首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Autoregulation of tubulin synthesis in hepatocytes and fibroblasts   总被引:20,自引:8,他引:12  
《The Journal of cell biology》1985,101(5):1763-1772
Microtubule polymer levels in mouse 3T6 fibroblasts and primary cultures of rat hepatocytes can be manipulated by treatment of cells with long term, low doses of colcemid. Such treatment produces a rather uniform population of cells with microtubules of reduced lengths. Using this system, we demonstrate (a) that the rate of tubulin synthesis is sensitive to small changes (10%) in microtubule polymer mass and (b) that the percent of inhibition of synthesis is proportional to the level of soluble tubulin. Experiments with hepatocytes indicate that not only synthesis but the stability of tubulin protein was also regulated to maintain a specific level of tubulin. Treatment of hepatocytes with colcemid or other microtubule-depolymerizing drugs reduced the half-life of tubulin from 50 to 2 h, whereas taxol, which stabilizes microtubules, increased the half-life. To assess the consequences of altering microtubule polymer mass, we have analyzed the effect of controlled depolymerization of microtubules in rat hepatocytes on the processing of endocytosed ligands and found it sensitive to small changes in microtubule polymer levels.  相似文献   

2.
Colchicine binding was used as a measure of the levels of microtubule protein (tubulin) in several regions of rabbit brain during postnatal development. All regions studied showed a decrease in tubulin per mg of total protein; however, each region showed an increase in total tubulin from 1 day of age to adulthood. The net change in tubulin during development coincided with a proliferation of dendrites (which are rich in microtubules) and a decrease in microtubules from spindle apparatus, axons and astrocytes. We suggest that the total amount of tubulin changes in response to demands of the maturing brain cell for microtubules with different functional roles.  相似文献   

3.
Microtubules in normal and transformed BALB 3T3 cells were preserved in a stabilizing medium and measured by a [3H]colchicine-binding tubulin assay, and compared to total cellular tubulin measured under nonstabilizing conditions. Essentially no change in tubulin or microtubule content was seen with changes in cell density or with changes in cellular morphology at various stages of growth of normal or transformed cells or induced by dibutyryl cAMP treatment of transformed cells. Of five cell lines transformed by a variety of agents, four had a significantly higher total tubulin content than untransformed 3T3 cells and all of them had an increased microtubule content. None of the transformed lines had a lower fraction of tubulin recoverable as sedimentable microtubules compared to untransformed cells, and in three of them this fraction was significantly higher. These results establish that microtubules are present in transformed cells to at least the extent (if not greater) than in normal cells but that there are variations in the total amount of tubulin and microtubules as well as the fraction of the total tubulin present as microtubules which are not strictly correlated with transformation or cell morphology.  相似文献   

4.
Abstract: To elucidate the role of neurofilaments in microtubule stabilization in the axon, we studied the effects of β,β'-iminodipropionitrile (IDPN) on the solubility and transport of tubulin as well as neurofilament phosphorylation in the motor fibers of the rat sciatic nerve. IDPN is known to impair the axonal transport of neurofilaments, causing accumulation of neurofilaments in the proximal axon and segregation of neurofilaments to the peripheral axoplasm throughout the nerve. Administration of IDPN at various intervals after radioactive labeling of the spinal cord with l -[35S]methionine revealed that transport inhibition occurred all along the nerve within 1–2 days. Transport of cold-insoluble tubulin, which accounts for 50% of axonal tubulin, was also affected. A significant increase in the proportion of cold-soluble tubulin was observed, reaching a maximum at 3 days after IDPN treatment and returning to the control level in the following weeks. Preceding this change in tubulin solubility, a transient decrease in the phosphorylation level of the 200-kDa neurofilament protein was detected in the ventral root using phosphorylation-dependent antibodies. These early changes agreed in timing with the onset of segregation and transport inhibition, suggesting that interaction between neurofilaments and microtubules possibly regulated by phosphorylation plays a significant role in microtubule stabilization.  相似文献   

5.
Summary Cortical microtubules (MTs) at indifferent zones in immatureNitella internodes were investigated by injection of fluorescently tagged sheep brain tubulin into living cells and by immunofluorescence on fixed material. Nearly identical MT patterns and numbers were detected with the two techniques, indicating that sheep brain tubulin incorporated into all cortical MTs. MTs were aligned transversely to the long axis of the cell and approximately one MT was present every micrometer of longitudinal cell distance. Treatment of internodes with propionic acid to acidify cytosolic pH caused depolymerization of MTs and an increase in the unpolymerized tubulin pool. Transfer of young, vigorously elongating cells to media inducing premature growth cessation resulted in a slight decrease in microtubule numbers but did not significantly alter microtubule orientation patterns or microtubule lifespans. MTs remained transverse for days following growth cessation before finally assuming a more random alignment characteristic of mature, non-growing internodes. No differences in MT numbers, orientation, or dynamics were detected between acid and alkaline bands in internodes incubated in a band-inducing medium. Thus, properties of cortical MT arrays were not closely coupled to growth status or to regional differences in cellular physiology associated with pH banding.Abbrevations BIM band-inducing medium - CCM Chara culture medium - CF carboxyfluorescein - FRAP fluorescence redistribution after photobleaching - MT microtubule  相似文献   

6.
We have examined the changes in the microtubule and tubulin contents in populations of mouse splenic T lymphocytes stimulated by the mitogen concanavalin A. Indirect immunofluorescence staining with antiserum to tubulin indicated that a more extensive microtubule network was assembled from the centrosome in those cells which had increased in size in response to the mitogen. Direct counts of microtubules from electron micrographs of the centrosome regions of cells showed approximately a 2-fold increase in microtubule number in 48 h stimulated populations and up to a 5-fold increase in the large, fully stimulated, blast cells. Determinations of tubulin and actin contents were made by the measurement of peptides specific to those proteins. As a percentage of total cell protein both of these cytoskeletal proteins increased during the first 24 h of stimulation. Tubulin increased 50% by 24 h and remained high in populations stimulated for 48 h. The tubulin content per cell increased 2.5-fold, from 0.20 to 0.51 μg/106 cells, in the 48 h stimulated population. An increase in tubulin content was also seen following the stimulation of nude mouse B lymphocyte populations and of total splenic lymphocyte populations. Our results show that during lymphocyte stimulation there is a large increase in the numbers of microtubules assembled which is correlated with, and appears dependent on, a similar large increase in the cellular tubulin content.  相似文献   

7.
In eukaryotic cells, tubulin polymerization must be regulated precisely during cell division and differentiation. To identify new mechanisms involved in cellular microtubule formation, we isolated an activity that suppresses microtubule nucleation in vitro. The activity was due to a small acidic polypeptide of 4.7 kDa which we named MINUS (microtubule nucleation suppressor). MINUS inhibited tau- and taxol-mediated microtubule assembly in vitro and was inactivated by dephosphorylation. The protein was purified to homogeneity from cultured neural (PC12) cells and bovine brain. Microinjection of MINUS caused a transient loss of dynamic microtubules in Vero cells. The results suggest that MINUS acts with a novel mechanism on tubulin polymerization, thus regulating microtubule formation in living cells.  相似文献   

8.
Neutrophil activation by specific stimuli, such as the oligopeptide chemotactic factor fMet-Leu-(fMLF), is associated with an increased enzymatic addition of tyrosine to tubulin α -subunits, as measured by 14C tyrosine uptake. In studies using immunoblots we have found that this increased tyrosine uptake into tubulin in activated neutrophils reflects an increase in the proportion of cellular tubulin that is tyrosinated rather than simply an increase in the turnover of tyrosinated subunits. However, the increased accumulation of tyrosinated tubulin was also found to follow an initial depletion of tyrosinated tubulin and concomitant increase in detyrosinated tubulin between 0 and 60 sec following stimulation of neutrophils with fMLF. Immunogold electron microscopy studies of intact micro tubules recovered from activated neutrophils demonstrated that these rapid changes in the relative content of tubulin isoforms in the cells were not associated with the formation or disappearance of microtubule microdomains composed of only one form of tubulin. Previously, we have shown that under conditions of fMLF-stimulated exocytosis there is an increased binding of neutrophil granules to endogenous microtubules. Since neutrophil activation by fMLF is associated with increased tyrosination of α -tubulin subunits, we speculated that rapid changes in the levels of tyrosinated tubulin in the microtubules of activated neutrophils might have a role in the regulation of granule-microtubule interactions. When the binding of purified neutrophil granules to reconstituted rat brain microtubules containing approximately 50% tyrosinated tubulin was measured by electron microscopy and compared with granule binding to microtubules that contained no detectable tyrosinated tubulin, granule-microtubule associations were found to be significantly favored by detyrosinated vs. tyrosinated tubulin. These findings indicate that interactions between cytoplasmic granules and microtubules in activated neutrophils may be modulated by rapid changes in the relative content of detyrosinated and tyrosinated tubulin in the microtubule network of the cells. © 1993 Wiley-Liss, Inc.  相似文献   

9.
《The Journal of cell biology》1985,101(5):1941-1952
Virtually all animal cells rapidly and specifically depress synthesis of new alpha- and beta-tubulin polypeptides in response to microtubule inhibitors that increase the pool of depolymerized subunits, or in response to direct elevation of the cellular tubulin subunit content through microinjection of exogenous tubulin subunits. Collectively, these previous findings have documented the presence of an apparent eucaryotic, autoregulatory control mechanism that specifies the level of expression of tubulin in cultured animal cells. Mechanistically, this regulation of tubulin synthesis is achieved through modulation of tubulin mRNA levels. To dissect further the molecular pathway that underlies this autoregulatory phenomenon, we have now investigated whether enucleated cells still retain the requisite regulatory machinery with which to alter tubulin synthetic levels in response to fluctuations in the pool size of unpolymerized tubulin subunits. Using two-dimensional gel electrophoresis to analyze the patterns of new polypeptide synthesis, we have determined that such cytoplasts can indeed respond to drug-induced microtubule depolymerization by specific repression of new beta-tubulin synthesis. Moreover, the response of cytoplasts is, if anything, greater in magnitude than that of whole cells. We conclude that autoregulatory control of beta-tubulin gene expression must derive principally, if not exclusively, from a cytoplasmic control mechanism that modulates beta-tubulin mRNA stability. For alpha-tubulin, although the response of cytoplasts after drug-induced microtubule depolymerization is quantitatively less dramatic than that of whole cells, at least part of the regulatory machinery must also be activated through a cytoplasmic regulatory event.  相似文献   

10.
《The Journal of cell biology》1983,96(6):1743-1750
The results presented here show that disruption of the microtubule network acts synergistically with cAMP-elevating agents to stimulate the entry into DNA synthesis of 3T3 cells. Antimicrotubule agents and increased cAMP levels require an additional growth-promoting factor for inducing initiation of DNA synthesis; such requirement can be furnished by insulin, vasopressin, epidermal growth factor, platelet-derived growth factor, or fibroblast-derived growth factor. The involvement of the microtubules is indicated by the fact that enhancement of the DNA synthetic response was demonstrated with the chemically diverse agents colchicine, nocodazole, vinblastine, or demecolcine, all of which elicited the response in a dose-dependent manner. We verified that colchicine and nocodazole, at the doses used in this study, induced microtubule disassembly in the absence as well as in the presence of cAMP-elevating agents as judged by measurement of [3H]colchicine binding of total and pelletable tubulin. The involvement of cAMP was revealed by increasing its endogenous production by cholera toxin or by treatment with 8BrcAMP. The enhancing effects of antimicrotubule drugs and cAMP-elevating agents could be demonstrated by incorporation of [3H]thymidine into acid-insoluble material, autoradiography of labeled nuclei, or flow cytofluorometric analysis. The addition of antimicrotubule drugs does not increase the intracellular level of cAMP nor does addition of cAMP-elevating agents promote disassembly of microtubules (as judged by measuring [3H]colchicine binding of total and pelletable tubulin) in 3T3 cells. In view of these findings and the striking synergistic effects between these agents in stimulating DNA synthesis in the presence of a peptide growth factor, we conclude that increased cAMP levels and a disrupted microtubule network regulate independent pathways involved in proliferative response.  相似文献   

11.
Mammalian phospholipase D (PLD) is considered a key enzyme in the transmission signals from various receptors including muscarinic receptors. PLD activation is a rapid and transient process, but a negative regulator has not been found that inhibits signal-dependent PLD activation. Here, for the first time, we report that tubulin binding to PLD2 is an inhibition mechanism for muscarinic receptor-linked PLD2 activation. Tubulin was identified in an immunoprecipitated PLD2 complex from COS-7 cells by peptide mass fingerprinting. The direct interaction between PLD2 and tubulin was found to be mediated by a specific region of PLD2 (amino acids 476-612). PLD2 was potently inhibited (IC50 <10 nM) by tubulin binding in vitro. In cells, the interaction between PLD2 and tubulin was increased by the microtubule disrupting agent nocodazole and reduced by the microtubule stabilizing agent Taxol. Moreover, PLD2 activity was found to be inversely correlated with the level of monomeric tubulin. In addition, we found that interaction with and the inhibition of PLD2 by monomeric tubulin is important for the muscarinic receptor-linked PLD signaling pathway. Interaction between PLD2 and tubulin was increased only after 1-2 min of carbachol stimulation when carbachol-stimulated PLD2 activity was decreased. The expression of the tubulin binding region of PLD2 blocked the later decrease in carbachol-induced PLD activity by masking tubulin binding. Taken together, these results indicate that an increase in local membrane monomeric tubulin concentration inhibits PLD2 activity, and provides a novel mechanism for the inhibition of muscarinic receptor-induced PLD2 activation by interaction with tubulin.  相似文献   

12.
Nerve growth factor induces neurite process formation in pheochromacytoma (PC12) cells and causes the parallel increase in levels of the microtubule-associated proteins, tau and MAP1, as well as increases in tubulin levels. Mechanisms to insure balanced accumulation of microtubule proteins and make their levels highly responsive to nerve growth factor were investigated. The effects on tau, MAP1, and tubulin are due to changes in protein synthesis rates, which for tau and tubulin we could show are due in part to changes in the mRNA levels. Whereas tubulin shows feedback regulation to modulate synthesis up or down, tau protein synthesis is not affected in a straightforward way by microtubule polymerization and depolymerization. The degradation of tau, MAP1, and both tubulin polypeptides, however, are stimulated by microtubule depolymerization caused by colchicine, or nerve growth factor removal. Combined feedback on synthesis and stability make tubulin levels highly responsive to assembly states. In addition, the linkage of tau and MAP1 turnover with the state of microtubule polymerization amplifies any change in their rate of synthesis, since tau and MAP1 promote microtubule polymerization. This linkage lends itself to rapid changes in the state of the system in response to nerve growth factor.  相似文献   

13.
A sensitive and reproducible method to measure relative levels of polymerized and soluble tubulin in cells has been developed. This method involves metabolically labeling cells with radioactive amino acids followed by lysis in a microtubule-stabilizing buffer, centrifugation to separate soluble from polymerized tubulin, resolution of the proteins in each fraction by two-dimensional gel electrophoresis, and quantitation of the tubulin by liquid scintillation counting of spots excised from the gel. Several buffers were evaluated for their reproducibility and efficacy in preserving the state of in vivo microtubule assembly at the time of cell lysis, and the ability of the technique to measure drug-induced changes in tubulin polymerization was determined. Results using this method indicate that Chinese hamster ovary cells maintain approximately 40% of the cellular tubulin in an assembled form. Dose-dependent decreases in tubulin polymerization could be measured in Colcemid-treated cells, while dose-dependent increases in assembly were measured in taxol-treated cells. The results with taxol indicate that, following the increase in microtubule polymerization, there is a time-dependent bundling of microtubules that occurs without further increases in the extent of tubulin assembly. Examination of drug-resistant Chinese hamster ovary cells reveals that Colcemid-resistant mutants maintain more tubulin in the polymerized state (approximately 50%), while taxol-resistant mutants maintain less assembled tubulin (about 28%). Similar changes occur regardless of whether the mutant cells have an alteration in alpha- or in beta-tubulin. A model to explain these results is discussed.  相似文献   

14.
Previous studies demonstrated that nanomolar concentrations of nocodazole can block cells in mitosis without net microtubule disassembly and resulted in the hypothesis that this block was due to a nocodazole-induced stabilization of microtubules. We tested this hypothesis by examining the effects of nanomolar concentrations of nocodazole on microtubule dynamic instability in interphase cells and in vitro with purified brain tubulin. Newt lung epithelial cell microtubules were visualized by video-enhanced differential interference contrast microscopy and cells were perfused with solutions of nocodazole ranging in concentration from 4 to 400 nM. Microtubules showed a loss of the two-state behavior typical of dynamic instability as evidenced by the addition of a third state where they exhibited little net change in length (a paused state). Nocodazole perfusion also resulted in slower elongation and shortening velocities, increased catastrophe, and an overall decrease in microtubule turnover. Experiments performed on BSC-1 cells that were microinjected with rhodamine-labeled tubulin, incubated in nocodazole for 1 h, and visualized by using low-light-level fluorescence microscopy showed similar results except that nocodazole-treated BSC-1 cells showed a decrease in catastrophe. To gain insight into possible mechanisms responsible for changes in dynamic instability, we examined the effects of 4 nM to 12 microM nocodazole on the assembly of purified tubulin from axoneme seeds. At both microtubule plus and minus ends, perfusion with nocodazole resulted in a dose-dependent decrease in elongation and shortening velocities, increase in pause duration and catastrophe frequency, and decrease in rescue frequency. These effects, which result in an overall decrease in microtubule turnover after nocodazole treatment, suggest that the mitotic block observed is due to a reduction in microtubule dynamic turnover. In addition, the in vitro results are similar to the effects of increasing concentrations of GDP-tubulin (TuD) subunits on microtubule assembly. Given that nocodazole increases tubulin GTPase activity, we propose that nocodazole acts by generating TuD subunits that then alter dynamic instability.  相似文献   

15.
16.
Reactive oxygen species (ROS) imbalance is a stressful condition for plant cells accompanied by dramatic changes in tubulin cytoskeleton. Here, evidence is provided that alterations in ROS levels directly interfere with the phosphorylation state of a p38‐like MAPK in the angiosperms Triticum turgidum and Arabidopsis thaliana. Both oxidative stress generators and chemicals inducing ROS scavenging or decreasing ROS production resulted in the accumulation of a phospho‐p46 protein similar to p38‐MAPK. Importantly, the rhd2 A. thaliana mutants exhibited a remarkable increase in levels of phospho‐p46. The presence of the p38‐MAPK inhibitor SB203580 attenuated the response to ROS disturbance, prevented microtubule disappearance and resulted in a dramatic decrease in the number of atypical tubulin polymers. Moreover, in roots treated simultaneously with substances inducing ROS overproduction and others resulting in low ROS levels, phospho‐p46 levels and the organization of tubulin cytoskeleton were similar to controls. Collectively, our experimental data suggest, for the first time in plants, that p46 functions as a putative sensor of redox state, the activation of which initiates downstream signalling events leading to microtubule disruption and subsequent assembly of atypical tubulin polymers. Thus, p46 seems to participate in perception of ROS homeostasis disturbance as well as in cellular responses to redox imbalance.  相似文献   

17.
18.
Cyclostreptin (1), a natural product from Streptomyces sp. 9885, irreversibly stabilizes cellular microtubules, causes cell cycle arrest, evades drug resistance mediated by P-glycoprotein in a tumor cell line and potently inhibits paclitaxel binding to microtubules, yet it only weakly induces tubulin assembly. In trying to understand this paradox, we observed irreversible binding of synthetic cyclostreptin to tubulin. This results from formation of covalent crosslinks to beta-tubulin in cellular microtubules and microtubules formed from purified tubulin in a 1:1 total stoichiometry distributed between Thr220 (at the outer surface of a pore in the microtubule wall) and Asn228 (at the lumenal paclitaxel site). Unpolymerized tubulin was only labeled at Thr220. Thus, the pore region of beta-tubulin is an undescribed binding site that (i) elucidates the mechanism by which taxoid-site compounds reach the kinetically unfavorable lumenal site and (ii) explains how taxoid-site drugs induce microtubule formation from dimeric and oligomeric tubulin.  相似文献   

19.
Vertebrate tubulin is encoded by a multigene family that produces distinct gene products, or isotypes, of both the alpha- and beta-tubulin subunits. The isotype sequences are conserved across species supporting the hypothesis that different isotypes subserve different functions. To date, however, most studies have demonstrated that tubulin isotypes are freely interchangeable and coassemble into all classes of microtubules. We now report that, in contrast to other isotypes, overexpression of a mouse class V beta-tubulin cDNA in mammalian cells produces a strong, dose-dependent disruption of microtubule organization, increased microtubule fragmentation, and a concomitant reduction in cellular microtubule polymer levels. These changes also disrupt mitotic spindle assembly and block cell proliferation. Consistent with diminished microtubule assembly, there is an increased tolerance for the microtubule stabilizing drug, paclitaxel, which is able to reverse many of the effects of class V beta-tubulin overexpression. Moreover, transfected cells selected in paclitaxel exhibit increased expression of class V beta-tubulin, indicating that this isotype is responsible for the drug resistance. The results show that class V beta-tubulin is functionally distinct from other tubulin isotypes and imparts unique properties on the microtubules into which it incorporates.  相似文献   

20.
The effects of the microtubule inhibitor, colchicine, on insulin or glucagon stimulation of alpha-amino[1-14C]-isobutyric acid (AIB) transport were investigated in isolated hepatocytes from normal fed rats. Under all conditions tested, AIB uptake appeared to occur through two components of transport: a low affinity (Km approximately 50 mM) component and a high affinity (Km approximately 1 mM) component. Within 2 h of incubation, insulin and glucagon, at maximal concentrations, increase AIB (0.1 mM) uptake by 2- to 3-fold and 4- to 6-fold, respectively. Colchicine, at the low concentration of 5 X 10(-7) M, slightly reduces basal AIB transport, decreases by 80% the simulatory effect of insulin, and diminishes by 40% the stimulatory effect of either glucagon or dibutyryl cAMP. Kinetic analysis of AIB influx indicates that the drug inhibits the increase in Vmax of a high affinity (Km approximately 1 mM) component of transport stimulated by insulin or glucagon, without affecting the kinetic parameters of a low affinity component of transport (Km approximately 50 mM). Various short term hormonal effects of insulin and glucagon (changes in glucose, urea, and lactate production) were found not to be modified by the drug. Vinblastine elicits similar changes as colchicine on AIB uptake. Lumicolchicine, a colchicine analogue that does not bind to tubulin, has no effect. The concentration of colchicine (10(-7) M) required for half-maximal inhibition of hormone-stimulated AIB transport is in the appropriate range for specific microtubule disruption. These data suggest that microtubules are involved in the regulation of the insulin or glucagon stimulation of AIB transport in isolated rat hepatocytes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号