OM) cytochromes OmcA and OmcB of the metal-reducing bacterium Shewanella oneidensis MR-1 are lipoproteins, and to assess cell surface exposure of the cytochromes by radioiodination. METHODS AND RESULTS: In anaerobic MR-1 cells grown with (3)H-palmitoleic acid, both OmcA and OmcB were radiolabelled. The identities of these bands were confirmed by the absence of each radiolabelled band in the respective mutants lacking individual OM cytochromes. Radioiodination of cell surface proteins in anaerobic cells resulted in (125)I-labelled OmcA. The identity of this band was confirmed by its absence in an OmcA-minus mutant. A ubiquitous radioiodinated band that migrates similarly to OmcB precluded the ability to determine the potential cell surface exposure of OmcB by this method. CONCLUSIONS: Both OmcA and OmcB are lipoproteins, and OmcA is cell surface exposed. SIGNIFICANCE: The lipoprotein modification of these OM cytochromes could be important for their localization or incorporation into the OM. The cell surface exposure of OmcA could allow it to directly transfer electrons to extracellular electron acceptors (e.g. manganese oxides) and is consistent with its in vivo role.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号