首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A comparison of the effects of continuous-wave, sinusoidal-amplitude-modulated, and pulsed square-wave-modulated 591-MHz microwave exposures on brain energy metabolism was made in male Sprague-Dawley rats (175-225 g). Brain NADH fluorescence, adenosine triphosphate (ATP) concentration, and creatine phosphate (CP) concentration were determined as a function of modulation frequency. Brain temperatures of animals were maintained between -0.1 and -0.4 degrees C from the preexposure temperature when subjected to as much as 20 mW/cm2 (average power) CW, pulsed, or sinusoidal-amplitude modulated 591-MHz radiation for 5 min. Sinusoidal-amplitude-modulated exposures at 16-24 Hz showed a trend toward preferential modulation frequency response in inducing an increase in brain NADH fluorescence. The pulse-modulated and sinusoidal-amplitude-modulated (16 Hz) microwaves were not significantly different from CW exposures in inducing increased brain NADH fluorescence and decreased ATP and CP concentrations. When the pulse-modulation frequency was decreased from 500 to 250 pulses per second the average incident power density threshold for inducing an increase in brain NADH fluorescence increased by a factor of 4--ie, from about 0.45 to about 1.85 mW/cm2. Since brain temperature did not increase, the microwave-induced increase in brain NADH and decrease in ATP and CP concentrations was not due to hyperthermia. This suggests a direct interaction mechanism and is consistent with the hypothesis of microwave inhibition of mitochondrial electron transport chain function of ATP production.  相似文献   

2.
Rat brain was exposed to 591-MHz, continuous-wave (CW) microwaves at 13.8 or 5.0 mW/cm2 to determine the effect on nicotinamide adenine dinucleotide, reduced (NADH), adenosine triphosphate (ATP) and creatine phosphate (CP) levels. On initiation of the in vivo microwave exposures, fluorimetrically determined NADH rapidly increased to a maximum of 4.0%–12.5% above pre-exposure control levels at one-half minute, then decreased slowly to 2% above control at three minutes, finally increasing slowly to 5% above control level at five minutes. ATP and CP assays were performed on sham- and microwave-exposed brain at each exposure time. At 13.8 mW/cm2, brain CP level was decreased an average of 39.4%, 41.1%, 18.2%, 13.1%, and 36.4% of control at exposure points one-half, one, two three, and five minutes, respectively, and brain ATP concentration was decreased an average of 25.2%, 15.2%, 17.8%, 7.4%, and 11.2% of control at the corresponding exposure periods. ATP and CP levels of rat brain exposed to 591-MHz cw microwaves at 5 mW/cm2 for one-half and one minute were decreased significantly below control levels at these exposure times, but were not significantly different from the 13.8 mW/cm2 exposures. For all exposures, rectal temperature remained constant. Heat loss through the skull aperture caused brain temperature to decrease during the five-minute exposures. This decrease was the same in magnitude for experimental and control subjects. Changes in NADH, ATP, and CP levels during microwave exposure cannot be attributed to general tissue hyperthermia. The data support the hypothesis that microwave exposure inhibits mitochondrial electron transport chain function, which results in decreased ATP and CP levels in brain.  相似文献   

3.
Three key compounds in brain energy metabolism have been measured during and after exposure to continuous wave radiofrequency radiation at 200, 591, and 2,450 MHz. Frequency-dependent changes have been found for all three compounds. Changes in NADH fluorescence have been measured on the surface of a surgically uncovered rat brain during exposure. At 200 and 591 MHz, NADH fluorescence increased in a dose-dependent manner between approximately 1 and 10 mW/cm2, then became constant at higher exposures. There was no effect at 2,450 MHz. Levels of ATP and CP were measured in whole brain after exposure. The ATP levels were decreased at 200 and 591 MHz but not at 2,450 MHz. The CP levels decreased only at 591 MHz. The effect of duration of exposure (up to 5 min) was investigated for all compounds at 200 MHz and 2,450 MHz, and exposures to 20 minutes were examined at 591 MHz. Temperature in the rat brain was essentially constant for all exposures. A general mechanism for inhibition of the mitochondrial electron transport chain and the CP-kinase reaction pathway by radiofrequency radiation has been proposed.  相似文献   

4.
Asynchronously growing V79 cells were assayed for mutation induction following exposure to hyperthermia either immediately before or after being irradiated with 60Co gamma rays. Hyperthermia exposures consisted of either 43.5 degrees C for 30 min or 45 degrees C for 10 min. Each of these heat treatments resulted in a survival level of 42%. For all sequences of combined treatment with hyperthermia and radiation, cell killing by gamma rays was enhanced. Mutation induction by gamma rays was enhanced when heat preceded gamma irradiation, but no increase was observed when heat was given after gamma exposures. Treatment at 45 degrees C for 10 min gave a higher yield in mutants at all gamma doses studied compared to treatment at 43.5 degrees C for 30 min. When heat-treated cells were incubated for different periods before being exposed to gamma rays, thermal enhancement of radiation killing was lost after 24 h. In contrast, only 5-6 h incubation was needed for loss of mutation induction enhancement.  相似文献   

5.
Two inhibitors of poly(ADP-ribose) synthetase, 5-methylnicotinamide and m-methoxybenzamide, enhanced the cytotoxicity of 42 degrees C and 45 degrees C hyperthermia in cultured Chinese hamster V79 cells. The inhibitors showed minimal toxicity for cells treated at 37 degrees C, and did not appreciably alter cellular ATP levels under any of the experimental conditions used. Enhanced cell killing occurred when the inhibitors were added after an acute (5-10 min) 45 degrees C heat shock, and after 50 and 100 min exposures to 42 degrees C. When present during heating at 42 degrees C, the inhibitors reduced the shoulder of the 42 degrees C survival curves but did not appreciably affect the slopes. The results suggest a possible role for poly(ADP-ribose) synthetase in the survival response of V79 cells to hyperthermia.  相似文献   

6.
Sensitization of rat hepatocytes to hyperthermia by calcium   总被引:2,自引:0,他引:2  
The viability of isolated rat hepatocytes, as assayed by trypan blue exclusion, decreases in a dose-dependent fashion during exposure to hyperthermia (D0 [43 degrees C] = 105 +/- 10 min, D0 [45 degrees C] = 24 +/- 4 min). Hyperthermic sensitivity varies as a function of extracellular Ca2+ concentration in a biphasic manner; optimum survival occurs at 1-5 mM Ca2+, with sensitization in the absence of Ca+ and increasing sensitization at Ca2+ concentrations greater than 10 mM. Ca influx does not correlate well with loss of viability for hepatocytes in 4 mM extracellular Ca2+; influx does not occur until viability decreases to less than 1%. Under sensitizing conditions, Ca2+ influx proceeds loss of viability. Influx begins within 15 min at 45 degrees C in 15 mM Ca2+, and the ionophore A23187 is a potent hyperthermic sensitizer in the presence of extracellular Ca2+. Thus, Ca2+ influx, whether caused by high extracellular Ca2+ or A23187, increases cellular damage caused by supraoptimal temperatures, although some Ca2+ is necessary for maximum resistance, probably because of stabilization of Ca2+ binding proteins against thermal denaturation or possibly to Ca2+-induced decrease in lipid fluidity.  相似文献   

7.
A previous paper (Mahler, M. 1978 J. Gen. Physiol. 71:559--580) describes the time-course of the suprabasal rate of oxygen consumption (delta QO2) in the sartorius muscle of R. pipiens after isometric tetani of 0.1--1.0 s at 20 degrees C. To test whether these were the responses to impulse changes in the rate of ATP hydrolysis, we compared the total suprabasal oxygen consumption during recovery (delta[O2]) with the amount of ATP hydrolyzed during a contraction, measured indirectly as the decrease in creatine phosphate (delta[CP]O). If suprabasal ATP hydrolysis during recovery is negligible in comparison with that during contraction, delta[CP]0/delta[O2] should approximate the P:O2 ratio for oxidative metabolism, which has an expected value of 6.1--6.5. We found: formula; see text. We conclude that in this muscle at 20 degrees C: (a) after a tetanus of 0.2--1.0 s, delta QO2(t) can be considered the response to an impulse increase in the rate of ATP hydrolysis; (b) the reversal during recovery of unidentified exothermic reactions occurring during the contraction (Woledge, R. C. 1971. Prog. Biophys. Mol. Biol. 22:39--74) can be coupled to an ATP hydrolysis that is at most a small fraction of delta[CP]0; (c) the pooled mean for delta[CP]0/delta[O2], 6.58 +/- 0.55, sets an experimental lower bound for the P:O2 ratio in vivo.  相似文献   

8.
Effects of hyperthermia on the intracellular calcium concentration (Cai) of an established mouse breast cancer cell line, MMT060562, were studied using fura-2 fluorescence microscopy and the whole-cell clamp technique. A sudden change of temperature from 37 to 45 degrees C induced a transient increase in the fluorescence ratio permeability of the cell membrane and inward current. Deletion of extracellular calcium abolished the fluorescence ratio response to the rise in temperature. Cai of some cells increased after hyperthermia treatment at 44-48 degrees C for 20 min, but the average increase of Cai was negligible. After hyperthermia treatment, spontaneous oscillation of Cai, chemical responses to ATP and bradykinin and the mechanically-induced spreading response diminished. However, the mechanically induced increase of Cai within the stimulated cell remained even after hyperthermia treatment. Suppression of the ATP-induced Cai response recovered to about half the original level within 12 h. Blockage of protein synthesis with cycloheximide (100 microM) had no effect on the recovery. The D-myo-inositol 1,4,5-triphosphate (IP3)-dependent increase of Cai remained intact even after hyperthermia treatment. It is concluded that hyperthermia treatment increases both the permeability of the cell membrane and Cai, but decreases the sensitivity of cells to ATP and bradykinin, presumably due to modification of the signal transduction mechanism.  相似文献   

9.
The muscle contents of high-energy phosphates and their derivatives [ATP, ADP, AMP, creatine phosphate (CrP), and creatine], glycogen, some glycolytic intermediates, pyruvate, and lactate were compared in 11 dogs performing prolonged heavy exercise until exhaustion (at ambient temperature 20.0 +/- 1.0 degrees C) without and with trunk cooling using ice packs. Without cooling, dogs were able to run for 57 +/- 8 min, and their rectal (Tre) and muscle (Tm) temperatures increased to 41.8 +/- 0.2 and 43.0 +/- 0.2 degrees C, respectively. Compared with noncooling, duration of exercise with cooling was longer by approximately 45% while Tre and Tm at the time corresponding to the end of exercise without cooling were lower by 1.1 +/- 0.2 and 1.2 +/- 0.2 degrees C, respectively. The muscle contents of high-energy phosphates (ATP + CrP) decreased less, the rate of glycogen depletion was lower, and the increases in the contents of AMP, pyruvate, and lactate as well as in the muscle-to-blood lactate ratio were smaller. The muscle content of lactate was positively correlated with Tm. The data indicate that with higher body temperature equilibrium between high-energy phosphate breakdown and resynthesis was shifted to the lower values of ATP and CrP and glycolysis was accelerated. The results suggest that hyperthermia developing during prolonged muscular work exerts an adverse effect on muscle metabolism that may be relevant to limitation of endurance.  相似文献   

10.
Thermal reactions were investigated in rabbits: blood plasma donors running on treadmill to exhaustion and resting blood plasma recipients. Blood plasma was infused in the ear's vein and in the third brain ventricle cavity. Small elevation of body cork temperature (0.3-0.4 degree C) with the latent period 40-50 min was found on plasma infusion in the ear's vein of recipient. Plasma perfusion through the third brain ventricle of the recipient caused two peaks of nearly the same amplitude (0.8-1.0 degrees C) in body core temperature. The second peak, which was registered in 12-15 min after the perfusion began, was induced, as the authors suggest, by the accumulation of "work factor" of thermoregulation in donor's plasma during muscular work. Humoral regulation of working hyperthermia is discussed.  相似文献   

11.
The effect of elevated temperature on transmembrane potential was studied in Chinese hamster ovary cells in vitro using tetraphenylphosphonium cation (TPP+) and 3,3'-dipentyloxacarbocyanine [Di-O-C5(3)], two unrelated lipophilic cation probes that equilibrate across the plasma membrane according to the transmembrane potential. Uptake of TPP+ was measured using a tritium-labeled probe and the uptake of the fluorescent probe Di-O-C5(3) was measured by flow cytometry. The Nernst equation was used to calculate transmembrane potential. The absolute values obtained for transmembrane potential at 37 degrees C using the two probes were different, but qualitatively similar results were obtained using either probe in the hyperthermia studies. Transmembrane potential measured at 43 and 45 degrees C was at least 20% higher than that measured at 37 degrees C, and the difference was statistically significant (P = 0.025 and P less than 0.01, respectively). The hyperpolarization induced by exposure to 45 degrees C persisted temporarily after cells had been returned to 37 degrees C. The hyperpolarization at 37 degrees C associated with a previous exposure to hyperthermia was maximal after cells had been held at 45 degrees C for 2.0 min, and fell to normal levels after 15.0 min at 37 degrees C.  相似文献   

12.
【目的】针对活性污泥法中的重要参数ATP进行研究分析,通过在不同条件下检测污泥的活性,得出以ATP为指标的污泥活性状态,为准确判定活性污泥的活性提供依据。【方法】分别运用三氯乙酸(TCA)提取法及微波提取法检测活性污泥中的ATP,并对检测ATP的影响因素(TCA浓度、冰浴时间、p H、微波频率及时间等)进行探讨与优化。【结果】运用TCA提取法检测ATP时,在1.0%-7.0%的TCA体积百分数内,活性污泥中TCA最佳体积百分数为2.5%;在2-60 min的冰浴时间内,最佳冰浴时间为10 min;三羟甲基丙烷-乙二胺四乙酸(Tris-EDTA)缓冲液的最佳p H 7.5;运用微波提取法检测ATP适宜的微波辐射条件为:功率800 W,辐射时间15 s。【结论】TCA提取法和微波提取法均可以检测活性污泥中的ATP,但与微波提取法相比,TCA提取法更能保证从细胞内释放出来的ATP的完整性,因此TCA提取法更适合用于检测活性污泥中的ATP。  相似文献   

13.
A detailed understanding of how bone marrow stem cell progenitors are affected by heat is prerequisite to predicting how whole-body or regional hyperthermia protocols may affect bone marrow function. This investigation reports the reproductive integrity of murine tibial bone marrow granulocyte-macrophage colony-forming units (CFU-GM) after in situ hyperthermia. Heat was applied by water bath immersion of the leg of male BALB/c mice anesthetized with 90 mg/kg pentobarbital given subcutaneously. Tibial and rectal temperatures were monitored in representative animals by microthermocouples (tip diameter approximately 100 microns). By approximately 3 min after immersion of the limb, marrow temperature was within 0.3 degree C of water bath temperature (O'Hara et al., Int. J. Hyperthermia 5, 589-601, 1989) and was within 0.1 degree C by 5 min after immersion. The CFU-GM were cultured in "lung-conditioned" McCoy's 5A medium supplemented with 15% fetal calf serum and 0.3% Bacto agar. In situ heating of tibial marrow to exposure temperatures of 42, 42.5, 43, 44, and 45 degrees C gave D0's (+/- 95% CI) of 91 +/- 44, 44 +/- 27, 27 +/- 2.2, 16 +/- 6, and 7 +/- 4 min, respectively. Heating to 41.5 degrees C for up to 180 min did not result in cytotoxicity. Development of thermotolerance after approximately 100 min of heating was apparent by the presence of a "resistant tail" of the 42 degrees C survival curve. A plot of D0 vs water bath temperature was bimodal with an inflection point at approximately 42.5 degrees C. The inactivation enthalpy for temperatures above 42.5 degrees C was 586 kJ/mol (140 kcal/mol) and for temperatures below 42.5 degrees C was estimated to be 1205 kJ/mol (288 kcal/mol). These results show that CFU-GM can be heated predictably in situ, can be inactivated with thermal exposures as low as 42 degrees C, and are capable of developing thermotolerance. These findings underscore the necessity to understand stem cell inactivation by hyperthermia in situ prior to widespread implementation of clinical hyperthermia protocols where bone marrow may be included in the treatment field.  相似文献   

14.
P P Lin  G M Hahn 《Radiation research》1988,113(3):501-512
Chinese hamster ovary HA-1 cells were tested for their ability to respond to mitogenic stimulation after hyperthermia at 45 degrees C. Cells were arrested by 24 h incubation in serum-free Eagle's MEM. Heating of arrested cells in serum-free medium did not alter heat sensitivity compared to exponentially growing cells heated in serum-containing medium. After hyperthermia cells exhibited a delay in the ability to undergo mitogenesis. Recovery of the capacity for mitogenesis occurred during the 24 h following heating and was able to take place in the absence of serum. After recovery in serum-free medium, cells were simultaneously assayed for survival and mitogenesis as measured by [3H]Thy uptake. With increasing heating time, surviving fraction and mitogenesis decreased. The reduction in survival was similar to the reduction in [3H]Thy incorporation. The relationship between mitogenesis and cell death was studied in more detail with flow cytometry. At a relatively mild heat dose of 30 min at 45 degrees C (survival = 30%), a small population of cells (9%) was found to be clonogenically dead yet capable of being stimulated to progress from G1 to G2-M. At a more severe heat dose of 40 min at 45 degrees C (survival = 3%), stimulation of dead cells could not be detected. Therefore, hyperthermia impairs mitogenic ability, but at low heat doses, a subpopulation of killed cells can still be stimulated to progress through the cell cycle.  相似文献   

15.
The effect of hyperthermia on radiation-induced carcinogenesis   总被引:1,自引:0,他引:1  
Ten groups of mice were exposed to either a single (30 Gy) or multiple (six fractions of 6 Gy) X-ray doses to the leg. Eight of these groups had the irradiated leg made hyperthermic for 45 min immediately following the X irradiation to temperatures of 37 to 43 degrees C. Eight control groups had their legs made hyperthermic with a single exposure or six exposures to heat as the only treatment. In mice exposed to radiation only, the postexposure subcutaneous temperature was 36.0 +/- 1.1 degrees C. Hyperthermia alone was not carcinogenic. At none of the hyperthermic temperatures was the incidence of tumors in the treated leg different from that induced by X rays alone. The incidence of tumors developing in anatomic sites other than the treated leg was decreased in mice where the leg was exposed to hyperthermia compared to mice where the leg was irradiated. A systemic effect of local hyperthermia is suggested to account for this observation. In mice given single X-ray doses and hyperthermia, temperatures of 37, 39, or 41 degrees C did not influence radiation damage as measured by the acute skin reactions. A hyperthermic temperature of 43 degrees C potentiated the acute radiation reaction (thermal enhancement factor 1.1). In the group subjected to hyperthermic temperatures of 37 or 39 degrees C and X rays given in six fractions, the skin reaction was no different from that of the group receiving X rays alone. Hyperthermic temperatures of 41 and 43 degrees C resulted in a thermal enhancement of 1.16 and 1.36 for the acute skin reactions. From Day 50 to Day 600 after treatment, the skin reactions showed regular fluctuations with a 150-day periodicity. Following a fractionated schedule of combined hyperthermia and X rays, late damage to the leg was less than that following X irradiation alone. Mice subjected to X rays and hyperthermic temperatures of 41 and 43 degrees C had a lower median survival time than the mice treated with hyperthermia alone. This effect was not associated with tumor incidence.  相似文献   

16.
S S David  B E Haley 《Biochemistry》1999,38(26):8492-8500
Creatine kinase (CK) will autoincorporate radiolabel from [gamma32P]ATP and has thus been reported to be autophosphorylated. Also, in contrast to normal brain enzyme, CK in Alzheimer-diseased brain homogenate shows greatly decreased activity, abolished photolabeling with [32P]8N3ATP, and no detectable autoincorporation of radiolabel by [gamma32P]ATP. Surprisingly, our studies with both human brain and purified CK showed that [alpha32P]ATP, [gamma32P]ATP, [alpha32P]ADP, [2,8H3]ATP, [gamma32P]2',3'-O-(2,4, 6-trinitrophenyl)-ATP, and [gamma32P]benzophenone-gammaATP all autoincorporate radiolabel into CK with good efficiency. This demonstrates that the gamma-phosphate and the 2' and 3' hydroxyls are not involved in the covalent linkage and that all three phosphates, the ribose and base of the ATP molecule are retained upon autoincorporation (nucleotidylation). Treatment with NaIO3 to break the 2'-3' linkage effected total loss of radiolabel indicating that nucleotidylation resulted in opening of the ribose ring at the C1' position. Nucleotidylation with increasing [alpha32P]ATP at 37 degrees C gives an approximate k0.5 of 125 microM and saturates at 340 microM nucleotide. Modification of 8-10% of the copy numbers occurs at saturation, and CK activity is inhibited to approximately the same degree. Low micromolar levels of native substrates such as ADP, ATP, and phosphocreatine substantially reduce [alpha32P]ATP nucleotidylation. In contrast, AMP, GTP, GMP, NADH, and creatine did not effectively reduce nucleotidylation. When [alpha32P]ATP-nucleotidylated or [alpha32P]8N3ATP-photolabeled CK is treated with trypsin a single, identical radiolabeled peptide (V279-R291) is generated that comigrates on reverse phase HPLC and Tris-tricine electrophoresis. Nucleotidylation into this peptide was prevented 86% by the presence of ATP. We conclude that CK is nucleotidylated within the active site by modification at the C1'position and that autophosphorylation of this enzyme does not occur.  相似文献   

17.
Cellular RNA in Chinese hamster ovary (CHO) cells synchronized in mitosis (M) or G2 phase, as well as in interphase cells subjected to hyperthermia (42 degrees C, 10 min), was stained with acridine orange (AO), ethidium bromide (EB), or pyronin Y (PY) and the resultant fluorescence was measured by flow cytometry. Total RNA content detected after staining with AO increased in M as compared to G2-phase cells, consistent with continued RNA synthesis during G2 phase. The content of double-stranded RNA, stained with EB (after DNase treatment), was also somewhat higher in M cells. In contrast, the stainability of RNA with PY decreased by 27% in M- compared to G2-phase cells. Furthermore, a decrease in stainability of RNA with PY was observed in G2 cells compared to cells in G1 phase. In separate experiments, RNA stainability with AO or EB was generally unaffected when interphase CHO cells were exposed to 42 degrees C for 10 min, though this same treatment resulted in a 26% decrease in RNA stainability with PY. The decreased PY stainability of cellular RNA in M or heat-treated cells was observed at a relatively narrow range of dye concentration (1.0-2.0 micrograms/ml). The observed hypochromicity of RNA coincides with dissociation of polyribosomes into single ribosomes known to occur during mitosis and following exposure to hyperthermia. It is presumed that the phenomenon involves selective denaturation and condensation of ribosomal (r) RNA by PY in single ribosomes which does not occur in polyribosomes. While the molecular mechanisms responsible for stabilization of rRNA in polyribosomes preventing its denaturation and condensation by PY are unknown, PY appears to be a sensitive probe that can be used to detect and study these changes in rRNA confirmation in situ.  相似文献   

18.
Thermoregulation and the hypoxic ventilatory response are modulated by histamine type-1 (H1) receptors in the brain. In this study, we tested the hypothesis that activation of H1 receptors is required for the thermal control of ventilation during normoxia and hypoxia, using conscious male wild-type and H1 receptor-knockout (H1RKO) mice (Mus musculus). Under normoxic conditions, hyperthermia (39 degrees C) decreased minute ventilation (V (E)) and oxygen consumption [Formula: see text] in both genotypes, suggesting that H1 receptors are not involved in thermal ventilatory control during normoxia. Pa(CO2) was unchanged in both hyperthermia and normothermia, suggesting that the thermal decrease in V (E) is optimized by metabolic demand. Acute hypoxic gas exposure (7% O(2)+3% CO(2) in N(2)) increased, and then decreased, V (E) in wild-type mice; this increase was augmented and sustained by hyperthermia. Hypoxic gas exposure reduced [Formula: see text] and [Formula: see text] in wild-type mice at both body temperatures; the reduced [Formula: see text] during combined hyperthermia and hypoxia was higher than during normothermia and hypoxia. In H1RKO mice, hyperthermia did not augment the V (E) response to hypoxia, and did not affect [Formula: see text] and [Formula: see text] during hypoxia. In conclusion, histamine participates in the thermal increase of ventilation during hypoxia by activating H1 receptors.  相似文献   

19.
Ohtsubo, T., Igawa, H., Saito, T., Matsumoto, H., Park, H. J., Song, C. W., Kano, E. and Saito, H. Enhancement of Cell Killing by Induction of Apoptosis after Treatment with Mild Hyperthermia at 42 degrees C and Cisplatin. Radiat. Res. 156, 103-109 (2001).We examined the interactive effects of cisplatin (1.0 microg/ml) combined with hyperthermia on cell killing and on the induction of apoptosis in IMC-3 human maxillary carcinoma cells. The cytotoxic effects of hyperthermia on IMC-3 cells at 44 degrees C were greater than at 42 degrees C, as has been reported for many other cells. The induction of apoptosis, DNA fragmentation and poly(ADP-ribose) polymerase cleavage were greater after hyperthermia at 44 degrees C for 30 min compared with treatment at 42 degrees C for 105 min, even though both of these heat doses were isoeffective in reducing cell survival to 50%. Treatment with cisplatin at 37 degrees C for up to 120 min did not result in cytotoxicity or the induction of apoptosis. The enhancement ratio for treatment with cisplatin at 42 degrees C was greater than that at 44 degrees C. More apoptosis was induced after the treatment with cisplatin at 42 degrees C compared to treatment with cisplatin at 44 degrees C. Taking these findings together, the combination of cisplatin and hyperthermia at 42 degrees C appeared to be more effective than cisplatin with hyperthermia at 44 degrees C for the induction of apoptosis in IMC-3 cells.  相似文献   

20.
Effects of hyperthermia (42.5 degrees C) and gamma radiation (30 Gy) on ADP-ribosyl transferase, NAD+, and ATP pools in human mononuclear leukocytes have been investigated. It was found that the gamma-ray activation level of the enzyme was not influenced by this hyperthermia for 45 min. Following deprivation of ATP synthesis by 2,4-dinitrophenol, an uncoupler of the oxidative phosphorylation, and omitting glucose from the culture medium, the NAD+ pool was reduced to about 60% of control value. The potentiation of ATP production by exogenously supplied adenosine was reduced after a combined treatment of the cells with hyperthermia and gamma radiation. Mitochondrial and endoplasmic changes within the mononuclear leukocytes were also observed. Based on these findings a model for the hyperthermia effect is proposed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号