首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Plant responses to metal toxicity   总被引:23,自引:0,他引:23  
Metal toxicity for living organisms involves oxidative and/or genotoxic mechanisms. Plant protection against metal toxicity occurs, at least in part, through control of root metal uptake and of long distance metal transport. Inside cells, proteins such as ferritins and metallothioneins, and glutathion-derived peptides named phytochelatins, participate in excess metal storage and detoxification. Low molecular weight organic molecules, mainly organic acids and amino acids and their derivatives, also play an important role in plant metal homeostasis. When these systems are overloaded, oxidative stress defense mechanisms are activated. Molecular and cellular knowledge of these processes will be necessary to improve plant metal resistance. Occurrence of naturally tolerant plants which hyperaccumulate metals provides helpful tools for this research.  相似文献   

2.
Heavy metal pollution of soil is a significant environmental problem with a negative potential impact on human health and agriculture. Rhizosphere, as an important interface of soil and plants, plays a significant role in phytoremediation of contaminated soil by heavy metals, in which, microbial populations are known to affect heavy metal mobility and availability to the plant through release of chelating agents, acidification, phosphate solubilization and redox changes, and therefore, have potential to enhance phytoremediation processes. Phytoremediation strategies with appropriate heavy metal-adapted rhizobacteria or mycorrhizas have received more and more attention. In addition, some plants possess a range of potential mechanisms that may be involved in the detoxification of heavy metals, and they manage to survive under metal stresses. High tolerance to heavy metal toxicity could rely either on reduced uptake or increased plant internal sequestration, which is manifested by an interaction between a genotype and its environment.A coordinated network of molecular processes provides plants with multiple metal-detoxifying mechanisms and repair capabilities. The growing application of molecular genetic technologies has led to an increased understanding of mechanisms of heavy metal tolerance/accumulation in plants and, subsequently, many transgenic plants with increased heavy metal resistance, as well as increased uptake of heavy metals, have been developed for the purpose of phytoremediation. This article reviews advantages, possible mechanisms, current status and future direction of phytoremediation for heavy-metal–contaminated soils.  相似文献   

3.
Phytoremediation has gained increased attention as a cost-effective method for the remediation of heavy metal-contaminated sites. Because some plants possess a range of potential mechanisms that may be involved in the detoxification of heavy metals, they manage to survive under metal stresses. High tolerance to heavy metal toxicity could rely either on reduced uptake or increased plant internal sequestration,which is manifested by an interaction between a genotype and its environment. The growing application of molecular genetic technologies has led to increased understanding of mechanisms of heavy metal tolerance/accumulation in plants and, subsequently, many transgenic plants with increased heavy metal resistance,as well as increased uptake of heavy metals, have been developed for the purpose of phytoremediation. In the present review, our major objective is to concisely evaluate the progress made so far in understanding the molecular/cellular mechanisms and genetic basis that control the uptake and detoxification of metals by plants.  相似文献   

4.
植物对重金属耐性的分子生态机理   总被引:24,自引:0,他引:24       下载免费PDF全文
植物适应重金属元素胁迫的机制包括阻止和控制重金属的吸收、体内螯合解毒、体内区室化分隔以及代谢平衡等。近年来,随着分子生物学技术在生态学研究中的深入应用,控制这些过程的分子生态机理逐渐被揭示出来。菌根、根系分泌物以及细胞膜是控制重金属进入植物根系细胞的主要生理单元。外生菌根能显著提高寄主植物的重金属耐性,根系分泌物通过改变根际pH、改变金属物质的氧化还原状态和形成络合物等机理减少植物对重金属的吸收。目前,控制菌根和根系分泌物重金属抗性的分子生态机理还不清楚。但细胞膜跨膜转运器已得到深入研究,相关金属离子转运器被鉴定和分离,一些控制基因如铁锌控制运转相关蛋白(ZIP)类、自然抵抗相关巨噬细胞蛋白(Nramp)类、P1B-type ATPase类基因已被发现和克隆。金属硫蛋白(MTs)、植物螯合素(PCs)、有机酸及氨基酸等是植物体内主要的螯合物质,它们通过螯合作用固定金属离子,降低其生物毒性或改变其移动性。与MTs合成相关的MT-like基因已经被克隆,PCs合成必需的植物螯合素合酶(PCS), 即γ-Glu-Cys二肽转肽酶(γ-ECS) 的编码基因已经被克隆,控制麦根酸合成的氨基酸尼克烟酰胺(NA)在重金属耐性中的作用和分子机理也被揭示出来。ATP 结合转运器(ABC)和阳离子扩散促进器(CDF) 是植物体内两种主要膜转运器,通过它们和其它跨膜方式,重金属被分隔贮藏于液泡内。控制这些蛋白转运器合成的基因也已经被克隆,在植物中的表达证实其与重金属的体内运输和平衡有关。热休克蛋白(HSP)等蛋白类物质的产生是一种重要的体内平衡机制,其分子机理有待进一步研究。重金属耐性植物在这些环节产生了相关响应基因或功能蛋白质,分子克隆和转基因技术又使它们在污染治理上得到了初步的应用。  相似文献   

5.
Plants have developed sophisticated mechanisms to tightly control the acquisition and distribution of copper and iron in response to environmental fluctuations. Recent studies with Arabidopsis thaliana are allowing the characterization of the diverse families and components involved in metal uptake, such as metal-chelate reductases and plasma membrane transporters. In parallel, emerging data on both intra- and intercellular metal distribution, as well as on long-distance transport, are contributing to the understanding of metal homeostatic networks in plants. Furthermore, gene expression analyses are deciphering coordinated mechanisms of regulation and response to copper and iron limitation. Prioritizing the use of metals in essential versus dispensable processes, and substituting specific metalloproteins by other metal counterparts, are examples of plant strategies to optimize copper and iron utilization. The metabolic links between copper and iron homeostasis are well documented in yeast, algae and mammals. In contrast, interactions between both metals in vascular plants remain controversial, mainly owing to the absence of copper-dependent iron acquisition. This review describes putative interactions between both metals at different levels in plants. The characterization of plant copper and iron homeostasis should lead to biotechnological applications aimed at the alleviation of iron deficiency and copper contamination and, thus, have a beneficial impact on agricultural and human health problems.  相似文献   

6.
Isolation and study of metal tolerant and hypersensitive strains of higher plant (and yeast) species has greatly increased our knowledge of the individual pathways that are involved in tolerance. Plants have both constitutive (present in most phenotypes) and adaptive (present only in tolerant phenotypes) mechanisms for coping with elevated metal concentrations. Where studies on the mechanisms of tolerance fall down is in their failure to integrate tolerance mechanisms within cell or whole-plant function by not relating adaptive mechanisms to constitutive mechanisms. This failure often distorts the relative importance of a proposed tolerance mechanism, and indeed has confused the search for adaptive mechanisms. The fundamental goal of both constitutive and adaptive mechanisms is to limit the perturbation of cell homeostasis after exposure to metals so that normal or near-normal physiological function may take place. Consideration of the response to metals at a cellular rather than a biochemical level will lead to a greater understanding of mechanisms to withstand elevated levels of metals in both contaminated and uncontaminated environments. Recent advances in the study of Al, As, Cd, and Cu tolerance and hypersensitivity are reported with respect to the cellular response to toxic metals. The role of genetics in unravelling tolerance mechanisms is also considered.  相似文献   

7.
Plants have evolved sophisticated mechanisms to deal with toxic levels of metals in the soil. In this paper, an overview of recent progress with regards to understanding fundamental molecular and physiological mechanisms underlying plant resistance to both aluminum (Al) and heavy metals is presented. The discussion of plant Al resistance will focus on recent advances in our understanding of a mechanism based on Al exclusion from the root apex, which is facilitated by Al-activated exudation of organic acid anions. The consideration of heavy metal resistance will focus on research into a metal hyperaccumulating plant species, the Zn/Cd hyperaccumulator, Thlaspi caerulescens, as an example for plant heavy metal research. Based on the specific cases considered in this paper, it appears that quite different strategies are used for Al and heavy metal resistance. For Al, our current understanding of a resistance mechanism based on excluding soil-borne Al from the root apex is presented. For heavy metals, a totally different strategy based on extreme tolerance and metal hyperaccumulation is described for a hyperaccumulator plant species that has evolved on naturally metalliferous soils. The reason these two strategies are the focus of this paper is that, currently, they are the best understood mechanisms of metal resistance in terrestrial plants. However, it is likely that other mechanisms of Al and/or heavy metal resistance are also operating in certain plant species, and there may be common features shared for dealing with Al and heavy resistance. Future research may uncover a number of novel metal resistance mechanisms in plants. Certainly the complex genetics of Al resistance in some crop plant species, such as rice and maize, suggests that a number of presently unidentified mechanisms are part of an overall strategy of metal resistance in crop plants.  相似文献   

8.
Phytoextraction of toxic metals: a central role for glutathione   总被引:3,自引:0,他引:3  
Phytoextraction has a promising potential as an environmentally friendly clean-up method for soils contaminated with toxic metals. To improve the development of efficient phytoextraction strategies, better knowledge regarding metal uptake, translocation and detoxification in planta is a prerequisite. This review highlights our current understanding on these mechanisms, and their impact on plant growth and health. Special attention is paid to the central role of glutathione (GSH) in this process. Because of the high affinity of metals to thiols and as a precursor for phytochelatins (PCs), GSH is an essential metal chelator. Being an important antioxidant, a direct link between metal detoxification and the oxidative challenge in plants growing on contaminated soils is observed, where GSH could be a key player. In addition, as redox couple, oxidized and reduced GSH transmits specific information, in this way tuning cellular signalling pathways under environmental stress conditions. Possible improvements of phytoextraction could be achieved by using transgenic plants or plant-associated microorganisms. Joined efforts should be made to cope with the challenges faced with phytoextraction in order to successfully implement this technique in the field.  相似文献   

9.
Cellular mechanisms for heavy metal detoxification and tolerance.   总被引:70,自引:0,他引:70  
Heavy metals such as Cu and Zn are essential for normal plant growth, although elevated concentrations of both essential and non-essential metals can result in growth inhibition and toxicity symptoms. Plants possess a range of potential cellular mechanisms that may be involved in the detoxification of heavy metals and thus tolerance to metal stress. These include roles for the following: for mycorrhiza and for binding to cell wall and extracellular exudates; for reduced uptake or efflux pumping of metals at the plasma membrane; for chelation of metals in the cytosol by peptides such as phytochelatins; for the repair of stress-damaged proteins; and for the compartmentation of metals in the vacuole by tonoplast-located transporters. This review provides a broad overview of the evidence for an involvement of each mechanism in heavy metal detoxification and tolerance.  相似文献   

10.
Molecular mechanisms of plant metal tolerance and homeostasis   总被引:68,自引:0,他引:68  
Clemens S 《Planta》2001,212(4):475-486
Transition metals such as copper are essential for many physiological processes yet can be toxic at elevated levels. Other metals (e.g. lead) are nonessential and potentially highly toxic. Plants – like all other organisms – possess homeostatic mechanisms to maintain the correct concentrations of essential metal ions in different cellular compartments and to minimize the damage from exposure to nonessential metal ions. A regulated network of metal transport, chelation, trafficking and sequestration activities functions to provide the uptake, distribution and detoxification of metal ions. Some of the components of this network have now been identified: a number of uptake transporters have been cloned as well as candidate transporters for the vacuolar sequestration of metals. Chelators and chaperones are known, and evidence for intracellular metal trafficking is emerging. This recent progress in the molecular understanding of plant metal homeostasis and tolerance is reviewed. Received: 14 July 2000 / Accepted: 22 September 2000  相似文献   

11.
植物修复是一种前景广阔的重金属污染土壤的主要修复技术,在微生物的协助下效果更为显著。植物根际促生菌可通过分泌吲哚-3-乙酸(IAA)、产铁载体、固氮溶磷等方式促进植物生长、改善植物重金属耐受性,从而有效提高重金属污染土壤的植物修复效率。菌根真菌是土壤-植物系统中重要的功能菌群之一,可侵染植物根系改变根系形态和矿质营养状况,通过菌丝体吸附重金属,也可产生球囊霉素、有机酸、植物生长素等次生代谢产物改变重金属生物有效性。植物根际促生菌与丛枝菌根真菌可对植物产生协同促生作用,在重金属污染土壤修复中具有一定应用潜力。目前,国内外关于植物根际促生菌和丛枝菌根真菌互作已有大量研究,而二者的相互作用机理仍处于探索阶段。本文综述了近年来国内外植物根际促生菌和丛枝菌根真菌在重金属污染土壤植物修复中的作用机制,并对其研究前景进行展望。  相似文献   

12.
Antioxidant enzyme responses of plants to heavy metal stress   总被引:5,自引:0,他引:5  
Heavy metal pollutions caused by natural processes or anthropological activities such as metal industries, mining, mineral fertilizers, pesticides and others pose serious environmental problems in present days. Evidently there is an urgent need of efficient remediation techniques that can tackle problems of such extent, especially in polluted soil and water resources. Phytoremediation is one such approach that devices effective and affordable ways of engaging suitable plants to cleanse the nature. Excessive accumulation of metal in plant tissues are known to cause oxidative stress. These, in turn differentially affect other plant processes that lead to loss of cellular homeostasis resulting in adverse affects on their growth and development apart from others. Plants have limited mechanisms of stress avoidance and require flexible means of adaptation to changing. A common feature to combat stress factors is synchronized function of antioxidant enzymes that helps alleviating cellular damage by limiting reactive oxygen species (ROS). Although, ROS are inevitable byproducts from essential aerobic metabolisms, these are needed under sub-lethal levels for normal plant growth. Understanding the interplay between oxidative stress in plants and role of antioxidant enzymes can result in developing plants that can overcome oxidative stress with the expression of antioxidant enzymes. These mechanisms have been proving to have immense potential for remediating these metals through the process of phytoremediation. The aim of this review is to assemble our current understandings of role of antioxidant enzymes of plants subjected to heavy metal stress.  相似文献   

13.
根分泌作用与植物对金属毒害的抗性   总被引:42,自引:4,他引:42  
在金属污染进入体内之前将其有效性和毒性降低是植物的主要抗金属机制之一,根系是金属等土壤污染物进入植物的门户,它能分泌有机酸、氨基酸,糖、生长物质等根分泌物与根际环境,根分泌物在植物吸收金属的过程中影响很大,它们可以通过改变根球环境的PH、Eh等物理、化学性质而影响根系对金属的吸收;通过螯合、络合,沉淀等作用将金属污染物滞留于根外;通过改变根际微生的组织,活性和分泌作用而改变根际环境中金属的数量和活  相似文献   

14.
Plants experience oxidative stress upon exposure to heavy metals that leads to cellular damage. In addition, plants accumulate metal ions that disturb cellular ionic homeostasis. To minimize the detrimental effects of heavy metal exposure and their accumulation, plants have evolved detoxification mechanisms. Such mechanisms are mainly based on chelation and subcellular compartmentalization. Chelation of heavy metals is a ubiquitous detoxification strategy described in wide variety of plants. A principal class of heavy metal chelator known in plants is phytochelatins (PCs), a family of Cys-rich peptides. PCs are synthesized non-translationally from reduced glutathione (GSH) in a transpeptidation reaction catalyzed by the enzyme phytochelatin synthase (PCS). Therefore, availability of glutathione is very essential for PCs synthesis in plants at least during their exposure to heavy metals. Here, I reviewed on effect of heavy metals exposure to plants and role of GSH and PCs in heavy metal stress tolerance. Further, genetic manipulations of GSH and PCs levels that help plants to ameliorate toxic effects of heavy metals have been presented.  相似文献   

15.
Trace metals are supplied to chemically-defined media (CDM) for optimal Chinese hamster ovary (CHO) cell culture performance during the production of monoclonal antibodies and other therapeutic proteins. However, lot-to-lot and vendor-to-vendor variability in raw materials consequently leads to an imbalance of trace metals that are supplied to CDM. This imbalance can yield detrimental effects rooted in several primary mechanisms and pathways including oxidative stress, apoptosis, lactate accumulation, and unfavorable glycan synthesis. Recent research endeavors involve supplying zinc, copper, and manganese to CDM in excess to further maximize culture productivity and product quality. These treatments significantly impact critical quality attributes and furthermore highlight the degree to which trace metal availability can affect CHO cell culture performance. This review highlights the role of trace metal variability, supplementation, and interplay on key cellular mechanisms responsible for overall culture performance and the production and quality of therapeutic proteins.  相似文献   

16.
Heavy metal contamination of soil, aqueous waste stream and ground water causes major environmental and human health problems. Heavy metals are major environmental pollutants when they are present in high concentration in soil and show potential toxic effects on growth and development in plants. Due to unabated, indiscriminate and uncontrolled discharge of hazardous chemicals including heavy metals into the environment, plant continuously have to face various environmental constraints. In plants, seed germination is the first exchange interface with the surrounding medium and has been considered as highly sensitive to environmental changes. One of the crucial events during seed germination entails mobilization of seed reserves which is indispensable for the growth of embryonic axis. But, metabolic alterations by heavy metal exposure are known to depress the mobilization and utilization of reserve food by affecting the activity of hydrolytic enzymes. Some plants possess a range of potential mechanisms that may be involved in the detoxification of heavy metals by which they manage to survive under metal stress. High tolerance to heavy metal toxicity could rely either on reduced uptake or increase planned internal sequestration which is manifested by an interaction between a genotype and its environment. Such mechanism involves the binding of heavy metals to cell wall, immobilization, exclusion of the plasma membrane, efflux of these toxic metal ions, reduction of heavy metal transport, compartmentalization and metal chelation by tonoplast located transporters and expression of more general stress response mechanisms such as stress proteins. It is important to understand the toxicity response of plant to heavy metals so that we can utilize appropriate plant species in the rehabilitation of contaminated areas. Therefore, in the present review attempts have been made to evaluate the effects of increasing level of heavy metal in soils on the key behavior of hydrolytic and nitrogen assimilation enzymes. Additionally, it also provides a broad overview of the strategies adopted by plants against heavy metal stress.  相似文献   

17.
The prevalence of metal dysregulation in many neurodegenerative and neurocognitive disorders has compelled many studying such diseases to investigate the mechanisms underlying metal regulation in the central nervous system. Metal homoeostasis is often complex, with sophisticated, multilayered pathways in operation. G protein-coupled receptors are omnipresent on cell membranes and have intriguing mechanisms of endocytosis and trafficking that may be useful in metal homoeostasis. Indeed, many receptors and/or their cognate ligands are able to bind metals, and in many cases metals are considered to have neuromodulatory roles as a result of receptor binding. In this mini-review, we outline the structural and functional aspects of G protein-coupled receptors with a focus on the mechanisms leading to endocytosis and cellular trafficking. We further highlight how this may help in the trafficking of metal ions, notably copper.  相似文献   

18.
植物修复重金属污染及内生细菌效应   总被引:2,自引:0,他引:2  
土壤和水体的重金属污染已严重危害人类生存环境与健康。由于受重金属污染的环境分布广泛,迫切需要开发经济的清除环境重金属的技术。植物修复是通过绿色植物降解或移除环境污染物,有望成为重金属污染环境的原位修复技术。植物内生菌是指定殖于健康植物的各种组织和器官内部的细菌,被感染的宿主植物不表现出外在病症,耐重金属的内生菌在多种超富集植物中存在。在植物修复过程中,野生型内生菌或基因工程内生菌的抗性系统能降低重金属植物毒性,促进其迁移金属。耐重金属内生菌还可以通过固氮、溶解矿物元素及产生类植物激素、铁载体和ACC脱氨酶等产物促进植物的生长。主要综述目前植物-内生菌相互作用及其潜在的促进植物修复重金属污染的研究进展。  相似文献   

19.
Emerging mechanisms for heavy metal transport in plants   总被引:49,自引:0,他引:49  
Heavy metal ions such as Cu(2+), Zn(2+), Mn(2+), Fe(2+), Ni(2+) and Co(2+) are essential micronutrients for plant metabolism but when present in excess, these, and non-essential metals such as Cd(2+), Hg(2+) and Pb(2+), can become extremely toxic. Thus mechanisms must exist to satisfy the requirements of cellular metabolism but also to protect cells from toxic effects. The mechanisms deployed in the acquisition of essential heavy metal micronutrients have not been clearly defined although a number of genes have now been identified which encode potential transporters. This review concentrates on three classes of membrane transporters that have been implicated in the transport of heavy metals in a variety of organisms and could serve such a role in plants: the heavy metal (CPx-type) ATPases, the natural resistance-associated macrophage protein (Nramp) family and members of the cation diffusion facilitator (CDF) family. We aim to give an overview of the main features of these transporters in plants in terms of structure, function and regulation drawing on information from studies in a wide variety of organisms.  相似文献   

20.
Plants take up a wide range of trace metals/metalloids(hereinafter referred to as trace metals)from the soil,some of which are essential but become toxic at high concentrations(e.g.,Cu,Zn,Ni,Co),while others are non-essential and toxic even at relatively low concentrations(e.g.,As,Cd,Cr,Pb,and Hg). Soil contamination of trace metals is an increasing problem worldwide due to intensifying human activities.Trace metal contamination can cause toxicity and growth inhibition in plants,as well as accum...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号