首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Genome-Wide Association Studies (GWAS) have identified Fibroblast growth factor receptor 2 (FGFR2) as a candidate gene for breast cancer with single nucleotide polymorphisms (SNPs) located in intron 2 region as the susceptibility loci strongly associated with the risk. However, replicate studies have often failed to extrapolate the association to diverse ethnic regions. This hints towards the existing heterogeneity among different populations, arising due to differential linkage disequilibrium (LD) structures and frequencies of SNPs within the associated regions of the genome. It is therefore important to revisit the previously linked candidates in varied population groups to unravel the extent of heterogeneity. In an attempt to investigate the role of FGFR2 polymorphisms in susceptibility to the risk of breast cancer among North Indian women, we genotyped rs2981582, rs1219648, rs2981578 and rs7895676 polymorphisms in 368 breast cancer patients and 484 healthy controls by Polymerase chain reaction-Restriction fragment length polymorphism (PCR-RFLP) assay. We observed a statistically significant association with breast cancer risk for all the four genetic variants (P<0.05). In per-allele model for rs2981582, rs1219648, rs7895676 and in dominant model for rs2981578, association remained significant after bonferroni correction (P<0.0125). On performing stratified analysis, significant correlations with various clinicopathological as well as environmental and lifestyle characteristics were observed. It was evident that rs1219648 and rs2981578 interacted with exogenous hormone use and advanced clinical stage III (after Bonferroni correction, P<0.000694), respectively. Furthermore, combined analysis on these four loci revealed that compared to women with 0–1 risk loci, those with 2–4 risk loci had increased risk (OR = 1.645, 95%CI = 1.152–2.347, P = 0.006). In haplotype analysis, for rs2981578, rs2981582 and rs1219648, risk haplotype (GTG) was associated with a significantly increased risk compared to the common (ACA) haplotype (OR = 1.365, 95% CI = 1.086–1.717, P = 0.008). Our results suggest that intron 2 SNPs of FGFR2 may contribute to genetic susceptibility of breast cancer in North India population.  相似文献   

2.
A search for association of polymorphisms in loci rs2981582, rs2420946, rs17102287, rs1219648, rs2981578, and rs17542768 in fibroblast growth factor receptor 2 (FGFR2) gene was performed using the “case-control” method among the major ethnic groups of Kazakhstan. Restriction fragments length polymorphism analysis of DNA obtained from 495 Kazakh and 195 Russian women with breast cancer (BC) revealed no statistically significant differences compared with the control group (190 Kazakhs, 170 Russians). An assessment of combination associations of alleles and genotypes (patterns) with BC was performed using the APSampler algorithm. Association of risk type (OR > 1.4; P Fischer < 0.05; P permutation < 0.05) in the Kazakh group identified two patterns, including allele C at site rs2420946, while the T allele was present in four protective patterns (OR < 0.70). No significant association of the examined polymorphisms with BC risk in the Russian group was revealed.  相似文献   

3.
Chen F  Lv M  Xue Y  Zhou J  Hu F  Chen X  Zhao Z  Li Y  Wang X 《Immunogenetics》2012,64(1):71-76
Fibroblast growth factor receptor 2 (FGFR2), a recently described risk factor for breast cancer, plays important roles in cell growth, invasiveness, motility, and angiogenesis. In attempt to investigate whether FGFR2 polymorphisms are associated with a risk of breast cancer in Chinese women of the Han nationality, we genotyped single-nucleotide polymorphisms (SNPs) of seven FGFR2 sites (rs2981582, rs17102287, rs17542768, rs10510097, rs11200012, rs3750817, rs2981578) in 816 women including 388 breast cancer patients and 428 healthy controls via the polymerase chain reaction single-strand conformation polymorphism procedure as well as sequence detection. Our results suggest that the A allele and AA genotype of SNP rs2981578 appear to be protective factors associated with breast cancer, while the CT genotype of SNP rs3750817 is a putative risk factor.  相似文献   

4.
Germline mutations in BRCA1 and BRCA2 confer high risks of breast cancer. However, evidence suggests that these risks are modified by other genetic or environmental factors that cluster in families. A recent genome-wide association study has shown that common alleles at single nucleotide polymorphisms (SNPs) in FGFR2 (rs2981582), TNRC9 (rs3803662), and MAP3K1 (rs889312) are associated with increased breast cancer risks in the general population. To investigate whether these loci are also associated with breast cancer risk in BRCA1 and BRCA2 mutation carriers, we genotyped these SNPs in a sample of 10,358 mutation carriers from 23 studies. The minor alleles of SNP rs2981582 and rs889312 were each associated with increased breast cancer risk in BRCA2 mutation carriers (per-allele hazard ratio [HR] = 1.32, 95% CI: 1.20-1.45, p(trend) = 1.7 x 10(-8) and HR = 1.12, 95% CI: 1.02-1.24, p(trend) = 0.02) but not in BRCA1 carriers. rs3803662 was associated with increased breast cancer risk in both BRCA1 and BRCA2 mutation carriers (per-allele HR = 1.13, 95% CI: 1.06-1.20, p(trend) = 5 x 10(-5) in BRCA1 and BRCA2 combined). These loci appear to interact multiplicatively on breast cancer risk in BRCA2 mutation carriers. The differences in the effects of the FGFR2 and MAP3K1 SNPs between BRCA1 and BRCA2 carriers point to differences in the biology of BRCA1 and BRCA2 breast cancer tumors and confirm the distinct nature of breast cancer in BRCA1 mutation carriers.  相似文献   

5.
Fibroblast growth factor receptor 2 is a protein encoded by FGFR2 gene and plays an important role in cellular growth. This study was conducted to investigate a potential association of FGFR2 rs2981582 with breast cancer. DNA was obtained from 137 Formalin-fixed, paraffin-embedded tumors and 98 normal breast tissue samples. Genotypes were carried out with PCR-RFLP. The odds ratio and 95% confidence interval (CI) were used to evaluate the power of the associations. A significant association between FGFR2 rs2981582 C allele and susceptibility to breast cancer was found (p-value < 0.0001, Odds Ratio = 2.3, %95 CI (1.5–3.0). No significant differences in FGFR2 rs2981582 genotypes and alleles distribution among breast patients with different hormonal receptor status (p > 0.05) were detected. However, a significant difference was found in genotypes and alleles distribution in ER+, PR- and HER2 between breast cancer cases and controls. This study showed an association of FGFR2 rs2981582T/C with breast cancer in Saudi women, further large study is required to validate the results.  相似文献   

6.
To evaluate the potential for gene-gene interaction effects in sporadic breast cancer (BC) risk, we studied combinations of the fibroblast growth factor receptor 2 (FGFR2) rs1219648 and tumor protein 53 (TP53) rs1042522, rs1625895, and rs17878362 polymorphisms in BC patients (n=388) and healthy persons (n=275). In addition to a single-locus effect manifested by the association of FGFR2 rs1219648 and TP53 rs1042522 polymorphisms with high BC risk, depending on menopause status (0.001相似文献   

7.
A three-stage genome-wide association study recently identified single nucleotide polymorphisms (SNPs) in five loci (fibroblast growth receptor 2 (FGFR2), trinucleotide repeat containing 9 (TNRC9), mitogen-activated protein kinase 3 K1 (MAP3K1), 8q24, and lymphocyte-specific protein 1 (LSP1)) associated with breast cancer risk. We investigated whether the associations between these SNPs and breast cancer risk varied by clinically important tumor characteristics in up to 23,039 invasive breast cancer cases and 26,273 controls from 20 studies. We also evaluated their influence on overall survival in 13,527 cases from 13 studies. All participants were of European or Asian origin. rs2981582 in FGFR2 was more strongly related to ER-positive (per-allele OR (95%CI)=1.31 (1.27–1.36)) than ER-negative (1.08 (1.03–1.14)) disease (P for heterogeneity=10−13). This SNP was also more strongly related to PR-positive, low grade and node positive tumors (P=10−5, 10−8, 0.013, respectively). The association for rs13281615 in 8q24 was stronger for ER-positive, PR-positive, and low grade tumors (P=0.001, 0.011 and 10−4, respectively). The differences in the associations between SNPs in FGFR2 and 8q24 and risk by ER and grade remained significant after permutation adjustment for multiple comparisons and after adjustment for other tumor characteristics. Three SNPs (rs2981582, rs3803662, and rs889312) showed weak but significant associations with ER-negative disease, the strongest association being for rs3803662 in TNRC9 (1.14 (1.09–1.21)). rs13281615 in 8q24 was associated with an improvement in survival after diagnosis (per-allele HR=0.90 (0.83–0.97). The association was attenuated and non-significant after adjusting for known prognostic factors. Our findings show that common genetic variants influence the pathological subtype of breast cancer and provide further support for the hypothesis that ER-positive and ER-negative disease are biologically distinct. Understanding the etiologic heterogeneity of breast cancer may ultimately result in improvements in prevention, early detection, and treatment.  相似文献   

8.
9.
《Cancer epidemiology》2014,38(6):708-714
PurposePhysical activity, a protective factor for breast cancer, increases the level of DNA methylation. Fibroblast growth factor receptor 2 (FGFR2), a confirmed breast cancer susceptibility gene, is predisposed to be methylated. Therefore, DNA methylation related genes, such as methylenetetrahydrofolate reductase (MTHFR), methionine synthase (MTR), and DNA methyltransferase (DNMT), together with physical activity and FGFR2, may interact with each other to effect breast cancer risk.MethodsA total of 839 incident breast cancer cases and 863 age-matched controls from Guangzhou, China were included in this study. We used questionnaires to assess physical activity in metabolic equivalent (MET)-h/week/year and a matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) mass spectrometry platform to ascertain genotypes. Odds ratios (OR) and 95% confidence intervals (CI) were calculated from logistic regression models.ResultsExercise activity and FGFR2 rs2981582 were confirmed to be associated with breast cancer risk, and were found to significantly interact (P for multiplicative and additive interactions = 0.045 and 0.021, respectively). Women who had CT/TT genotypes of FGFR2 rs2981582 and experienced exercise activity <3 MET-h/week/year had significantly increased risk (OR = 3.15, 95% CI = 2.28–4.35) compared to women with CC genotype and ≥3 MET-h/week/year. There was also a significant interaction between FGFR2 rs2981582 and MTHFR rs1801133 on breast cancer risk (P for multiplicative and additive interactions = 0.039 and 0.023, respectively).ConclusionWe found both a gene–environment (FGFR2-exercise activity) and a gene–gene (FGFR2MTHFR) interaction on breast cancer risk. Our results suggest that environmental factors, such as physical activity, may be able to counteract genetic susceptibility to breast cancer.  相似文献   

10.
11.
MicroRNAs (miRNA) regulate breast biology by binding to specific RNA sequences, leading to RNA degradation and inhibition of translation of their target genes. While germline genetic variations may disrupt some of these interactions between miRNAs and their targets, studies assessing the relationship between genetic variations in the miRNA network and breast cancer risk are still limited, particularly among women of African ancestry. We systematically put together a list of 822 and 10,468 genetic variants among primary miRNA sequences and 38 genes in the miRNA biogenesis pathway, respectively; and examined their association with breast cancer risk in the ROOT consortium which includes women of African ancestry. Findings were replicated in an independent consortium. Logistic regression was used to estimate the odds ratio (OR) and 95 % confidence intervals (CI). For overall breast cancer risk, three single-nucleotide polymorphisms (SNPs) in miRNA biogenesis genes DROSHA rs78393591 (OR = 0.69, 95 % CI: 0.55–0.88, P = 0.003), ESR1 rs523736 (OR = 0.88, 95 % CI: 0.82–0.95, P = 3.99 × 10?4), and ZCCHC11 rs114101502 (OR = 1.33, 95 % CI: 1.11–1.59, P = 0.002), and one SNP in primary miRNA sequence (rs116159732 in miR-6826, OR = 0.74, 95 % CI: 0.63–0.89, P = 0.001) were found to have significant associations in both discovery and validation phases. In a subgroup analysis, two SNPs were associated with risk of estrogen receptor (ER)-negative breast cancer, and three SNPs were associated with risk of ER-positive breast cancer. Several variants in miRNA and miRNA biogenesis pathway genes were associated with breast cancer risk. Risk associations varied by ER status, suggesting potential new mechanisms in etiology.  相似文献   

12.
MicroRNAs (miRNAs) play an important role as epigenetic regulators in cancer initiation and progression. One of the mechanisms of miRNA dysregulation is altered functioning of proteins involved in miRNA processing machinery. It has been suggested that single nucleotide polymorphisms (SNPs) within miRNA gene regions, miRNA target genes, and miRNA machinery genes may affect the miRNAs regulation. We selected 25 SNPs in the key genes of miRNA biosynthesis, including DROSHA/RNASEN, DGCR8, DICER1, XPO5, RAN, PIWIL1/HIWI, AGO1/EIF2C1, AGO2, GEMIN4, GEMIN3/DDX20, and DDX5, and investigated the association between these SNPs and the risk of breast cancer. The total number of breast cancer cases and cancer-free controls enrolled in the investigation were 778 (417 breast cancer patients and 361 healthy women). We found that rs11060845 and rs10773771 in the PIWIL1 gene, rs3809142/RAN, rs10719/DROSHA, rs1640299/DGCR8, rs563002/DDX20, rs595055/AGO1, and rs2740348/GEMIN4 were associated with breast cancer risk in Russians.  相似文献   

13.
The molecular-genetic testing of the polymorphic rs2981579 (C>T) locus of the FGFR2 gene as the marker of increased predisposition to the development of mesial occlusion was carried out in 110 patients with mesial occlusion and 103 general-population control subjects from Ukraine. It was shown that polymorphism rs2981579 in gene FGFR2 is associated with mesial occlusion (OR = 1.67, 95% CI = 1.14–2.45, p = 0.009). Compared to CC carriers, TT+CT carriers had a 3.21-fold higher risk of mesial occlusion (95% CI = 1.57–6.57, p = 0.001). We found the protective effect of the homozygous allele C on mesial occlusion development (OR = 0.31, p = 0.001). This is the first published data on FGFR2 polymorphisms rs2981579 (C>T) in patients with mesial occlusion.  相似文献   

14.
The development of ischemic stroke is associated with advanced age. Telomere length, as a marker of biological aging, has been reported to influence the risk of several age-related diseases, including ischemic stroke. Recent studies have identified the genetic variant within ACYP2 and TSPYL6 associated with shorter telomere length. The objective of this study is to investigate the putative association of ischemic stroke with common polymorphisms in ACYP2 and TSPYL6 genes in a Chinese Han population. We found that the risk alleles of six single nucleotide polymorphisms (SNPs), including rs11125529, rs12615793, rs843711, rs11896604, and rs843706 within both ACYP2 and TSPYL6, and rs17045754 in ACYP2 gene, were related with increased risk of ischemic stroke according to both allelic and genotype association analyses. The significant correlations between ACYP2 and TSPYL6 SNPs and ischemic stroke risk were also observed in dominant, recessive, and additive models, respectively. Two blocks in high linkage disequilibrium were identified in this study, and two haplotypes were associated with higher ischemic stroke susceptibility. In conclusion, the genetic polymorphisms of ACYP2 and TSPYL6 are associated with increased risk of developing ischemic stroke. Further studies with larger sample sizes are required to validate our findings.  相似文献   

15.

Background

Breast cancer is reported to cause the highest mortality among female cancer patients. Previous studies have explored the association of silent mating-type information regulator 2 homolog 1 (SIRT1) gene expression with prognosis in breast cancer. However, no studies exist, so far, on the role of SIRT1 gene polymorphism in breast cancer risk or prognosis. The present study aimed to assess the association between SIRT1 gene polymorphisms and breast cancer in Egyptians.

Methods

The study comprised 980 Egyptian females divided into a breast cancer group (541 patients) and a healthy control group (439 subjects). SIRT1 gene single nucleotide polymorphisms (SNPs) rs3758391, rs3740051 and rs12778366 were genotyped using real-time polymerase chain reaction (RT-PCR). Allelic and genotypic frequencies were determined in both groups and association with breast cancer and clinicopathological characteristics was assessed.

Results

Breast cancer patients exhibited elevated serum SIRT1 levels which varied among different tumor grades. SIRT1 rs3758391 and rs12778366 TT genotypes were more frequent, exhibited higher SIRT1 levels than CC and CT genotypes and were associated with histologic grade and lymph node status. SIRT1 rs12778366 TT genotype also correlated with negative estrogen receptor (ER) and progesterone receptor (PR) statuses. The T allele frequency for both SNPs was higher in breast cancer patients than in normal subjects. Combined GG and AG genotypes of rs3740051 were more frequent, showed higher serum SIRT1 levels than the AA genotype, and were associated with ER and PR expression. Furthermore, inheritance of the G allele was associated with breast cancer.

Conclusions

Our findings reveal that rs3758391 and rs12778366 polymorphisms of SIRT1 gene are associated with breast cancer risk and prognosis in the Egyptian population.  相似文献   

16.
The ability to establish genetic risk models is critical for early identification and optimal treatment of breast cancer. For such a model to gain clinical utility, more variants must be identified beyond those discovered in previous genome-wide association studies (GWAS). This is especially true for women at high risk because of family history, but without BRCA1/2 mutations. This study incorporates three datasets in a GWAS analysis of women with Ashkenazi Jewish (AJ) homogeneous ancestry. Two independent discovery cohorts comprised 239 and 238 AJ women with invasive breast cancer or preinvasive ductal carcinoma in situ and strong family histories of breast cancer, but lacking the three BRCA1/2 founder mutations, along with 294 and 230 AJ controls, respectively. An independent, third cohort of 203 AJ cases with familial breast cancer history and 263 healthy controls of AJ women was used for validation. A total of 19 SNPs were identified as associated with familial breast cancer risk in AJ women. Among these SNPs, 13 were identified from a panel of 109 discovery SNPs, including an FGFR2 haplotype. In addition, six previously identified breast cancer GWAS SNPs were confirmed in this population. Seven of the 19 markers were significant in a multivariate predictive model of familial breast cancer in AJ women, three novel SNPs [rs17663555(5q13.2), rs566164(6q21), and rs11075884(16q22.2)], the FGFR2 haplotype, and three previously published SNPs [rs13387042(2q35), rs2046210(ESR1), and rs3112612(TOX3)], yielding moderate predictive power with an area under the curve (AUC) of the ROC (receiver-operator characteristic curve) of 0.74. Population-specific genetic variants in addition to variants shared with populations of European ancestry may improve breast cancer risk prediction among AJ women from high-risk families without founder BRCA1/2 mutations.  相似文献   

17.
18.
The insulin-like growth factor (IGF) signaling pathway plays an important role in cancer biology. The IGF 1 receptor (IGF1R) overexpression has been associated with a number of hematological neoplasias and solid tumors including breast cancer. However, molecular mechanism involving IGF1R in carcinogenic developments is clearly not known. We investigated the genetic variations across the IGF1R polymorphism and the risk of breast cancer risk in Korean women. A total of 1418 individuals comprising 1026 breast cancer cases and 392 age-matched controls of Korean were included for the analysis. Genomic DNA was extracted from whole blood and single nucleotide polymorphisms (SNPs) were analyzed on the GoldenGate Assay system by Illumina’s Custom Genetic Analysis service. SNPs were selected for linkage disequilibrium (LD) analysis by Haploview. We genotyped total 51 SNPs in the IGF1R gene and examined for association with breast cancer. All the SNPs investigated were in Hardy-Weinberg equilibrium. These SNPs tested were significantly associated with breast cancer risk, after correction for multiple comparisons by adjusting for age at diagnosis, BMI, age at menarche, and age at first parturition. Among 51 IGF1R SNPs, five intron located SNPs (rs8032477, rs7175052, rs12439557, rs11635251 and rs12916884) with homozygous genotype (variant genotype) were associated with decreased risk of breast cancer. Fisher’s combined p-value for the five SNPs was 0.00032. Three intron located SNPs with heterozygous genotypes also had decreased risk of breast cancer. Seven of the 51 IGF1R SNPs were in LD and in one haplotype block, and were likely to be associated with breast cancer risk. Overall, this case-control study demonstrates statistically significant associations between breast cancer risk and polymorphisms in IGF1R gene.  相似文献   

19.
Genome-wide association studies have identified SNPs near ZNF365 at 10q21.2 that are associated with both breast cancer risk and mammographic density. To identify the most likely causal SNPs, we fine mapped the association signal by genotyping 428 SNPs across the region in 89,050 European and 12,893 Asian case and control subjects from the Breast Cancer Association Consortium. We identified four independent sets of correlated, highly trait-associated variants (iCHAVs), three of which were located within ZNF365. The most strongly risk-associated SNP, rs10995201 in iCHAV1, showed clear evidence of association with both estrogen receptor (ER)-positive (OR = 0.85 [0.82–0.88]) and ER-negative (OR = 0.87 [0.82–0.91]) disease, and was also the SNP most strongly associated with percent mammographic density. iCHAV2 (lead SNP, chr10: 64,258,684:D) and iCHAV3 (lead SNP, rs7922449) were also associated with ER-positive (OR = 0.93 [0.91–0.95] and OR = 1.06 [1.03–1.09]) and ER-negative (OR = 0.95 [0.91–0.98] and OR = 1.08 [1.04–1.13]) disease. There was weaker evidence for iCHAV4, located 5′ of ADO, associated only with ER-positive breast cancer (OR = 0.93 [0.90–0.96]). We found 12, 17, 18, and 2 candidate causal SNPs for breast cancer in iCHAVs 1–4, respectively. Chromosome conformation capture analysis showed that iCHAV2 interacts with the ZNF365 and NRBF2 (more than 600 kb away) promoters in normal and cancerous breast epithelial cells. Luciferase assays did not identify SNPs that affect transactivation of ZNF365, but identified a protective haplotype in iCHAV2, associated with silencing of the NRBF2 promoter, implicating this gene in the etiology of breast cancer.  相似文献   

20.
The considerable uncertainty regarding cancer risks associated with inherited mutations of BRCA2 is due to unknown factors. To investigate whether common genetic variants modify penetrance for BRCA2 mutation carriers, we undertook a two-staged genome-wide association study in BRCA2 mutation carriers. In stage 1 using the Affymetrix 6.0 platform, 592,163 filtered SNPs genotyped were available on 899 young (<40 years) affected and 804 unaffected carriers of European ancestry. Associations were evaluated using a survival-based score test adjusted for familial correlations and stratified by country of the study and BRCA2*6174delT mutation status. The genomic inflation factor (λ) was 1.011. The stage 1 association analysis revealed multiple variants associated with breast cancer risk: 3 SNPs had p-values<10(-5) and 39 SNPs had p-values<10(-4). These variants included several previously associated with sporadic breast cancer risk and two novel loci on chromosome 20 (rs311499) and chromosome 10 (rs16917302). The chromosome 10 locus was in ZNF365, which contains another variant that has recently been associated with breast cancer in an independent study of unselected cases. In stage 2, the top 85 loci from stage 1 were genotyped in 1,264 cases and 1,222 controls. Hazard ratios (HR) and 95% confidence intervals (CI) for stage 1 and 2 were combined and estimated using a retrospective likelihood approach, stratified by country of residence and the most common mutation, BRCA2*6174delT. The combined per allele HR of the minor allele for the novel loci rs16917302 was 0.75 (95% CI 0.66-0.86, ) and for rs311499 was 0.72 (95% CI 0.61-0.85, ). FGFR2 rs2981575 had the strongest association with breast cancer risk (per allele HR = 1.28, 95% CI 1.18-1.39, ). These results indicate that SNPs that modify BRCA2 penetrance identified by an agnostic approach thus far are limited to variants that also modify risk of sporadic BRCA2 wild-type breast cancer.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号