首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Lymphoma pathogenesis is at least in some cases related to transformed B cells (BCs) arising from germinal centre reactions (GCRs). In this article possible deregulations of GCRs are investigated using in silico simulations. It is found that the final differentiation of BCs as regulated by helper T cells (TCs) is the best candidate mechanism for such a deregulation. This shifts the paradigm of BC lymphoma pathogenesis from BC transformations to an emphasized role of TC-BC interactions.  相似文献   

2.
3.
《Cell calcium》2016,59(6):598-605
TαT1 cells are mouse thyrotroph cell line frequently used for studies on thyroid-stimulating hormone beta subunit gene expression and other cellular functions. Here we have characterized calcium-signaling pathways in TαT1 cells, an issue not previously addressed in these cells and incompletely described in native thyrotrophs. TαT1 cells are excitable and fire action potentials spontaneously and in response to application of thyrotropin-releasing hormone (TRH), the native hypothalamic agonist for thyrotrophs. Spontaneous electrical activity is coupled to small amplitude fluctuations in intracellular calcium, whereas TRH stimulates both calcium mobilization from intracellular pools and calcium influx. Non-receptor-mediated depletion of intracellular pool also leads to a prominent facilitation of calcium influx. Both receptor and non-receptor stimulated calcium influx is substantially attenuated but not completely abolished by inhibition of voltage-gated calcium channels, suggesting that depletion of intracellular calcium pool in these cells provides a signal for both voltage-independent and -dependent calcium influx, the latter by facilitating the pacemaking activity. These cells also express purinergic P2Y1 receptors and their activation by extracellular ATP mimics TRH action on calcium mobilization and influx. The thyroid hormone triiodothyronine prolongs duration of TRH-induced calcium spikes during 30-min exposure. These data indicate that TαT1 cells are capable of responding to natively feed-forward TRH signaling and intrapituitary ATP signaling with acute calcium mobilization and sustained calcium influx. Amplification of TRH-induced calcium signaling by triiodothyronine further suggests the existence of a pathway for positive feedback effects of thyroid hormones probably in a non-genomic manner.  相似文献   

4.
Targeted adoptive immunotherapy with engineered T cells is a promising treatment for refractory hematologic malignancies. However, many patients achieving early complete remissions ultimately relapse. Immunosuppressive ligands are expressed on tumor and supportive cells in the tumor microenvironment (TME). When activated, T cells express associated “checkpoint” receptors. Binding of co-inhibitory ligands and receptors may directly contribute to T-cell functional exhaustion. It is not known whether all T cells engineered to express chimeric antigen receptors (CARs) are subject to checkpoint-mediated regulation. It is also unknown whether distinct CAR signaling moieties modulate T-cell responsiveness to these inhibitory pathways. We have, therefore, directly compared functional co-inhibition in engineered T cells identically targeted to the tumor-associated antigen CD123, but distinct in their mode of T-cell activation: via the endogenous T-cell receptor (ENG), or downstream of CD28 or 41BB-containing CARs. In all cases, we have observed antigen-independent T-cell activation associated with upregulation of the co-inhibitory receptors programmed cell death protein 1 (PD-1, CD279), Tim-3 and Lag-3. Notably, CD28.CAR T cells were uniquely susceptible to PD-1/PD-L1 mediated checkpoint inhibition. Together, our data indicate that PD-1/PD-L1 checkpoint blocking agents may be considered clinically when CD28.CAR T cells do not perform optimally in human trials.  相似文献   

5.
6.
7.
Natural killer (NK) cells survey host tissues for signs of infection, transformation or stress and, true to their name, kill target cells that have become useless or are detrimental to the host. For decades, NK cells have been classified as a component of the innate immune system. However, accumulating evidence in mice and humans suggests that, like the B and T cells of the adaptive immune system, NK cells are educated during development, possess antigen-specific receptors, undergo clonal expansion during infection and generate long-lived memory cells. In this Review, we highlight the many stages that an NK cell progresses through during its remarkable lifetime, discussing similarities and differences with its close relative, the cytotoxic CD8(+) T cell.  相似文献   

8.
Recent findings have demonstrated an indispensable role for GM-CSF in the pathogenesis of experimental autoimmune encephalomyelitis. However, the signaling pathways and cell populations that regulate GM-CSF production in vivo remain to be elucidated. Our work demonstrates that IL-1R is required for GM-CSF production after both TCR- and cytokine-induced stimulation of immune cells in vitro. Conventional αβ and γδ T cells were both identified to be potent producers of GM-CSF. Moreover, secretion of GM-CSF was dependent on IL-1R under both IL-12- and IL-23-induced stimulatory conditions. Deficiency in IL-1R conferred significant protection from experimental autoimmune encephalomyelitis, and this correlated with reduced production of GM-CSF and attenuated infiltration of inflammatory cells into the CNS. We also find that GM-CSF production in vivo is not restricted to a defined CD4(+) T cell lineage but is rather heterogeneously expressed in the effector CD4(+) T cell population. In addition, inflammasome-derived IL-1β upstream of IL-1R is a critical regulator of GM-CSF production by T cells during priming, and the adapter protein, MyD88, promotes GM-CSF production in both αβ and γδ T cells. These findings highlight the importance of inflammasome-derived IL-1β and the IL-1R/MyD88 signaling axis in the regulation of GM-CSF production.  相似文献   

9.
Tian J  Ma J  Wang S  Yan J  Chen J  Tong J  Wu C  Liu Y  Ma B  Mao C  Jiao Z  Shao Q  Lu L  Xu H 《Cellular immunology》2011,(2):183-187
β-Glucans have been shown to enhance immune responses for centuries, which contributes to their anti-tumor property. However, their mechanisms of action are still elusive. Dectin-1, the C-type lectin receptor for β-glucan, is expressed abundantly on dendritic cells (DCs). Activation of DCs via Dectin-1 can lead to the maturation of DC, inducing both innate and adaptive immune responses against tumor development and microbial infection. In this study, we found that particulate yeast-derived β-glucans could induce the maturation of murine dendritic cell line D2SC/1 cells and increase the expression of mGITRL on D2SC/1 cells via Dectin-1/Syk pathway in a dose dependent manner. Furthermore, we demonstrated that the increased mGITRL on D2SC/1 cells could impair the suppressive activity of CD4+CD25+ regulatory T cells (Tregs) and enhance the proliferation of CD4+CD25 effector T cells (Teffs). These findings suggest that particulate β-glucan can be used as immunomodulator to stimulate potent T cell-mediated adaptive immunity while down-regulate immune suppressive activity, leading to a more efficient defense mechanism against tumor development or infectious diseases.  相似文献   

10.
Recent experimental data have shown that HIV-specific CD4 T cells provide a very important target for HIV replication. We use mathematical models to explore the effect of specific CD4 T cell infection on the dynamics of virus spread and immune responses. Infected CD4 T cells can provide antigen for their own stimulation. We show that such autocatalytic cell division can significantly enhance virus spread, and can also provide an additional reservoir for virus persistence during anti-viral drug therapy. In addition, the initial number of HIV-specific CD4 T cells is an important determinant of acute infection dynamics. A high initial number of HIV-specific CD4 T cells can lead to a sudden and fast drop of the population of HIV-specific CD4 T cells which results quickly in their extinction. On the other hand, a low initial number of HIV-specific CD4 T cells can lead to a prolonged persistence of HIV-specific CD4 T cell help at higher levels. The model suggests that boosting the population of HIV-specific CD4 T cells can increase the amount of virus-induced immune impairment, lead to less efficient anti-viral effector responses, and thus speed up disease progression, especially if effector responses such as CTL have not been sufficiently boosted at the same time.  相似文献   

11.
It is well established that IFN-γ is required for the development of experimental cerebral malaria (ECM) during Plasmodium berghei ANKA infection of C57BL/6 mice. However, the temporal and tissue-specific cellular sources of IFN-γ during P. berghei ANKA infection have not been investigated, and it is not known whether IFN-γ production by a single cell type in isolation can induce cerebral pathology. In this study, using IFN-γ reporter mice, we show that NK cells dominate the IFN-γ response during the early stages of infection in the brain, but not in the spleen, before being replaced by CD4(+) and CD8(+) T cells. Importantly, we demonstrate that IFN-γ-producing CD4(+) T cells, but not innate or CD8(+) T cells, can promote the development of ECM in normally resistant IFN-γ(-/-) mice infected with P. berghei ANKA. Adoptively transferred wild-type CD4(+) T cells accumulate within the spleen, lung, and brain of IFN-γ(-/-) mice and induce ECM through active IFN-γ secretion, which increases the accumulation of endogenous IFN-γ(-/-) CD8(+) T cells within the brain. Depletion of endogenous IFN-γ(-/-) CD8(+) T cells abrogates the ability of wild-type CD4(+) T cells to promote ECM. Finally, we show that IFN-γ production, specifically by CD4(+) T cells, is sufficient to induce expression of CXCL9 and CXCL10 within the brain, providing a mechanistic basis for the enhanced CD8(+) T cell accumulation. To our knowledge, these observations demonstrate, for the first time, the importance of and pathways by which IFN-γ-producing CD4(+) T cells promote the development of ECM during P. berghei ANKA infection.  相似文献   

12.
13.
γδ T cells are considered to be innate lymphocytes that play an important role in host defense against tumors and infections. We recently reported that IL-18 markedly amplified γδ T cell responses to zoledronate (ZOL)/IL-2. In an extension of this finding, we analyzed the mechanism underlying the IL-18-mediated expansion of γδ T cells. After incubation of PBMCs with ZOL/IL-2/IL-18, the majority of the cells expressed γδ TCR, and the rest mostly exhibited CD56(bright)CD11c(+) under the conditions used in this study. CD56(bright)CD11c(+) cells were derived from a culture of CD56(int)CD11c(+) cells and CD14(+) cells in the presence of IL-2 and IL-18 without the addition of ZOL. They expressed IL-18Rs, HLA-DR, CD25, CD80, CD83, CD86, and CD11a/CD18. In addition, they produced IFN-γ, TNF-α, but not IL-12, when treated with IL-2/IL-18, and they exerted cytotoxicity against K562 cells, thus exhibiting characteristics of both NK cells and dendritic cells. Incubation of purified γδ T cells with CD56(bright)CD11c(+) cells in the presence of ZOL/IL-2/IL-18 resulted in the formation of massive cell clusters and led to the marked expansion of γδ T cells. However, both conventional CD56(-/int)CD11c(high) dendritic cells induced by GM-CSF/IL-4 and CD56(+)CD11c(-) NK cells failed to support the expansion of γδ T cells. These results strongly suggest that CD56(bright)CD11c(+) cells play a key role in the IL-18-mediated proliferation of γδ T cells.  相似文献   

14.
15.
Human Vγ9Vδ2 T cells are a unique T-cell type, and data from recent studies of Vγ9Vδ2 T cells emphasize their potential relevance to cancer immunotherapy. Vγ9Vδ2 T cells exhibit dual properties since they are both antigen-presenting cells and cytotoxic toward cancer cells. The majority of Vγ9Vδ2 T cells are double-negative for the co-receptors CD4 and CD8, and only 20–30% express CD8. Even though they are mostly neglected, a small fraction of Vγ9Vδ2 T cells also express the co-receptor CD4. Here the authors show that CD4+ Vγ9Vδ2 T cells comprise 0.1–7% of peripheral blood Vγ9Vδ2 T cells. These cells can be expanded in vitro using zoledronic acid, pamidronic acid or CD3 antibodies combined with IL-2 and feeder cells. Unlike most conventional CD4+ αβ T cells, CD4+ Vγ9Vδ2 T cells are potently cytotoxic and can kill cancer cells, which is here shown by the killing of cancer cell lines of different histological origins, including breast cancer, prostate cancer and melanoma cell lines, upon treatment with zoledronic acid. Notably, the killing capacity of CD4+ Vγ9Vδ2 T cells correlates with co-expression of CD56.  相似文献   

16.
Cao Q  Wang L  Du F  Sheng H  Zhang Y  Wu J  Shen B  Shen T  Zhang J  Li D  Li N 《Cell research》2007,17(7):627-637
Regulatory T cells (Treg) play important roles in immune system homeostasis, and may also be involved in tumor immunotolerance by suppressing Th1 immune response which is involved in anti-tumor immunity. We have previously reported that immunization with attenuated activated autologous T cells leads to enhanced anti-tumor immunity and upregulated Thl responses in vivo. However, the underlying molecular mechanisms are not well understood. Here we show that Treg function was significantly downregulated in mice that received immunization of attenuated activated autologous T cells. We found that Foxp3 expression decreased in CD4+CD25+ T cells from the immunized mice. Moreover, CD4+CD25+Foxp3+ Treg obtained from immunized mice exhibited diminished immunosuppression ability compared to those from naive mice. Further analysis showed that the serum of immunized mice contains a high level ofanti-CD25 antibody (about 30 ng/ml, p〈0.01 vs controls). Consistent with a role ofanti-CD25 response in the downregulation of Treg, adoptive transfer of serum from immunized mice to naive mice led to a significant decrease in Treg population and function in recipient mice. The triggering of anti-CD25 response in immunized mice can be explained by the fact that CD25 was induced to a high level in the ConA activated autologous T cells used for immunization. Our results demonstrate for the first time that immunization with attenuated activated autologous T cells evokes anti-CD25 antibody production, which leads to impeded CD4+CD25+Foxp3+ Treg expansion and function in vivo. We suggest that dampened Treg function likely contributes to enhanced Thl response in immunized mice and is at least part of the mechanism underlying the boosted anti-tumor immunity.  相似文献   

17.
Recovery from CL is usually accompanied with long-lasting protection and induction of strong immune response. The phenotypes, generation and maintenance of central (=TCM) and effector (=TEM) memory T cell subsets in human leishmaniasis are not well known. Profile of T cell subsets were analyzed on peripheral CD8+ T cells from volunteers with history of cutaneous leishmaniasis (HCL).In HCL and control groups, mean frequencies of CCR7+CD45RA+CD8+ naïve and CCR7?CD45RA?CD8+ TEM cells were higher than other subsets before culture, but after stimulation with soluble Leishmania antigen, the frequency of naïve T cells was significantly decreased and the frequency of TEM cells was significantly increased. TEM phenotype composed the highest portion of proliferating Carboxy Fluorescein diacetate Succinimidyl Ester (CFSE)-dim population which was significantly higher in HCL volunteers than in control group. Stimulation of isolated CD8+ memory T cells, but not naïve T cells, from HCL volunteers induced a significantly higher IFN-γ production compared with that of healthy controls. Intracellular IFN-γ staining provided the same result.Memory population is shown to be responsible for Leishmania-induced IFN-γ production. Leishmania-reactive proliferating TEM cells were identified as the most frequent subset which may play a role in recall immune response and protection against Leishmania infection.  相似文献   

18.
19.
It is generally accepted that as the result of positive thymic selection, CD8-expressing T cells recognize peptide antigens presented in the context of MHC class I molecules and CD4-expressing T cells interact with peptide antigens presented by MHC class II molecules. Here we report the generation of TCRalpha/beta(+), CD3(+), CD4(+), CD8(-), MHC class I-restricted alloreactive T-cell clones which were induced using peripheral blood mononuclear cells from healthy individuals following in vitro stimulation with transporter associated with antigen processing (TAP)-deficient cell lines T2. The CD4(+) T-cell clones showed an HLA-A2.1-specific proliferative response against T2 cells which was inhibited by anti-CD3 and anti-CD4 monoclonal antibodies. These results suggest that interaction of the TCR with peptide-bound HLA class I molecules contributes to antigen-specific activation of these co-receptor-mismatched T-cell clones. Antigen recognition by alloreactive MHC class I-restricted CD4(+) T cells was inhibited by removing peptides bound to HLA molecules on T2 cells suggesting that the alloreactive CD4(+) T cells recognize peptides that bind in a TAP-independent manner to HLA-A2 molecules. The existence of such MHC class I-restricted CD4(+) T cells which can recognize HLA-A2 molecules in the absence of TAP function may provide a basis for the development of immunotherapy against TAP-deficient tumor variants which would be tolerant to immunosurveillance by conventional MHC class I-restricted cytotoxic lymphocytes.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号