首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Recovery from potentially lethal radiation damage in HeLa S3 cells has been studied by irradiating synchronous cultures with 4 Gy at selected ages in the cell cycle, initiating treatment with 4 mM caffeine, which prevents recovery, at progressively later times up to 24-30 h after irradiation, and determining the plateau level of survival after incubation with the caffeine until 36-40 h after mitotic collection. Cell recovery appears to begin immediately after irradiation at any time during interphase: an accelerating increase in survival gives way after several hours to a linear increase which lasts for an additional several hours. The median recovery time is approximately 13 h after irradiation at any time during G1, but is markedly shorter (5-7 h) after irradiation in S or G2. The rate of recovery is slightly depressed if DNA replication is inhibited with aphidicolin after irradiation and slightly enhanced if protein synthesis is inhibited with cycloheximide. Both the rate and the extent of recovery are dependent on the location of the cells in the cycle at the time of irradiation--both functions increasing with cell age from the beginning of S, but having different age dependencies in G1. Blocking cell progression with a DNA-synthesis inhibitor before irradiation halts the age-dependent changes.  相似文献   

2.
HeLa cells irradiated with 2 Gy of 220-kV X rays suffer a 60-70% loss of colony-forming ability which is increased to 90% by postirradiation treatment with 10 mM caffeine for 6 hr. The detailed postirradiation patterns of cell death and sister-cell fusion in such cultures and in cultures in which the colony-forming ability was brought to about the same level by treatment with a larger (4 Gy) X-ray dose alone or by longer (48 hr) treatment with 10 mM caffeine alone were recorded by time-lapse cinemicrography. Because the patterns of cell death and fusion differ radically in irradiated and in caffeine-treated cultures, the response of the additional cells killed by the combined treatment can be identified as X-ray induced rather than caffeine induced. The appearance of cultures after several days of incubation confirms the similarity of the post-treatment patterns of proliferation in cultures suffering enhanced killing to those occurring in cultures treated with larger doses of X rays alone. It is concluded that X rays do not sensitize cells to caffeine, but rather that caffeine enhances the expression of potentially lethal radiation-induced damage.  相似文献   

3.
Hypothermic enhancement of the lethal effect of 3.5 Gy of 220-kV X rays in the absence of caffeine as well as in its presence (4 mM) was examined at temperatures between 10 and 34 degrees C in monolayer cultures in the G1 phase of the cell cycle. Correction has been made for the toxicity of low temperatures, and of caffeine at low temperatures, by concomitantly measuring cell killing in unirradiated cells. In the absence of caffeine, incubation of irradiated cells for up to 34 h at temperatures in the range 15 to 30 degrees C (or possibly 34 degrees C) enhances killing compared to that observed at 38 degrees C; the amount of enhancement is about the same throughout this range, but is nil at 10 degrees C. The enhanced killing induced by caffeine at 38 degrees C decreases as the temperature is lowered to 15 degrees C; there is no enhancement at 10 degrees C. Less killing is manifested in the range 15 to 25 degrees C in the presence of caffeine than in its absence. Recovery (loss of sensitivity to caffeine) and fixation of potentially lethal damage were studied in late-S/G2-phase cells at reduced temperatures by delaying treatment with caffeine for increasing times after irradiation. As the temperature is progressively lowered to 20 degrees C, less recovery is manifested after 5 h of incubation; no recovery is detected in the range 10 to 20 degrees C. Despite extensive recovery at 34 degrees C, no fixation is observed at that (or any lower) temperature in G2-phase cells: the cells are able to recover essentially fully when returned to 38 degrees C. In addition, responses of unirradiated control series to incubation at low temperatures appear to differ from those reported by others for longer treatment times of different cell systems.  相似文献   

4.
Repair of potentially lethal damage in x-irradiated HeLa cells   总被引:4,自引:0,他引:4  
  相似文献   

5.
Postirradiation treatment of synchronous HeLa S3 cultures with 4 mM caffeine until greater than or equal to 32 hr after mitotic collection, following exposure to 220-kV X rays at various times during interphase, severely damps the fluctuations in the age-survival curve. Not only does the dose-survival curve essentially lose its shoulder, as reported previously, but it becomes steeper and displays a virtually age-independent terminal slope (D0 congruent to 0.5 Gy). It becomes multicomponent, at least early in the cycle. The residual structure in the interphase age-survival curve, if any, appears to reflect mainly an age-dependent fluctuation in the size of a subpopulation of cells having marked sensitivity to X rays (D0 congruent to 0.25 Gy), though there might be small residual fluctuations in the size of the shoulder and the slope. Mitotic cells also respond to postirradiation treatment with caffeine; they yield a dose-survival curve whose slope is similar to that of the sensitive subpopulation seen in interphase. These findings indicate that most of the structure in the unperturbed age-survival function derives from repair of potentially lethal radiation damage.  相似文献   

6.
The radiation sensitivity and potentially lethal damage recovery (PLDR) capacity of A549 human lung carcinoma cells have been studied. For unfed monolayer cultures, radiation sensitivity was greater in plateau phase than in log phase of growth. PLDR was observed when plateau-phase cells were held in their own spent medium postirradiation, such that the dose-response curve with 24 h holding was similar to that for log-phase cells plated immediately after irradiation. The high PLDR capacity of A549 plateau-phase cells (recovery factor between 40 and 70 for 24 h holding after 10 Gy) was reduced 10-fold or more by alkalinizing the pH of the spent medium immediately after irradiation from a value of 6.5 +/- 0.1 to a value of 7.6. Medium alkalinization resulted in an increase in the rate of glycolysis, with subsequent reacidification to a pH of 7.3 within 2 h of the pH adjustment. No change in cell cycle distribution was observed in the plateau-phase cultures up to 32 h after change of medium pH, and no increase in cell density was found after 48 h. A slight increase in the rate of incorporation of radiolabeled thymidine into acid-precipitable material was observed at 4 and 24 h after alkalinization of the medium. While it is not possible at present to define a mechanism for this pH effect, our results demonstrate that, at least for this cell line, variables such as medium pH and glucose concentration can profoundly influence the observation of PLDR.  相似文献   

7.
8.
9.
10.
Summary The inhibition of recovery from potentially lethal damage and the influence of mutation induction by lactate, pyruvate, novobiocin, and nalidixic acid was studied in the stationary phase of Chinese hamster V79 A cells. Lactate and pyruvate were selected to elucidate their possible involvement in the inhibition of recovery from PLD since high levels of lactate and pyruvate accumulate due to increased aerobic and anaerobic glycolysis in tumours. Effects of novobiocin and nalidixic acid were also studied to elucidate the possible role of an enzyme similar to DNA gyrase in the potentially lethal damage recovery of V79 cells. The inhibition of recovery depends on drug concentration and is complete with 20 mM of lactate and pyruvate and 20 µM of nalidixic acid and novobiocin. The chemicals seem to interfere with an early step in the recovery process. Incubation with novobiocin in a post-irradiation period does not change the mutation frequency significantly whereas lactate and pyruvate demonstrate a slight increase. Cells incubated with nalidixic acid showed a significant increase in mutation frequency at 24 h post-irradiation recovery time.Alexander von Humboldt Fellow: Present address: Department of Bio-Science, H. P. University, Summer-Hill, Simla, India  相似文献   

11.
D Billen 《Radiation research》1987,111(2):354-360
When cells are exposed to ionizing radiation, they suffer lethal damage (LD), potentially lethal damage (PLD), and sublethal damage (SLD). All three forms of damage may be caused by direct or indirect radiation action or by the interaction of indirect radiation products with direct DNA damage. In this report I examine the expression of LD and PLD caused by the indirect action of X rays in isogenic, repair-deficient Escherichia coli. The radiosensitivity of a recA mutant, deficient both in pre- and post replication recombination repair and SOS induction (inducible error-prone repair), was compared to that of a recB mutant which is recombination deficient but SOS proficient and to a previously studied DNA polymerase 1-deficient mutant (polA) which lacks the excision repair pathway. Indirect damage by water radicals (primarily OH radicals) was circumvented by the presence of 2 M glycerol during irradiation. Indirect X-ray damage by water radicals accounts for at least 85% of the PLD found in exposed repair-deficient cells. The DNA polymerase 1-deficient mutant is most sensitive to indirect damage with the order of sensitivity polA1 greater than recB greater than or equal to recA greater than wild type. For the direct effects of X rays the order of sensitivity is recA greater than recB greater than polA1 greater than wild type. The significance of the various repair pathways in mitigating PLD by direct and indirect damage is discussed.  相似文献   

12.
Nicotinamide-adenine dinucleotide (NAD+) is the substrate used by cells in poly(ADP-ribose) synthesis. X-irradiation of log-phase Chinese hamster cells caused a rapid decrease in NAD+ levels which was linearly dependent on radiation dose. The activity of ADP-ribosyl transferase ( ADPRT ) also increased linearly with radiation dose. The decrease of NAD+ was slower, and the increase in ADPRT activity was less pronounced, in a radiation sensitive line, V79- AL162 /S-10. An inhibitor of ADPRT , m-aminobenzamide, largely prevented the depletion of cellular NAD+ and reduced the rate at which ADPRT activity disappeared during post-irradiation incubation. Post-irradiation treatment with hypertonic buffer or with medium containing D2O--which inhibit repair of radiation-induced potentially lethal damage--enhanced the depletion of NAD+ and prevented the reduction in ADPRT activity following irradiation. The characteristics of the effects of treatment with hypertonic buffer on NAD+ metabolism were qualitatively similar to the effects that such treatment has on radiation-induced cell killing. These results suggest that poly(ADP-ribose) synthesis after irradiation plays a role in the repair of potentially lethal damage.  相似文献   

13.
It was shown by the cloning method that radiosensitivity of cells of central zones was lower than that of peripheral zones (D0=6.70 and 2.91 Gy, respectively). Under conditions of recovery from potentially lethal damages radiosensitivity of clonogenic cells of peripheral zones decreased (D0=6.22 Gy) whereas that of cells from central zones changed insignificantly (D0=7.98 Gy).  相似文献   

14.
15.
The action of 5-bromodeoxyuridine on differentiation   总被引:8,自引:0,他引:8  
  相似文献   

16.
Stationary cultures of Ehrlich ascites tumour cells have been irradiated with X-rays and then immediately or after a time interval trep plated to measure the survival. The increase in survival observed after delayed plating is interpreted as repair of potentially lethal damage. A cybernetic model is used to analyse these data. Three states of damage are assumed for the cells. In state A the cells can grow to macrocolonies, in state B the cells have suffered potentially lethal damage and can grow to macrocolonies only if they are allowed to repair the damage and in state C the cells are lethally damaged. A method of deriving the values of the parameters of the model from the experimental data is given. The dependence of the reaction rate constant of the repair of potentially lethal damage on the dose D is used to derive a possible mechanism for the production of the shoulder in the dose effect curve. Finally this model is compared with other models of radiation action on living cells.  相似文献   

17.
Exposure of Chinese hamster cells to near-u.v. light, following the uniform incorporation of 5-bromodeoxyuridine (BrdUrd) into their DNA, resulted in cell killing that was close to exponential. An inhibitor of poly(ADP-ribose) synthesis, 3-aminobenzamide (3-ABA), enhanced the cytotoxic effect of this treatment when present for 2 h at 20 mM after light exposure. The dose modifying factor was 1.4. Under conditions that resulted in a sigmoidal survival curve (a 30 min BrdUrd pulse in S phase, followed 90 min later by light exposure) the effect of 3-ABA was to remove the shoulder of the survival curve with very little change in its final slope. Using various inhibitors of ADP-ribosyl transferase (ADPRT) the enhanced cell killing was found to correlate with the inhibitors' relative potency. Cellular NAD+, the substrate for poly(ADP-ribose) synthesis, was rapidly depleted after exposure. This depletion was largely prevented by 3-ABA; the activity of ADPRT increased with the fluence of near-u.v. light; and the concentration of cellular NAD+ decreased with exposure. ADPRT activity was maximal immediately after exposure to near u.v. light and then decayed to pre-exposure levels within 30 min (37 degrees C). The enhanced cytotoxicity of BrdUrd + near-u.v. light, when followed by 3-ABA treatment, disappeared at a rate similar to that of the decay in ADPRT activity. We conclude from these results that poly(ADP-ribose) synthesis is important for the recovery from BrdUrd photolysis damage in DNA. Because this damage and its repair are relatively specific (e.g. compared to ionizing radiation) and relatively easy to manipulate, it could serve as a model system for the study of the role of poly(ADP-ribose) in the repair of DNA damage.  相似文献   

18.
19.
The survival of synchronized V79 Chinese hamster cells irradiated with near-ultraviolet light after a 1-h labeling with 5-bromodeoxyuridine (BrdUrd) is highly dependent upon the cell's position in the cell cycle at the time of irradiation (Hagan, M., and M. M. Elkind. Biophys. J. 1979. 27:75-86). In this report, we show that cells irradiated in the same S phase after BrdUrd incorporation demonstrate an ability to repair sublethal damage, in contrast to the lack of an increase in survival with dose fractionation in template-labeled cells (Ben-Hur, E., and M. M. Elkind. Mutat. Res. 1972. 14:236-245). In addition, we show that pulse-labeled cells in S phase can repair potentially lethal damage expressed by caffeine. The kinetics of these recovery processes and the absence of a caffeine effect on the repair of sublethal damage indicate that these two processes are to a large degree unrelated. We conclude that in template-labeled cells inadequate time to effect prereplicational repair precludes effective contributions to cell survival from other kinds of DNa repair processes.  相似文献   

20.
Bromouracil labeling of the mitochondrial DNA in exponentially growing HeLa cells produces two hybrid mitochondrial DNA species, with density shifts of 41.9 and 54.0 mg/ml relative to unlabeled mitochondrial DNA, as well as heavy mitochondrial DNA, with a shift of 95.3 mg/ml. The two hybrid species result from the difference in thymine composition of the complementary strands of mitochondrial DNA. In addition, mitochondrial DNA with a density intermediate between the hybrid and unlabeled species was found. This quarter heavy mitochondrial DNA represents 25% (w/w) of the total DNA after eight hours of labeling, and forms two peaks with shifts of 20.6 and 27.0 mg/ml relative to unlabeled mitochondrial DNA. 70% (w/w) of the quarter heavy mitochondrial DNA is in catenated forms, while 30% (w/w) is monomeric. Degradation of the catenanes by shearing of purified quarter heavy mitochondrial DNA results in the appearance of hybrid and unlabeled mitochondrial DNA bands, demonstrating that the quarter heavy catenanes contain both hybrid and unlabeled submolecules. The implications of the structure of the quarter heavy catenanes on the mechanism of formation of catenanes are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号