首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Nasal-associated lymphoid tissue (NALT) orchestrates immune responses to Ags in the upper respiratory tract. Unlike other lymphoid organs, NALT develops independently of lymphotoxin-alpha (LTalpha). However, the structure and function of NALT are impaired in Ltalpha(-/-) mice, suggesting a link between LTalpha and chemokine expression. In this study we show that the expression of CXCL13, CCL19, CCL21, and CCL20 is impaired in the NALT of Ltalpha(-/-) mice. We also show that the NALT of Cxcl13(-/-) and plt/plt mice exhibits some, but not all, of the structural and functional defects observed in the NALT of Ltalpha(-/-) mice. Like the NALT of Ltalpha(-/-) mice, the NALT in Cxcl13(-/-) mice lacks follicular dendritic cells, BP3(+) stromal cells, and ERTR7(+) lymphoreticular cells. However, unlike the NALT of Ltalpha(-/-) mice, the NALT of Cxcl13(-/-) mice has peripheral node addressin(+) high endothelial venules (HEVs). In contrast, the NALT of plt/plt mice is nearly normal, with follicular dendritic cells, BP3(+) stromal cells, ERTR7(+) lymphoreticular cells, and peripheral node addressin(+) HEVs. Functionally, germinal center formation and switching to IgA are defective in the NALT of Ltalpha(-/-) and Cxcl13(-/-) mice. In contrast, CD8 T cell responses to influenza are impaired in Ltalpha(-/-) mice and plt/plt mice. Finally, the B and T cell defects in the NALT of Ltalpha(-/-) mice lead to delayed clearance of influenza from the nasal mucosa. Thus, the B and T cell defects in the NALT of Ltalpha(-/-) mice can be attributed to the impaired expression of CXCL13 and CCL19/CCL21, respectively, whereas impaired HEV development is directly due to the loss of LTalpha.  相似文献   

2.
The lymphoid chemokines CCL19 and CCL21 are known to be crucial both for lymphoid cell trafficking and for the structural organization of lymphoid tissues such as nasopharynx-associated lymphoid tissue (NALT). However, their role in allergic responses remains unclear, and so our current study aims to shed light on the role of CCL19/CCL21 in the development of allergic rhinitis. After nasal challenge with OVA, OVA-sensitized plt (paucity of lymph node T cells) mice, which are deficient in CCL19/CCL21, showed more severe allergic symptoms than did identically treated wild-type mice. OVA-specific IgE production, eosinophil infiltration, and Th2 responses were enhanced in the upper airway of plt mice. Moreover, in plt mice, the number of CD4(+)CD25(+) regulatory T cells declined in the secondary lymphoid tissues, whereas the number of Th2-inducer-type CD8alpha(-)CD11b(+) myeloid dendritic cells (m-DCs) increased in cervical lymph nodes and NALT. Nasal administration of the plasmid-encoding DNA of CCL19 resulted in the reduction of m-DCs in the secondary lymphoid tissues and the suppression of allergic responses in plt mice. These results suggest that CCL19/CCL21 act as regulatory chemokines for the control of airway allergic disease and so may offer a new strategy for the control of allergic disease.  相似文献   

3.
The lymphotoxin (LT) beta receptor plays a critical role in secondary lymphoid organogenesis and the classical and alternative NF-kappaB pathways have been implicated in this process. IKKalpha is a key molecule for the activation of the alternative NF-kappaB pathway. However, its precise role and target genes in secondary lymphoid organogenesis remain unknown, particularly with regard to high endothelial venules (HEV). In this study, we show that IKKalpha(AA) mutant mice, who lack inducible kinase activity, have hypocellular lymph nodes (LN) and nasal-associated lymphoid (NALT) tissue characterized by marked defects in microarchitecture and HEV. In addition, IKKalpha(AA) LNs showed reduced lymphoid chemokine CCL19, CCL21, and CXCL13 expression. IKKalpha(AA) LN- and NALT-HEV were abnormal in appearance with reduced expression of peripheral node addressin (PNAd) explained by a severe reduction in the HEV-associated proteins, glycosylation-dependent cell adhesion molecule 1 (GlyCAM-1), and high endothelial cell sulfotransferase, a PNAd-generating enzyme that is a target of LTalphabeta. In this study, analysis of LTbeta(-/-) mice identifies GlyCAM-1 as another LTbeta-dependent gene. In contrast, TNFRI(-/-) mice, which lose classical NF-kappaB pathway activity but retain alternative NF-kappaB pathway activity, showed relatively normal GlyCAM-1 and HEC-6ST expression in LN-HEV. In addition, in this communication, it is demonstrated that LTbetaR is prominently expressed on LN- and NALT-HEV. Thus, these data reveal a critical role for IKKalpha in LN and NALT development, identify GlyCAM-1 and high endothelial cell sulfotransferase as new IKKalpha-dependent target genes, and suggest that LTbetaR signaling on HEV can regulate HEV-specific gene expression.  相似文献   

4.
Certain lymphoid chemokines are selectively and constitutively expressed in the high endothelial venules (HEV) of lymph nodes and Peyer's patches, where they play critical roles in the directional migration of extravasating lymphocytes into the lymphoid tissue parenchyma. How these chemokines are selectively localized and act in situ, however, remains unclear. In the present study, we examined the possibility that basal lamina-associated extracellular matrix proteins in the HEVs are responsible for retaining the lymphoid chemokines locally. Here we show that collagen IV (Col IV) bound certain lymphoid chemokines, including CCL21, CXCL13, and CXCL12, more potently than did fibronectin or laminin-1, but it bound CCL19 and CCL5 only weakly, if at all. Surface plasmon resonance analysis indicated that Col IV bound CCL21 with a low nanomolar K(D), which required the C-terminal region of CCL21. Col IV can apparently hold these chemokines in their active form upon binding, because the Col IV-bound chemokines induced lymphocyte migration efficiently in vitro. We found by immunohistochemistry that Col IV and CCL21, CXCL13, and CXCL12 were colocalized in the basal lamina of HEVs. When injected s.c. into plt/plt mice, CCL21 colocalized at least partially with Col IV on the basal lamina of HEVs in draining lymph nodes. Collectively, our results suggest that Col IV contributes to the creation of a lymphoid chemokine-rich environment in the basal lamina of HEVs by binding an array of locally produced lymphoid chemokines that promote directional lymphocyte trafficking from HEVs into the lymphoid tissue parenchyma.  相似文献   

5.
Complex mechanisms operate on mucosal tissues to regulate immune responsiveness and tolerance. When the lymphocyte subpopulations from murine nasal-associated lymphoid tissues (NALT) were characterized, we observed an accumulation of B220(low)CD3(low)CD4(-)CD8(-)CD19(-)c-Kit(+) cells. TCR transgenic mice and athymic mice were used for monitoring T cell lineage and the presence of extrathymic T cell precursors. The majority of cells from NALT exhibited a T cell precursor phenotype (CD4(-)CD8(-)CD19(-)c-Kit(+)). Fas-independent apoptosis was their main mechanism of cell death. We also demonstrated that B220(low)CD4(-)CD8(-)CD19(-) cells from NALT exhibited the potential to down-regulate the activation of mature T cells. However, the innate immunity receptor TLR2 was also highly expressed by this cell subpopulation. Moreover, nasal stimulation with a TLR2/6 agonist resulted in a partial activation of the double-negative cells. These results suggest that the immune responses in NALT may be in part modulated by a cell subpopulation that maintains a tolerogenic milieu by its proapoptotic status and suppressive activity, which can be reverted through stimulation of a TLR signaling cascade.  相似文献   

6.
Despite their widespread expression, the in vivo recruitment activities of CCL19 (EBV-induced molecule 1 ligand chemokine) and CXCL12 (stromal cell-derived factor 1) have not been established. Furthermore, although CXCL13 (B lymphocyte chemoattractant) has been shown to induce lymphoid neogenesis through induction of lymphotoxin (LT)alpha1beta2, it is unclear whether other homeostatic chemokines have this property. In this work we show that ectopic expression in pancreatic islets of CCL19 leads to small infiltrates composed of lymphocytes and dendritic cells and containing high endothelial venules and stromal cells. Ectopic CXCL12 induced small infiltrates containing few T cells but enriched in dendritic cells, B cells, and plasma cells. Comparison of CCL19 transgenic mice with mice expressing CCL21 (secondary lymphoid tissue chemokine) revealed that CCL21 induced larger and more organized infiltrates. A more significant role for CCL21 is also suggested in lymphoid tissues, as CCL21 protein was found to be present in lymph nodes and spleen at much higher concentrations than CCL19. CCL19 and CCL21 but not CXCL12 induced LTalpha1beta2 expression on naive CD4 T cells, and treatment of CCL21 transgenic mice with LTbetaR-Fc antagonized development of organized lymphoid structures. LTalpha1beta2 was also induced on naive T cells by the cytokines IL-4 and IL-7. These studies establish that CCL19 and CXCL12 are sufficient to mediate cell recruitment in vivo and they indicate that LTalpha1beta2 may function downstream of CCL21, CCL19, and IL-2 family cytokines in normal and pathological lymphoid tissue development.  相似文献   

7.
CXCL13/CXCR5 and CCL19/CCR7 play a quite important role in normal physiological conditions, but the functions of both chemokine/receptor pairs in pathophysiological events are not well-investigated. We have investigated expression and functions of CXCL13/CXCR5 and CCL19/CCR7 in CD23+CD5+ and CD23+CD5- B cells from cord blood (CB) and patients with B cell lineage acute or chronic lymphocytic leukemia (B-ALL or B-CLL). CXCR5 and CCR7 are selectively expressed on B-ALL, B-CLL, and CB CD23+CD5+ B cells at high frequency, but not on CD23+CD5- B cells. Although no significant chemotactic responsiveness was observed, CXCL13 and CCL19 cooperatively induce significant resistance to TNF-alpha-mediated apoptosis in B-ALL and B-CLL CD23+CD5+ B cells, but not in the cells from CB. B-ALL and B-CLL CD23+CD5+ B cells express elevated levels of paternally expressed gene 10 (PEG10). CXCL13 and CCL19 together significantly up-regulate PEG10 expression in the same cells. We have found that CXCL13 and CCL19 together by means of activation of CXCR5 and CCR7 up-regulate PEG10 expression and function, subsequently stabilize caspase-3 and caspase-8 in B-ALL and B-CLL CD23+CD5+ B cells, and further rescue the cells from TNF-alpha-mediated apoptosis. Therefore, we suggest that normal lymphocytes, especially naive B and T cells, use CXCL13/CXCR5 and CCL19/CCR7 for migration, homing, maturation, and cell homeostasis as well as secondary lymphoid tissues organogenesis. In addition, certain malignant cells take advantages of CXCL13/CXCR5 and CCL19/CCR7 for infiltration, resistance to apoptosis, and inappropriate proliferation.  相似文献   

8.
Peyer's patch and nasal-associated lymphoid tissue (NALT) are mucosal lymphoid tissues that appear similar in structure and function. Surprisingly, we found that NALT, unlike Peyer's patch, was formed independently of lymphotoxin (LT)alpha. Furthermore, using mice deficient in the retinoic acid receptor-related orphan receptor-gamma, we found that NALT was formed in the absence of CD4+CD3- cells, which are thought to be the embryonic source of LTalpha. However, we also found that NALT of LTalpha-/- animals was disorganized and lymphopenic, suggesting that the organization and recruitment of lymphocytes within NALT remained dependent on LTalpha. Finally, we demonstrated that both the structure and function of NALT were restored in LTalpha-/- animals upon reconstitution with normal bone marrow. These results demonstrate that the organogenesis of NALT occurs through unique mechanisms.  相似文献   

9.
Homeostatic chemokines such as CCL19, CCL21, and CXCL13 are known to elicit chemotaxis from naive T and B cells and play a critical role in lymphocyte homing to appropriate zones within secondary lymphoid organs (SLO). Here we tested whether CCL21 and CXCL13 modulate murine lymphocyte motility in the absence of concentration gradients, using videomicroscopy to directly observe the migration of single cells. CCL21 treatment of T cells induced rapid polarization and sustained random migration with average speeds of 5.16 +/- 2.08 microm/min; B cell migration (average velocity 4.10 +/- 1.58 microm/min) was similarly induced by CXCL13. Migration required the presence of both chemokine and adhesion ligands and was sustained for >24 h. Furthermore, in in vitro assays modeling the relative infrequency of Ag-specific T cell-dendritic cell (DC) encounters during primary immune responses, we found that CCL21 addition to T-DC cocultures accelerated the kinetics of CD69 up-regulation and enhanced by 2-fold the proliferation of Ag-specific T cells in a manner dependent on G-protein-coupled receptor signaling in T cells. These results suggest that homeostatic chemokines could substantially impact the dynamics and priming of lymphocytes within SLO even in the absence of significant concentration gradients.  相似文献   

10.
We have already shown that metallophilic macrophages, which represent an important component in the thymus physiology, are lacking in lymphotoxin-β receptor-deficient mice. However, further molecular requirements for the development and correct tissue positioning of these cells are unknown. To this end, we studied a panel of mice deficient in different chemokine ligand or receptor genes. In contrast to normal mice, which have these cells localized in the thymic cortico-medullary zone (CMZ) as a distinct row positioned between the cortex and medulla, in plt/plt (paucity of lymph node T cells) mice lacking the functional CCL19/CCL21 chemokines, metallophilic macrophages are not present in the thymic tissue. Interestingly, in contrast to the CCL19/21-deficient thymus, metallophilic macrophages are present in the CCR7-deficient thymus. However, these cells are not appropriately located in the CMZ, but are mostly crowded in central parts of thymic medulla. The double staining revealed that these metallophilic macrophages are CCR7-negative and CXCR3-positive. In the CXCL13-deficient thymus the number, morphology and localization of metallophilic macrophages are normal. Thus, our study shows that CCL19/21 and its possible signaling through CXCR3 are required for the development of thymic metallophilic macrophages, whereas the CXCL13–CXCR5 signaling is not necessary.  相似文献   

11.
The paucity of lymph node (LN) T cells (plt) mutation in mice results in strongly reduced T cell numbers in LNs and homing defects of both dendritic cells (DCs) and naive T cells. In this study, we investigated the functional significance of the plt phenotype for the generation of antiviral immune responses against cytopathic and noncytopathic viruses. We found that DC-CD8(+) T cell contacts and the initial priming of virus-specific T cells in plt/plt mice occurred mainly in the marginal zone of the spleen and in the superficial cortex of LNs. The magnitude of the initial response and the maintenance of protective memory responses in plt/plt mice was only slightly reduced compared with plt/+ controls. Furthermore, plt/plt mice mounted rapid neutralizing antiviral B cell responses and displayed normal Ig class switch. Our data indicate that the defective homing of DCs and naive T cells resulting from the plt/plt mutation results in a small, but not significant, effect on the induction of protective antiviral T and B cell immunity. Overall, we conclude that the spatial organization of secondary lymphoid T cell zones via the CCR7-CC chemokine ligand 19/CC chemokine ligand 21 pathway is not an absolute requirement for the initial priming and the maintenance of protective antiviral T and B cell responses.  相似文献   

12.
The marginal zone (MZ) of the spleen is an important site for the capture of blood-borne pathogens and a gateway for lymphocytes entering the white pulp. We have recently reported that Leishmania donovani infection results in a remarkably selective loss of MZ macrophages (MZM) from the MZ. To understand the basis of this observation, we have investigated how MZM maintain their anatomical distribution in the steady state in uninfected mice. We now report that plt/plt mice, which lack functional CCL19 and CCL21, have significantly reduced numbers of MZM compared with normal C57BL/6 (B6) mice. Similarly, in B6.CD45.1-->plt/plt chimeras, donor-derived MZM were rare compared with the number observed in reciprocal plt/plt-->B6.CD45.1 chimeras. Moreover, we show that administration of pertussis toxin, an inhibitor of chemokine receptor signaling, to B6 mice results in exit of MZM from the MZ, that MZM can migrate in response to CCL19 and CCL21 in vitro, and that MZM colocalize with CD31+CCL21+ endothelial cells. Collectively, these data indicate that CCL21 and, to a lesser extent, CCL19 play significant roles in the distinctive localization of MZM within the splenic MZ. Deficiency of CCL19 and CCL21, as also previously observed in mice infected with L. donovani, may thus account for the selective loss of MZM seen during this infection.  相似文献   

13.
It remains to be clarified whether dendritic cells (DC) reach the rheumatoid arthritis (RA) synovium, considered an ectopic lymphoid organ, as mature cells or undergo local maturation. We characterized by immunohistochemistry the DC subsets and used tonsils as a control. Immature and mature DC were defined by CD1a and DC-lysosome-associated membrane protein/CD83 expression, respectively. Immature DC were mainly detected in the lining layer in RA synovium. Mature DC were exclusively detected in the lymphocytic infiltrates. The DC-lysosome-associated membrane protein/CD1a ratio was 1.1 in RA synovium and 5.3 in tonsils, suggesting the relative accumulation of immature DC in RA synovium. We then focused on the expression of CCL20/CCR6 and CCL19/CCR7, CCL21/CCR7 chemokine/receptor complex, which control immature and mature DC migration respectively. A close association was observed between CCL20-producing cells and CD1a(+) cells, suggesting the contribution of CCL20 to CCR6(+) cell homing. Conversely, CCL21 and CCL19 expression was only detected in perivascular infiltrates. The association among CCL19/21-producing cells, CCR7 expression, and mature DC accumulation is in line with the roles of these chemokines in mature CCR7(+) DC homing to lymphocytic infiltrates. The role of DC in disease initiation and perpetuation makes chemokines involved in DC migration a potential therapeutic target.  相似文献   

14.
The roles of chemokines CCL19 and CCL21 in Ab production were investigated using plt mutant mice, which lack expression of CCL19 and CCL21-ser in their lymphoid organs. In these mice, the Th response has been shown to tend towards the Th1 type because of accumulation of inflammatory dendritic cells. When plt mice were immunized with 100 μg OVA in CFA, the number of Ab-forming cells in the draining LN, and serum concentrations of OVA-specific IgM and IgG Ab, were very close to those of the control, yet IgG2a Ab in plt mice was increased. In vitro IFN-γ production by the draining LN cells of plt mice was increased. In addition, the ability of helper T cells from plt mice to stimulate Ab production in vitro was prolonged. Also, in the plt mice, in vivo challenge with OVA in incomplete Freund's adjuvant elicited a stronger IgG2a response and a weaker IgG1 response, which is suggestive of a Th1-dominant response. Similar findings were obtained when mice were immunized with 100 μg OVA in alum, except that with alum the increases observed in plt mice were IgG1 produced in vivo and IL-4 produced in vitro by draining LN cells. Furthermore, immunization with alum adjuvant also induced a prolonged in vitro recall response of IFN-γ and IL-4. These findings indicate that plt mice mount an anti-OVA Ab response, and suggest that CCL19 and CCL21 induce prompt Ab responses to antigen, and negatively regulate helper T cell responses in vivo.  相似文献   

15.
NKT cells play important roles in the regulation of diverse immune responses. Therefore, chemokine receptor expression and chemotactic responses of murine TCRalphabeta NKT cells were examined to define their homing potential. Most NKT cells stained for the chemokine receptor CXCR3, while >90% of Valpha14i-positive and approximately 50% of Valpha14i-negative NKT cells expressed CXCR6 via an enhanced green fluorescent protein reporter construct. CXCR4 expression was higher on Valpha14i-negative than Valpha14i-positive NKT cells. In spleen only, subsets of Valpha14i-positive and -negative NKT cells also expressed CXCR5. NKT cell subsets migrated in response to ligands for the inflammatory chemokine receptors CXCR3 (monokine induced by IFN-gamma/CXC ligand (CXCL)9) and CXCR6 (CXCL16), and regulatory chemokine receptors CCR7 (secondary lymphoid-tissue chemokine (SLC)/CC ligand (CCL)21), CXCR4 (stromal cell-derived factor-1/CXCL12), and CXCR5 (B cell-attracting chemokine-1/CXCL13); but not to ligands for other chemokine receptors. Two NKT cell subsets migrated in response to the lymphoid homing chemokine SLC/CCL21: CD4(-) Valpha14i-negative NKT cells that were L-selectin(high) and enriched for expression of Ly49G2 (consistent with the phenotype of most NKT cells found in peripheral lymph nodes); and immature Valpha14i-positive cells lacking NK1.1 and L-selectin. Mature NK1.1(+) Valpha14i-positive NKT cells did not migrate to SLC/CCL21. BCA-1/CXCL13, which mediates homing to B cell zones, elicited migration of Valpha14i-positive and -negative NKT cells in the spleen. These cells were primarily CD4(+) or CD4(-)CD8(-) and were enriched for Ly49C/I, but not Ly49G2. Low levels of chemotaxis to CXCL16 were only detected in Valpha14i-positive NKT cell subsets. Our results identify subsets of NKT cells with distinct homing and localization patterns, suggesting that these populations play specialized roles in immunological processes in vivo.  相似文献   

16.
The encounter between APC and T cells is crucial for initiating immune responses to infectious microorganisms. In the spleen, interaction between dendritic cells (DC) and T cells occurs in the periarteriolar lymphoid sheath (PALS) into which DC and T cells migrate from the marginal zone (MZ) along chemokine gradients. However, the importance of DC migration from the MZ into the PALS for immune responses and host resistance to microbial infection has not yet been elucidated. In this study, we report that following Leishmania donovani infection of mice, the migration of splenic DC is regulated by the CCR7 ligands CCL19/CCL21. DC in plt/plt mutant mice that lack these chemokines are less activated and produce less IL-12, compared with those in wild-type mice. Similar findings are seen when mice are treated with pertussis toxin, which blocks chemokine signaling in vivo. plt/plt mice had increased susceptibility to L. donovani infection compared with wild-type mice, as determined by spleen and liver parasite burden. Analysis of splenic cytokine profiles at day 14 postinfection demonstrated that IFN-gamma and IL-4 mRNA accumulation was comparable in wild-type and plt/plt mice. In contrast, accumulation of mRNA for IL-10 was elevated in plt/plt mice. In addition, plt/plt mice mounted a delayed hepatic granulomatous response and fewer effector T cells migrated into the liver. Taken together, we conclude that DC migration from the MZ to the PALS is necessary for full activation of DC and the optimal induction of protective immunity against L. donovani.  相似文献   

17.
The development and maintenance of secondary lymphoid organs, such as lymph nodes, occur in a highly coordinated manner involving lymphoid chemokine production by stromal cells. Although developmental pathways inducing lymphoid chemokine production during organogenesis are known, signals maintaining cytokine production in adults are still elusive. In this study, we show that thrombomodulin and platelet-derived growth factor receptor α identify a population of fibroblastic reticular cells in which chemokine secretion is controlled by JAM-C. We demonstrate that Jam-C-deficient mice and mice treated with Ab against JAM-C present significant decreases in stromal cell-derived factor 1α (CXCL12), CCL21, and CCL19 intranodal content. This effect is correlated with reduced naive T cell egress from lymph nodes of anti-JAM-C-treated mice.  相似文献   

18.
Activation of the noncanonical pathway through the interaction of lymphotoxin (LT)-alpha(1)beta(2) and LT-betaR is essential for the development of secondary lymphoid organs including lymph nodes (LN) and Peyer's patches (PP). Although TNFR-associated factor (TRAF) 2 and TRAF5 were identified as signal transducers for the LT-betaR, roles for TRAF2 and TRAF5 in the development of secondary lymphoid organs remain obscure. In this study, we show that PP but not mesenteric LN development is severely impaired in traf2(-/-) and traf2(-/-)traf5(-/-) mice. Development of VCAM-1(+) and ICAM-1(+) mesenchymal cells and expression of CXCL13, a crucial chemokine for the development of PP, are severely impaired in PP anlagen in the intestines of traf2(-/-) mice. Surprisingly, TNF-alpha stimulation potently up-regulates cxcl13 mRNA expression in wild-type murine embryonic fibroblasts, which is impaired in traf2(-/-) and relA(-/-) murine embryonic fibroblasts. Moreover, RelA is recruited to the promoter of cxcl13 gene upon TNF-alpha stimulation and PP development is impaired in TNFR type 1 (tnfr1)(-/-) mice. These results underscore a crucial role for the TNFR1-TRAF2-RelA-dependent canonical pathway in the development of PP through up-regulation of cxcl13 mRNA.  相似文献   

19.
Dendritic cells (DC) are able to capture, process, and present exogenous Ag to CD8(+) T lymphocytes through MHC class I, a process referred to as cross-presentation. In this study, we demonstrate that CD103(+) (CD11c(high)CD11b(low)) and CD103(-) (CD11c(int)CD11b(high)) DC residing in the lung-draining bronchial lymph node (brLN) have evolved to acquire opposing functions in presenting innocuous inhaled Ag. Thus, under tolerogenic conditions, CD103(-) DC are specialized in presenting innocuous Ag to CD4(+) T cells, whereas CD103(+) DC, which do not express CD8alpha, are specialized in presenting Ag exclusively to CD8(+) T cells. In CCR7-deficient but not in plt/plt mice, Ag-carrying CD103(+) DC are largely absent in the brLN, although CD103(+) DC are present in the lung of CCR7-deficient mice. As a consequence, adoptively transferred CD8(+) T cells can be activated under tolerizing conditions in plt/plt but not in CCR7-deficient mice. These data reveal that CD103(+) brLN DC are specialized in cross-presenting innocuous inhaled Ag in vivo. Because these cells are largely absent in CCR7(-/-) mice, our findings strongly suggest that brLN CD103(+) DC are lung-derived and that expression of CCR7 is required for their migration from the lung into its draining lymph node.  相似文献   

20.
We have revealed that 100-200 clusters, filled with closely packed lymphocytes, can be found throughout the length of the antimesenteric wall of the mouse small intestine. They are composed of a large B cell area, including a germinal center, and epithelia overlying the clusters contain M cells. A large fraction of B cells displays B220+ CD19+ CD23+ IgM(low)IgD(high)CD5(-)Mac-1(-) phenotype, and the composition of IgA+ B cells is smaller but substantial. To our knowledge, these clusters are the first identification of isolated lymphoid follicles (ILF) in mouse small intestine. ILF can be first detected at 7 (BALB/c mice) and 25 (C57BL/6 mice) days after birth, and lymphoid clusters equivalent in terms of cellular mass to ILF are present in germfree, athymic nude, RAG-2(-/-), TCR-beta(-/-), and Ig mu-chain mutant (mu(-/-)) mice, although c-kit+ cells outnumber B220+ cells in germfree and athymic nude mice, and most lymphoid residents are c-kit+ B220(-) in RAG-2(-/-), TCR-beta(-/-), and mu(-/-) mice. ILF develop normally in the progeny of transplacentally manipulated Peyer's patch (PP)-deficient mice, and decreased numbers of conspicuously atrophied ILF are present in IL-7Ralpha(-/-) PP(null) mice. Neither ILF nor PP are detectable in lymphotoxin alpha(-/-) and aly/aly mice that retain well-developed cryptopatches (CP) and thymus-independent subsets of intraepithelial T cells, whereas ILF, PP, CP, and thymus-independent subsets of intraepithelial T cells disappear from common cytokine receptor gamma-chain mutant mice. These findings indicate that ILF, PP, and CP constitute three distinct organized gut-associated lymphoid tissues that reside in the lamina propria of the mouse small intestine.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号