首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A diverse family of PDZ domains has been identified, but the rules that govern their ligand specificity are not clear. Here we propose a novel classification of PDZ domains based on the nature of amino acids in the two critical positions in the PDZ domain fold. Using these principles, we classified PDZ domains present in the SMART database. Using yeast two-hybrid, in vitro pull-down and plasmon surface resonance assays, we demonstrated that in agreement with their position in the proposed classification the Mint1-1, hINADL-5, and PAR6 PDZ domains display similar dual ligand specificity. The proposed classification helps to organize PDZ domain containing proteins.  相似文献   

2.
PDZ domain proteins of synapses   总被引:12,自引:0,他引:12  
PDZ domains are protein-interaction domains that are often found in multi-domain scaffolding proteins. PDZ-containing scaffolds assemble specific proteins into large molecular complexes at defined locations in the cell. In the postsynaptic density of neuronal excitatory synapses, PDZ proteins such as PSD-95 organize glutamate receptors and their associated signalling proteins and determine the size and strength of synapses. PDZ scaffolds also function in the dynamic trafficking of synaptic proteins by assembling cargo complexes for transport by molecular motors. As key organizers that control synaptic protein composition and structure, PDZ scaffolds are themselves highly regulated by synthesis and degradation, subcellular distribution and post-translational modification.  相似文献   

3.
4.
PDZ domains bind to short segments within target proteins in a sequence-specific fashion. Glutamate receptor-interacting protein (GRIP)/ABP family proteins contain six to seven PDZ domains and interact via the sixth PDZ domain (class II) with the C termini of various proteins including liprin-alpha. In addition the PDZ456 domain mediates the formation of homo- and heteromultimers of GRIP proteins. To better understand the structural basis of peptide recognition by a class II PDZ domain and PDZ-mediated multimerization, we determined the crystal structures of the GRIP1 PDZ6 domain alone and in complex with a synthetic C-terminal octapeptide of human liprin-alpha at resolutions of 1.5 and 1.8 A, respectively. Remarkably, unlike other class II PDZ domains, Ile-736 at alphaB5 rather than conserved Leu-732 at alphaB1 makes a direct hydrophobic contact with the side chain of the Tyr at the -2 position of the ligand. Moreover, the peptide-bound structure of PDZ6 shows a slight reorientation of helix alphaB, indicating that the second hydrophobic pocket undergoes a conformational adaptation to accommodate the bulkiness of the Tyr side chain, and forms an antiparallel dimer through an interface located at a site distal to the peptide-binding groove. This configuration may enable formation of GRIP multimers and efficient clustering of GRIP-binding proteins.  相似文献   

5.
We report a structural comparison of the first PDZ domain of ZO-1 (ZO1-PDZ1) and the PDZ domain of Erbin (Erbin-PDZ). Although the binding profile of Erbin-PDZ is extremely specific ([D/E][T/S]WV(COOH)), that of ZO1-PDZ1 is similar ([R/K/S/T][T/S][W/Y][V/I/L](COOH)) but broadened by increased promiscuity for three of the last four ligand residues. Consequently, the biological function of ZO-1 is also broadened, as it interacts with both tight and adherens junction proteins, whereas Erbin is restricted to adherens junctions. Structural analyses reveal that the differences in specificity can be accounted for by two key differences in primary sequence. A reduction in the size of the hydrophobic residue at the base of the site(0) pocket enables ZO1-PDZ1 to accommodate larger C-terminal residues. A single additional difference alters the specificity of both site(-1) and site(-3). In ZO1-PDZ1, an Asp residue makes favorable interactions with both Tyr(-1) and Lys/Arg(-3). In contrast, Erbin-PDZ contains an Arg at the equivalent position, and this side chain cannot accommodate either Tyr(-1) or Lys/Arg(-3) but, instead, interacts favorably with Glu/Asp(-3). We propose a model for ligand recognition that accounts for interactions extending across the entire binding site but that highlights several key specificity switches within the PDZ domain fold.  相似文献   

6.
N‐Methyl‐D‐aspartate (NMDA) receptors are key components in synaptic communication and are highly relevant in central nervous disorders, where they trigger excessive calcium entry into the neuronal cells causing harmful overproduction of nitric oxide by the neuronal nitric oxide synthase (nNOS) protein. Remarkably, NMDA receptor activation is aided by a second protein, postsynaptic density of 95 kDa (PSD95), forming the ternary protein complex NMDA/PSD95/nNOS. To minimize the potential side effects derived from blocking this ternary complex or either of its protein components, a promising approach points to the disruption of the PSD‐95/nNOS interaction which is mediated by a PDZ/PDZ domain complex. Since the rational development of molecules targeting such protein‐protein interaction relies on energetic and structural information herein, we include a thermodynamic and structural analysis of the PSD95‐PDZ2/nNOS‐PDZ. Two energetically relevant events are structurally linked to a “two‐faced” or two areas of recognition between both domains. First, the assembly of a four‐stranded antiparallel β‐sheet between the β hairpins of nNOS and of PSD95‐PDZ2, mainly enthalpic in nature, contributes 80% to the affinity. Second, binding is entropically reinforced by the hydrophobic interaction between side chains of the same nNOS β‐hairpin with the side chains of α2‐helix at the binding site of PSD95‐PDZ2, contributing the remaining 20% of the total affinity. These results suggest strategies for the future rational design of molecules able to disrupt this complex and constitute the first exhaustive thermodynamic analysis of a PDZ/PDZ interaction.  相似文献   

7.
Binding selectivity and cross-reactivity within one of the largest and most abundant interaction domain families, the PDZ family, has long been enigmatic. The complete human PDZ domain complement (the PDZome) consists of 267 domains and we applied here a Bayesian selectivity model to predict hundreds of human PDZ domain interactions, using target sequences of 22,997 non-redundant proteins. Subsequent analysis of these binding scores shows that PDZs can be divided into two genome-wide clusters that coincide well with the division between canonical class 1 and 2 PDZs. Within the class 1 PDZs we observed binding overlap at unprecedented levels, mediated by two residues at positions 1 and 5 of the second α-helix of the binding pocket. Eight PDZ domains were subsequently selected for experimental binding studies and to verify the basics of our predictions. Overall, the PDZ domain class 1 cross-reactivity identified here implies that auxiliary mechanisms must be in place to overcome this inherent functional overlap and to minimize cross-selectivity within the living cell. Indeed, when we superimpose PDZ domain binding affinities with gene ontologies, network topology data and the domain position within a PDZ superfamily protein, functional overlap is minimized and PDZ domains position optimally in the binding space. We therefore propose that PDZ domain selectivity is achieved through cellular context rather than inherent binding specificity.  相似文献   

8.
The LAP (leucine-rich repeat and PDZ-containing) family of proteins play a role in maintaining epithelial and neuronal cell size, and mutation of these proteins can have oncogenic consequences. The LAP protein Erbin has been implicated previously in a number of cellular activities by virtue of its PDZ domain-dependent association with the C termini of both ERB-B2 and the p120-catenins. The present work describes the NMR structure of Erbin PDZ in complex with a high affinity peptide ligand and includes a comprehensive energetic analysis of both the ligand and PDZ domain side chains responsible for binding. C-terminal phage display has been used to identify preferred ligands, whereas binding affinity measurements provide precise details of the energetic importance of each ligand side chain to binding. Alanine and homolog scanning mutagenesis (in a combinatorial phage display format) identifies Erbin side chains that make energetically important contacts with the ligand. The structure of a phage-optimized peptide (Ac-TGW(-4)ETW(-1)V; IC(50) = approximately 0.15 microm) in complex with Erbin PDZ provides a structural context to understand the binding energetics. In particular, the very favorable interactions with Trp(-1) are not Erbin side chain-mediated (and therefore may be generally applicable to many PDZ domains), whereas the beta2-beta3 loop provides a binding site for the Trp(-4) side chain (specific to Erbin because it has an unusually long loop). These results contribute to a growing appreciation for the importance of at least five ligand C-terminal side chains in determining PDZ domain binding energy and highlight the mechanisms of ligand discrimination among the several hundred PDZ domains present in the human genome.  相似文献   

9.
冯巍  张明杰 《生命科学》2011,(11):1095-1100
PDZ结构域是调控蛋白质/蛋白质相互作用的一类重要结构域,能特异结合蛋白质C末端一段有规律的氨基酸序列。含有PDZ结构域的支架蛋白能够组装成超大的蛋白质复合体来调控细胞内的信号转导通路。最新研究表明,PDZ结构域还能与PIP脂质直接相互作用,从而参与调控PIP脂质信号通路。将综合最新研究进展,阐明PDZ结构域与PIP脂质的作用方式,以及对相关PIP脂质信号转导的调控过程。  相似文献   

10.
PDZ domains in bacterial proteins   总被引:6,自引:1,他引:5  
  相似文献   

11.
The interaction of the glutamate receptor subunits 2 and 3 (GluR2/3) with multi-PDZ domain glutamate receptor-interacting protein (GRIP) is important for the synaptic trafficking and clustering of the receptors. Binding of GluR2/3 to GRIP requires both the fourth and fifth PDZ domains (PDZ4 and PDZ5) to be covalently linked, although only one PDZ domain is directly involved in binding to the receptor tail. To elucidate the molecular basis of this mode of PDZ domain-mediated target recognition, we solved the solution structures of the PDZ45 tandem and the isolated PDZ4 of GRIP. The two PDZ domains form a compact structure with a fixed interdomain orientation. The interdomain packing and the stable folding of both PDZ domains require a short stretch of amino acids N-terminal to PDZ4 and a conserved linker connecting PDZ4 and PDZ5. PDZ4 contains a deformed aB-bB groove that is unlikely to bind to carboxyl peptides. Instead, the domain stabilizes the structure of PDZ5.  相似文献   

12.
Crystal structures of the PDZ2 domain of the scaffolding protein syntenin, both unbound and in complexes with peptides derived from C termini of IL5 receptor (alpha chain) and syndecan, reveal the molecular roots of syntenin's degenerate specificity. Three distinct binding sites (S(0), S(-1), and S(-2)), with affinities for hydrophobic side chains, function in a combinatorial way: S(-1) and S(-2) act together to bind syndecan, while S(0) and S(-1) are involved in the binding of IL5Ralpha. Neither mode of interaction is consistent with the prior classification scheme, which defined the IL5Ralpha interaction as class I (-S/T-X-phi) and the syndecan interaction as class II (-phi-X-phi). These results, in conjunction with other emerging structural data on PDZ domains, call for a revision of their classification and of the existing model of their mechanism.  相似文献   

13.
14.
15.
PDZ domains: folding and binding   总被引:3,自引:0,他引:3  
Jemth P  Gianni S 《Biochemistry》2007,46(30):8701-8708
The PDZ domain is one of the most common protein-protein interaction domains in humans, and it is found in all kingdoms of life. We will review recent progress in the understanding of biophysical aspects of PDZ domains with emphasis on the folding and binding reactions. Finally, we discuss an intriguing correlation between stability and binding of peptide for PDZ2 from PTP-BL.  相似文献   

16.

Background  

PDZ domain is a well-conserved, structural protein domain found in hundreds of signaling proteins that are otherwise unrelated. PDZ domains can bind to the C-terminal peptides of different proteins and act as glue, clustering different protein complexes together, targeting specific proteins and routing these proteins in signaling pathways. These domains are classified into classes I, II and III, depending on their binding partners and the nature of bonds formed. Binding specificities of PDZ domains are very crucial in order to understand the complexity of signaling pathways. It is still an open question how these domains recognize and bind their partners.  相似文献   

17.
A series of multivalent peptides, with the ability to simultaneously bind two separate PDZ domain proteins, has been designed, synthesized, and tested by isothermal titration calorimetry (ITC). The monomer sequences, linked with succinate, varied in length from five to nine residues. The thermodynamic binding parameters, in conjunction with results from mass spectrometry, indicate that a ternary complex is formed in which each peptide arm binds two equivalents of the third PDZ domain (PDZ3) of the neuronal protein PSD-95.  相似文献   

18.
19.
PDZ domains are modular protein units that play important roles in organizing signal transduction complexes. PDZ domains mediate interactions with both C-terminal peptide ligands and other PDZ domains. Here, we used PDZ domains from neuronal nitric oxide synthase (nNOS) and postsynaptic density protein-95 (PSD-95) to explore the mechanism for PDZ-dimer formation. The nNOS PDZ domain terminates with a approximately 30 residue amino acid beta-finger peptide that is shown to be required for nNOS/PSD-95 PDZ dimer formation. In addition, formation of the PDZ dimer requires this beta-finger peptide to be physically anchored to the main body of the canonical nNOS PDZ domain. A buried salt bridge between the beta-finger and the PDZ domain induces and stabilizes the beta-hairpin structure of the nNOS PDZ domain. In apo-nNOS, the beta-finger peptide is partially flexible and adopts a transient beta-strand like structure that is stabilized upon PDZ dimer formation. The flexibility of the NOS PDZ beta-finger is likely to play a critical role in supporting the formation of nNOS/PSD-95 complex. The experimental data also suggest that nNOS PDZ and the second PDZ domain of PSD-95 form a "head-to-tail" dimer similar to the nNOS/syntrophin complex characterized by X-ray crystallography.  相似文献   

20.
In order to identify proteins that bind to the PDZ domain of Erbin, we tested the C-termini of several proteins in a yeast two-hybrid assay. ErbB2, APC, beta-catenin, c-Rel and HTLV-1 Tax were identified as ligands of the PDZ domain of Erbin. The interactions were verified by co-immunoprecipitation experiments. These findings demonstrate the promiscuity of the PDZ domain of Erbin.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号