首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Kim A. Nasmyth 《Cell》1977,12(4):1109-1120
cdc 17-K42 was isolated as a temperature-sensitive cdc? mutant of the fission yeast Schizosaccharomyces pombe after nitrosoguanidine mutagenesis. The temperature-sensitive phenotype segregrates 2:2 in tetrad analyses, and it is recessive to the wild-type allele. The pattern of cell division in this mutant on temperature shift implies that its defective function is usually completed by the end of S phase. Cells of cdc 17-K42 enter S phase and undergo a complete round of DNA synthesis at the restrictive temperature, but mitosis does not follow. The nascent DNA accumulated at the restrictive temperature is exclusively composed of short (Okazaki) fragments. After a 20 min pulse label, the main peak of labeled DNA is from 70–450 nucleotides long. DNA ligase assays, involving the formation of covalently closed λ DNA circles, show that the mutant has low levels of DNA ligase activity (<20%) when assayed at the permissive temperature and none detectable when assayed at the restrictive temperature. This implies that the cdc 17 locus codes for the structural gene for DNA ligase. cdc 17-K42 also has a temperature-enhanced ultraviolet sensitivity, suggesting that the same enzyme is involved in DNA repair. Two other independent mutant alleles in the same gene have also been isolated (M75 and L16). They share many of the above properties.  相似文献   

2.
cdc 19.1 is a temperature-sensitive lesion in the genome of Saccharomyces cerevisiae. The phenotype of this mutant is a cell cycle specific arrest in G1, which is expressed at 37°C. In the present study, 31P- and 13C-NMR spectroscopy were used to analyze the metabolism of the mutant at the permissive and restrictive temperatures. Our results confirm previous findings which have indicated that cdc 19.1 contains temperature-sensitive pyruvate kinase activity. In contrast to previous findings, however, the present investigation demonstrates that restriction of pyruvate kinase activity in vivo takes as long as 24 h to be fully expressed. In addition, analysis by NMR has allowed us to assess the metabolic consequences of pyruvate kinase restriction which may contribute to the arrest of cell growth in the early G1 phase of the cell division cycle.  相似文献   

3.
The tsB5 mutant of herpes simplex virus type 1 (HSV-1) strain HFEM was shown previously to be temperature sensitive for accumulation of the mature form of glycoprotein gB, for production or activity of a factor required in virus-induced cell fusion, and for production of virions with normal levels of infectivity. In addition, a previous study showed that virions produced by tsB5 at permissive temperature were more thermolabile than HFEM virions and contained altered gB that did not assume the dimeric conformation characteristic of HFEM. Results presented here demonstrate that, at permissive temperature, tsB5 differs from HFEM in another respect: plaques formed by tsB5 are syncytial on Vero cells (but not on HEp-2 cells), whereas plaques formed by HFEM are nonsyncytial on both cell types. In addition, our results indicate that tsB5 produces an oligomeric form of gB, but that it differs in electrophoretic mobility and stability from the gB dimers of HFEM. The major purpose of this study was to investigate the dependence of the various tsB5 mutant phenotypes on the temperature sensitivity of gB accumulation and on the alterations in oligomeric conformation of gB produced at permissive temperature. For this work the following HSV-1 strains related to tsB5 or HFEM were analyzed: (i) phenotypic revertants selected from tsB5 stocks for nonsyncytial plaque morphology on Vero cells or for ability to form plaques at restrictive temperature (38.5°C); (ii) a plaque morphology variant of HFEM selected for its syncytial phenotype on Vero cells; (iii) temperature-sensitive recombinants previously isolated from a cross between tsB5 and the non-temperature-sensitive syncytial strain HSV-1(MP); and (iv) a phenotypic revertant selected from one of the recombinant stocks for its ability to form plaques at 39°C. These strains were all compared with tsB5 and HFEM at three different temperatures in two different cell lines with respect to plaque formation, yield of infectious progeny, virus-induced cell fusion, and accumulation of gB. The results of our analyses on all the strains tested revealed the following correlations between mutant phenotypes and the accumulation and oligomeric conformation of gB. (i) There was a direct and quantitative relationship between the accumulation in infected cells of infectious progeny and of the mature form of gB, providing strong support for the hypothesis that this form of gB is necessary to the production of infectious virions. The oligomeric conformation of gB characteristic of HFEM is apparently not required for virion infectivity; nor was virion thermostability necessarily related to the presence of the HFEM-like oligomeric form of gB. (ii) The previously reported correlation between temperature sensitivity of gB accumulation and virus-induced cell fusion was confirmed for tsB5 and extended to other virus strains, and coordinate reversion of these traits was also demonstrated, providing support for the hypothesis that gB has a role in virus-induced cell fusion. At 37°C, intermediate between permissive and restrictive temperatures, some of the mutants and partial revertants induced cell fusion despite reduced accumulations of the mature form of gB, suggesting that the amount of mature gB present did not determine the extent of fusion and that other forms of gB as well as other factors should be investigated with regard to the process of cell fusion. (iii) Some of the mutants and partial revertants could form plaques at 38.5°C despite reduced ccumulations of gB and infectious progeny, indicating that the cell-to-cell transmission of viral infection may be at least in part independent of these factors.  相似文献   

4.
The DNA ligase activities of wild type and temperature-sensitive lethal cdc 17 mutants of Schizosaccharomyces pombe have been studied by measuring effects on the conversion of relaxed DNA circles containing a single nick to a closed circular form. Such assays have revealed that all cdc 17 mutants have a thermosensitive DNA ligase deficiency, that this deficiency cosegregates 2:2 with their temperature-sensitive cdc-lethality in three tetrads derived from a cross against wild type, and that genetic reversion of the temperature-sensitive cdc? phenotype is accompanied by a restoration of DNA ligase activity; all of which implies that the temperature-sensitive cdc? phenotype of cdc 17 mutants is due to a single nuclear mutation causing a DNA ligase deficiency. Both wild type and mutant enzymes have been partially purified by chromatography in heparin/agarose columns. The wild-type enzyme is completely stable in vitro at both permissive (25 °C) and restrictive (35 °C) temperatures, whereas that of two different mutants, though completely stable at 25 °C, is rapidly inactivated at 35 °C, implying that their mutations are located in the structural gene for DNA ligase.  相似文献   

5.
Salmonella typhimurium cells infected by temperature-sensitive mutants in gene 9 of bacteriophage P22 at the restrictive temperature (39 °C) fail to accumulate functional tail spike protein. We report here studies of the inactive mutant tail spike polypeptide chains synthesized at 39 °C by temperature-sensitive mutants at 15 different sites of gene 9. For all 15 mutants, the gene 9 polypeptide chains were synthesized at 39 °C at rates similar to wild type. The mutant polypeptide chains were stable within the infected cells.The inactive polypeptide chains were tested for three functions displayed by the mature tail spike protein: irreversible binding to phage heads, endorhamnosidase activity, and reaction with anti-tail antibody. The 15 mutant proteins that accumulated at 39 °C lacked all three functions. Since the amino acid substitutions do not affect these functions of the mature protein, the mutant polypeptide chains synthesized at 39 °C have a conformation very different from the wild type, and different from the same proteins when matured at 30 °C. The fact that amino acid substitutions throughout the 76,000 Mr polypeptide chain prevent all three functions suggests that the mutations prevent the correct folding of the gene 9 polypeptide chain at restrictive temperature. Thus, these mutations identify sites in the polypeptide chain critical for protein maturation.Many of the mutant proteins could be activated in the absence of new protein synthesis by shifting infected cells from restrictive to permissive temperature before cell lysis. For these mutants, the immature chains accumulating at high temperature must be reversibly related to intermediates in protein folding or subunit assembly.  相似文献   

6.
The temperature-sensitive mutant of Arabidopsis , chs5 , developed chlorotic leaves at restrictive temperatures (15°C), but almost normal green leaves at permissive temperatures (22°C). At the restrictive temperature, the chs5 mutation blocked the accumulation of chlorophylls and carotenoids. A temperature-shift analysis revealed that the manifestation of the chlorotic phenotype occurred in young leaf tissues, but did not in mature leaf tissues. Genetic and sequence analysis demonstrated that the chs5 mutation was caused by a single-base change in the coding region of a recently identified CLA1 gene. The CLA1 gene exhibited a high sequence similarity to the genes encoding 1-deoxy- d -xylulose 5-phosphate synthase (DXS) localized to the non-mevalonate pathway, which was recently discovered in bacteria and higher plants. In addition, the application of 1-deoxy- d -xylulose, the free sugar of 1-deoxy- d -xylulose 5-phosphate, rescues the defect in the chs5 mutant. These results indicated that the chlorotic phenotype of the chs5 mutant was caused by a defect in DXS activity and that DXS functions preferentially at an early stage of leaf cell development. A transiently expressed green fluorescent protein fused with the CLA1 transit peptide was localized within the chloroplasts in the green cultured cells of tobacco, which suggests that the putative localization of the non-mevalonate pathway is in plastids.  相似文献   

7.
Jun J  Kim D 《BMB reports》2008,41(3):248-253
Stresses and nutritional starvation are two main external signals for the induction of sex pheromones in the fission yeast Schizosaccharomyces pombe. In an attempt to identify the components involved in transduction of starvation signals, we screened 135 temperature-sensitive (ts) mutants and isolated 6 mutants that induced the pheromone even in the presence of a nitrogen source. These mutants exhibited two distinct induction phenotypes: pheromone induction at restrictive but not at permissive temperatures; and pheromone induction at both permissive and restrictive temperatures. The times required for the maximum pheromone induction at the restrictive temperature differed slightly in each mutant. In addition to the pheromone induction phenotype, the ts243 and ts304 mutants exhibited cell-division-cycle defects. The ts304 mutant cells showed an abnormal cytoplasmic DAPI staining pattern. The nucleolus of this mutant seemed to be fragmented, a phenomenon which is typically observed in aged yeast cells. The result of our genetic analysis indicated that the pheromone induction mutants belonged to 6 separate complementation groups. We designated these mutants pws1 to pws6.  相似文献   

8.
A new temperature-sensitive mutant of Saccharomyces cerevisiae was isolated. Arrested cells grown at the nonpermissive temperature were of dumb-bell shape and contained large vacuoles. A DNA fragment was cloned based on its ability to complement this temperature sensitivity. The HTR1 gene encodes a putative protein of 93 kDa without significant homology to any known proteins. The gene was mapped between ade5 and lys5 on the left arm of chromosome VII. The phenotype of the gene disruptant appeared to be strain-specific; disruption of the gene in strain W303 caused the cells to become temperature sensitive. The arrested phenotype here was similar to that of the original is mutant and cells in G2/M phase predominated at high temperature. Another disruptant in a strain YPH background grew slowly at high temperature due to slow progression through G2/M phase, and morphologically abnormal (elongated) cells accumulated. A single-copy suppressor that alleviated the temperature-sensitive defects in both strains was identified as MCS1/SSD1. The wild-type strains W303 and YPH are known to carry defective MCS1/SSD1 alleles; hence HTR1 may function redundantly with MCS1/SSD1 to suppress the temperature-sensitive phenotypes. In addition, based on a halo bioassay, the disruptant strains appeared to be defective in recovery from, or adaptive response to G1 arrest mediated by mating pheromone, even at the permissive temperature. Thus the gene has at least two functions and is designated HTR1 (required for high temperature growth and recovery from G1 arrest induced by mating pheromone).  相似文献   

9.
Temperature-sensitive (ts) mutants of the Ace gene, which codes for acetylcholinesterase (AChE) in Drosophila melanogaster, were analyzed for defects in viability, behavior and function of the enzyme. The use of heat-sensitive and cold-sensitive mutations permited the function of AChE in the nervous system to be analyzed temporally. All ts mutations were lethal, or nearly so, when animals expressing them were subjected to restrictive temperatures during late embryonic and very early larval stages. Heat treatments to Ace-ts mid- and late larvae had little effect on the behavior of these animals or on the viability or behavior of the eventual adults. Heat-sensitive mutants exposed to nonpermissive temperatures as pupae, by contrast, had severe defects in phototaxis and locomotor activity as adults. AChE extracted from adult ts mutants that had developed at a permissive temperature were abnormally heat labile, and they had reduced substrate affinity when assayed at restrictive temperatures. However, enzyme activity did not decline during exposure of heat-sensitive adults to high temperatures even though such treatments caused decrements in phototaxis (29°) and, eventually, cessation of movement (31°). The cold-sensitive mutant also produced readily detectable levels of AChE when exposed to a restrictive temperature during the early developmental stage when this mutation causes almost complete lethality. We suggest that the relationship among the genetic, biochemical and neurobiological defects in these mutants may involve more than merely temperature-sensitive catalytic functions.  相似文献   

10.
We carried out a screen for mutants that arrest prior to premeiotic S phase. One of the strains we isolated contains a temperature-sensitive allele mutation in the fission yeast prp31+ gene. The prp31-E1 mutant is defective in vegetative cell growth and in meiotic progression. It is synthetically lethal with prp6 and displays a pre-mRNA splicing defect at the restrictive temperature. We cloned the wild-type gene by complementation of the temperature-sensitive mutant phenotype. Prp31p is closely related to human and budding yeast PRP31 homologs and is likely to function as a general splicing factor in both vegetative growth and sexual differentiation.  相似文献   

11.
L. W. Morgan  J. F. Feldman 《Genetics》1997,146(2):525-530
A new circadian clock mutant has been isolated in Neurospora crassa. This new mutation, called period-6 (prd-6), has two features novel to known clock mutations. First, the mutation is temperature sensitive. At restrictive temperatures (above 21°) the mutation shortens circadian period length from a wild-type value of 21.5 hr to 18 hr. At permissive temperatures (below 21°) the mutant has a 20.5-hr period length close to that of the wild-type strain. Second, the prd-6 mutation is epistatic to the previously isolated clock mutation period-2 (prd-2). This epistasis is unusual in that the prd-2 prd-6 double mutant strain has an 18-hr period length at both the restrictive and permissive temperatures. That is, the temperature-sensitive aspect of the phenotype of the prd-6 strain is lost in the prd-2 prd-6 double mutant strain. This suggests that the gene products of the prd-2 and prd-6 loci may interact physically and that the presence of a normal prd-2(+) protein is required for low temperature to ``rescue' the prd-6 mutant phenotype. These results, combined with our recent finding that prd-2 and some alleles of the frq gene show genetic synergy, suggest that it may be possible to establish a more comprehensive model of the Neurospora circadian clock.  相似文献   

12.
The CDC37 gene is essential for the activity of p60v-src when expressed in yeast cells. Since the activation pathway for p60v-src and steroid hormone receptors is similar, the present study analyzed the hormone-dependent transactivation by androgen receptors and glucocorticoid receptors in yeast cells expressing a mutant version of the CDC37 gene. In this mutant, hormone-dependent transactivation by androgen receptors was defective at both permissive and restrictive temperatures, although transactivation by glucocorticoid receptors was mildly defective only at the restrictive temperature. Cdc37p appears to function via the androgen receptor ligand-binding domain, although it does not influence receptor hormone-binding affinity. Models for Cdc37p regulation of steroid hormone receptors are discussed.  相似文献   

13.
Replication factor C (RF-C), an auxiliary factor for DNA polymerases δ and , is a multiprotein complex consisting of five different polypeptides. It recognizes a primer on a template DNA, binds to a primer terminus, and helps load proliferating cell nuclear antigen onto the DNA template. The RFC2 gene encodes the third-largest subunit of the RF-C complex. To elucidate the role of this subunit in DNA metabolism, we isolated a thermosensitive mutation (rfc2-1) in the RFC2 gene. It was shown that mutant cells having the rfc2-1 mutation exhibit (i) temperature-sensitive cell growth; (ii) defects in the integrity of chromosomal DNA at restrictive temperatures; (iii) progression through cell cycle without definitive terminal morphology and rapid loss of cell viability at restrictive temperatures; (iv) sensitivity to hydroxyurea, methyl methanesulfonate, and UV light; and (v) increased rate of spontaneous mitotic recombination and chromosome loss. These phenotypes of the mutant suggest that the RFC2 gene product is required not only for chromosomal DNA replication but also for a cell cycle checkpoint. It was also shown that the rfc2-1 mutation is synthetically lethal with either the cdc44-1 or rfc5-1 mutation and that the restrictive temperature of rfc2-1 mutant cells can be lowered by combining either with the cdc2-2 or pol2-11 mutation. Finally, it was shown that the temperature-sensitive cell growth phenotype and checkpoint defect of the rfc2-1 mutation can be suppressed by a multicopy plasmid containing the RFC5 gene. These results suggest that the RFC2 gene product interacts with the CDC44/RFC1 and RFC5 gene products in the RF-C complex and with both DNA polymerases δ and during chromosomal DNA replication.  相似文献   

14.
A mutant of Saccharomyces cerevisiae, DW137, isolated after treatment of a wild-type strain with ICR-170. The mutant was respiration-deficient and showed abnormal cell division when grown at 30 degrees C. In addition, the mutant was temperature-sensitive and underwent lysis when grown at 37 degrees C. Random spore analysis, induced reversion profiles, and complementation analysis indicated that the abnormal phenotypes were under the control of a single recessive mutation caused by a base-pair substitution in a nuclear gene. Macromolecular analysis of the mutant at permissive and restrictive temperatures showed that at restrictive temperatures the mutant cannot synthesize DNA. Surprisingly, at restrictive temperatures, protein synthesis in the mutant continued at a rate greater than that observed at permissive temperatures. Cell death and lysis of the mutant could be prevented by treatment of cultures with cycloheximide, an inhibitor of protein synthesis. The data suggest that the abnormally high rate of protein synthesis and the inability to synthesize DNA are jointly responsible for death of the cells, and most probably play and integrating role in the incipient cell lysis.  相似文献   

15.
ts-2, a temperature-sensitive and plaque morphology mutant of respiratory syncytial virus and sole representative of complementation group B, was compared with members of the other complementation groups of respiratory syncytial virus (group A [ts-1] and group C [ts-7]). ts-2 was found to be 10- to 1,000-fold more restricted in growth and ability to spread at restrictive temperatures (37, 38, and 39 degrees C) than at the permissive temperature (32 degrees C). In temperature shift-up experiments, the ts defect of ts-1 and other members of complementation group A was found to effect a late function that was required for at least 13 h in the replicative cycle. The ts lesion of ts-7 affected a function early in the replication cycle. In contrast, ts-2 was not temperature sensitive when studied by the shift-up technique. The discrepancy between the ts plaque property and failure to detect temperature sensitivity during the shift-up experiment was resolved when it was shown that ts-2 had a defect in adsorption or penetration or both at the restrictive temperature. Clonal analysis of revertant ts-2 showed a coordinate restoration of ts+ phenotype ans syncytium-forming capacity. It appears that ts-2 has a defect in a protein that is involved in adsorption and/or penetration of virus and is also responsible for cell fusion activity.  相似文献   

16.
17.
Summary Mutations in the RAD3 gene of Saccharomyces cerevisiae were generated by integration of a mutagenized incomplete copy of the cloned gene into wild-type cells. Integrants were mass screened for colonies with abnormal growth characteristics at 37°C. A single temperature-sensitive mutant (rad3ts-1) was isolated and was shown to result from a missense mutation at codon 73 of the RAD3 gene. When shifted from 30° C to 37° C the strain undergoes only 2–4 cell doublings. This phenotype can be rescued by plasmids in which the essential function of the cloned RAD3 gene is intact, but not plasmids in which this function is inactivated. The mutant strain is weakly sensitive to ultraviolet (UV) radiation at restrictive temperatures. Measurement of RNA, DNA and protein synthesis at various times after shifting to restrictive temperatures does not show preferential inactivation of any one of these parameters and the temperature-sensitive mutation does not cause arrest at any specific phase of the cell cycle. The rad3ts-1 strain was transformed with multicopy plasmids from a normal yeast genomic library and two plasmids that partially suppress the temperature-sensitive phenotype were isolated. These suppressor genes (designated SRE1 and SRE2) are distinct from RAD3 and do not suppress the phenotype of several other temperature-sensitive mutants tested. Mutant strains carrying disruptions of the SRE1 gene are viable and are not sensitive to UV or radiation.  相似文献   

18.
The organization of the actin cytoskeleton plays an integral role in cell morphogenesis of all eukaryotes. We have isolated a temperature-sensitive mutant in Schizosaccharomyces pombe, wat1-1, in which acting patches are delocalized, resulting in an elliptically shaped cell phenotype. Molecular cloning and DNA sequencing of wat1 + showed that the gene encodes a 314 residue protein containing WD-40 repeats. Cells lacking wat1 + are slow growing but viable at 25°?C and temperature-sensitive for growth above 33°?C. At restrictive temperature, wat1-d strains are phenotypically indistinguishable from wat1-1. When combined with a deletion for the wat1 + gene, cdc mutants failed to elongate at restrictive temperature and exhibited alterations in actin patch localization. This analysis suggests that wat1 + is required directly or indirectly for polarized cell growth in S. pombe. Wat1p and a functional, epitope-tagged, version of Wat1p can be overproduced without inducing alterations in cell morphology.  相似文献   

19.
Of 750 temperature-sensitive mutants of Gram-positive Staphylococcus aureus, one was complemented by the dnaA gene. This mutant had a single base transition in the dnaA gene causing the amino-acid substitution mutation, Ala40Thr. Phage transduction experiments showed that this temperature-sensitive phenotype was linked with a drug-resistant marker inserted near the dnaA gene, suggesting the dnaA mutation is responsible for the phenotype. Flow cytometric analysis revealed that the dnaA mutant was unable to initiate DNA replication at a restrictive temperature and exhibited asynchrony in the replication initiation at a permissive temperature. This is the first report of a temperature-sensitive dnaA mutant in S. aureus, and the results show that DnaA is required for the initiation of chromosomal replication and for the regulation of synchrony in the bacterial cells.  相似文献   

20.
Summary We have analysed the effect of temperature on both developing and adult eye cell clones homozygous forshi ST139, a temperature-sensitive mutant ofDrosophila melanogaster. The mutant gene, autonomous in its cellular expression, causes structural modifications of ommatidial cells when adult clones of cells are exposed to the restrictive temperature (29°C) for several days. However, the mutant phenotype reverses to normal within 4 days at the permissive temperature (20°C). The results of pulse, shift-up and shift-down experiments show that the temperaturesensitive period for developing compound eye cells is from the late second instar up to the early pupa. Cytodifferentiation of compound eye cells is blocked by restrictive temperature treatment during this period, whereas cell proliferation does not seem to be directly affected. These results are discussed with regard to the other known aspects of the phenotype observed in mutant individuals.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号