首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 688 毫秒
1.
太行山草地建群种远东羊茅地上生物量动态的研究   总被引:1,自引:0,他引:1       下载免费PDF全文
 远东羊茅地上生物量在10.80—979.30gFW/m2或5.00—351.33gDW/m2之间变动,峰期值在902.87—1092.15gFW/m2或331.45—370.53gDW/m2之间变动。地上生物量的季节生长曲线呈单峰型,峰值期出现在7月份。地上生物量的增长与生长高度的增长和投影盖度的扩大呈正直线相关(R=0.8929和R=0.9066)。地上生物量和生长高度的最高生长速率出现于同期,而两者的相对生长速率最高值则出现在生物量峰值期之前。在生长季节期间,降雨量的多少是影响地上生物量变化的主要生态因子,两者的直线回归方程为y=6.2596+1.4089x(R=0.9250)。  相似文献   

2.
中国东北羊草草原生长季内产量生态模拟及信息参数应用   总被引:3,自引:0,他引:3  
通过对中国北方羊草草原生物量动态、生物量垂直空间格局及其与环境因子相互关系等主要产量生态数量特征的模拟与内在相关性的研究 ,结果表明 ,草地地上生物量的生长规律呈“单峰”型 ,最大地上生物量出现在 8月 5日 ,其值为1 97.3g· m- 2 干物质 ,而后下降 ;在达到峰值前 ,符合 logistic模型 ,进一步分析模型有关特征值获得了草地有效管理期为返青后的第 73天到第 1 1 9天等十分重要的产量生态信息参数。生长季内地上生物量动态与前一个月的平均气温 ( R=0 .82 87)和积累降雨量 ( R=0 .8932 )均呈极显著正相关 ,这是实施科学水肥管理的重要参数 ;而地上部生物量最大绝对增长速率 ( AGR)出现在 6月 2 0日至 7月 5日 ,平均为 3.35 33g· m- 2 · d- 1干物质 ;而地上部生物量最大相对增长速率( RGR)出现在 5月 2 0日至 6月 5日 ,平均为 0 .0 6 6 2 g· g- 1· d- 1干物质 ;在生长后期绝对增长速率和相对增长速率均出现负值 ,这表明地上部生物量的生长效率在生长初期最高。地上生物量垂直空间格局由下向上呈幂函数变化 ,其模型为 :Bn=a Xb,其中 93%的产量集中在 4 0 cm以下 ,这对不同的家畜的选择利用与刈割利用提供了依据 ;不同种群对草原牧草产量形成的作用是不同的 ,羊草种群对草原牧草产量形成的正向  相似文献   

3.
假苇拂子茅群落生物量初步研究   总被引:16,自引:0,他引:16  
本文研究了假苇子拂子茅群落的生物量,测定了地上和地下生物量及其季节和空间变化。研究结果表明,假苇拂子茅群落生物量季节动态较为明显,9月中旬地上生物量达峰值;地下生物量主要集中在0-10cm,季节变化亦很明显,5月最低,9月达峰值,最低值和最高值出现都与春季营养体萌发有关,假苇拂子茅群落F/C值偏低,峰值期仅为0.388。  相似文献   

4.
本文研究了陕北黄土高原区森林地带分布面积广、草质优良,而且在畜牧业生产中有重要意义的大油芒群落生物量,测定了地上、地下生物量以及季节和空间变化。研究结果表明,大油芒群落生物量季节动态较为明显,9月中旬地上生物量达到峰值(243.1g/m2);地下生物量在返青期较高,生长旺盛期略偏低,枯黄期最高,这同植物生长发育阶段的物质运转有关。  相似文献   

5.
根据静态气室法对大针茅(StipagrandisSmirn)草原整个生长季土壤呼吸和地表凋落物分解释放CO2量的测定结果,分析了大针茅草原土壤呼吸和凋落物分解速率的季节动态,并探讨了其与地上、地下生物量及环境因子的关系。结果表明:(1)在整个观测期内,大针茅草原由土壤呼吸和地表凋落物分解所释放CO2速率的季节动态呈梯形曲线,8月下旬达到最大值2.51gC·m-2·d-1;(2)CO2排放速率的季节变化趋势与地上生物量,尤其是地上绿色生物量部分的季节动态有一定同步性,而与地下生物量的季节变化趋势不同步,甚至相反;(3)地表凋落物层有减缓土壤向大气排放CO2的作用;(4)土壤呼吸和地表凋落物分解释放CO2的速率(y)与土壤湿度(x)显著相关,其对数回归模型为:y=3.469log10x-2.053(r=0.92,P<0.01)。  相似文献   

6.
草地植物群落地上生物量非破坏性估测方法的探讨   总被引:2,自引:0,他引:2       下载免费PDF全文
 羊草群落的高度和盖度与地上生物量存在良好的复相关关系(R=0.9316),所获多元回归方程可用于该群落地上生物量的估测。通过对羊草群落、羊草+杂类草群落和贝加尔针茅群落植冠红光(0.63—0.69μm)和近红外辐射(0.76—0.90μm)反射率实测数据的分析,表明这些群落的光谱反射率比IR、IR/R和VI与地上生物量呈高度的指数相关关系,其中由VI和IR/R所获各群落不同生长时期地上生物量回归模型的估测效果较好。  相似文献   

7.
对自然状态下黑河流域中游水陆交错带湿地芦苇(Phragmites australis)种群生态特征以及地表淹水深度进行调查,分析该区芦苇种群的盖度、高度、密度和地上生物量等生态特征的季节变化和地表水位变化对芦苇种群生态特征的影响。结果表明:黑河中游水陆交错带湿地芦苇种群的生长过程具有明显季节性规律,盖度随着季节的推移呈先升高后下降的趋势,最高值出现在8月下旬,为99.7%;高度则随着季节的推移逐渐升高;密度随着季节的变化具有先升高后下降再升高的特点;地上生物量在5~6月、7~8月间增长较快,6~7月间增长相对较慢,8月下旬达到最大值,随后逐渐减少。淹水深度对芦苇种群的生态特征有显著影响,种群盖度、高度、密度、地上生物量的变化速率与淹水深度变化速率均有显著相关性(p<0.05)。  相似文献   

8.
准确评估地上生物量对优化草地资源管理和理解草地碳、水和能量平衡具有重要意义。该文通过近地遥感归一化植被指数(NDVI)构建最优经验模型, 对青藏高原高寒草地地上生物量进行估算。该文利用2018-2019年5-9月野外实测的地上生物量和植物冠层光谱仪(RapidSCAN)测定的NDVIRS数据, 构建了生长季不同时期地上生物量的估算模型; 并结合2018年NetCam物候相机测定的NDVICam时间序列数据, 实现地上生物量季节动态的模拟。主要结果: (1) NDVICamNDVIRS与地上生物量具有相似的单峰型季节变化格局, 但NDVI峰值出现的时间(7月)较地上生物量(8月)更早; (2)基于NDVI的生物量估算最优经验模型在5、7和9月是幂函数, 在6和8月是二次多项式, 估算精度为0.29-0.77; (3)基于NDVICam时间序列数据, 生长季不同时期建模(R2 = 0.91)较单一时期(9月)建模(R2 = 0.49)对地上生物量季节动态的估算更为准确。这些结果表明, 近地遥感是估算高寒草地植物地上生物量的有效手段, 开展季节性植物生长调查将有助于准确评估草地资源。  相似文献   

9.
本文所研究的人工羊草草地是在内蒙古锡林河中游南岸羊草草原的基础上建成的。此项研究试就人工种植的羊草(Aneurolepidium chinensis)和原生群落建群种羊草在高生长和生物量增长方面作一比较。 (1)从返青后四十天开始,人工羊草种群的高生长表现为曲线 种群平均高度最大值达52.98cm,并在垂直结构上控制着群落的中层和上层;原生群落中羊草的高生长曲线为:种群平均高度最大值为40.61cm。(2) 人工羊草种群的生物量按方程增长,植物地上部分的干物质含量依直线CA=27.4874+0.2245t变化。生物量峰值(172.00g/m2)和干物质含量极值 (58.24%)都超过了天然生长的羊草。目前人工草地适于作为割草场使用,可获得优质高产的牧草。  相似文献   

10.
青海海北地区矮嵩草草甸生物量和能量的分配   总被引:15,自引:0,他引:15       下载免费PDF全文
 此项研究工作于1980年在海北高寒草甸生态系统定位站进行。本文研究了青藏高原地区分布面积广、草质优良,在畜牧业生产中有重要意义的矮嵩草草甸的生物量和它的能量分配关系,测定了地上,地下生物量和不同物候期主要植物类群的热值含量。研究结果表明:矮嵩草草甸生物量的季节动态较为明显,地上生物量随生长季节的水热条件和植物的生长发育阶段而变化,9月初地上生物量达到峰值(296.66g/m2),此后生物量逐渐减少,到枯黄前而停止;地下根系生物量在返青期较高,生长旺盛期最低,枯黄期最高,这同植物生长发育阶段的物质运转有关。矮嵩草草甸主要植物类群的热值以生长旺盛期最高,枯黄期次之,返青期较低;各类草的热值,以莎草类最高,禾草类次之,杂类草最低。矮嵩草草甸总初级生产量为909.49g/m2·年,其中地上为296.66g/m2·年,地下为596.67g/m2·年,枯枝落叶为16.16g/m2·年。群落在不同生长期所固定的太阳能数值不一,以枯黄前所固定的太阳能为最多,生长期整个群落的光能利用率为0.295%。  相似文献   

11.
大针茅草原地上生物量形成的规律与特点   总被引:3,自引:0,他引:3       下载免费PDF全文
大针茅草原能进行光合作用的时间为160—170天。地上生物量的季节生长曲线呈单峰型,适宜的收获期在8月份。地上生物量的增长与群落的高度增长呈明显相关(R=0.959)。立枯量于6月份开始出现,其增长规律与绿色量呈相反的趋势。刈割后的再生草量以春季(5月份)刈割后的产量最高。仲夏(7月份)刈割对草场生产力的威胁最大。群落产量结构的研究表明:5己于人cm以上可供牲畜采食的部分约占总产量的70—80%。  相似文献   

12.
 线叶菊草地总地上生物量的增长规律符合Logistic增长,最大值出现在8月中旬,为198.15g/m2。返青后,线叶菊较同群落内的禾草和杂类草提前达到其生物量最大值。线叶菊、禾草和杂类草的地上生物量的增长与降水量和≥5℃积温呈显著或极显著正相关。地下生物量的季节变化曲线大致为“U”字形,最低值出现在8月中旬,而在早春和秋末时期地下生物量基本相等。地下生物量最大值出现在10月中旬,为1608.5g/m2(干物质)。该草地地上部分净第一性生产力为256.74gm2·a,地下部分为599.51g/m2·a(干物重计)。将生长季内以凋落物形式损失的生物量计算在内,得到的地上净第一性生产力比用极大现存量法估测的结果高出29.57%。  相似文献   

13.
干旱气候对白羊草群落地下部生长影响的初步观察   总被引:15,自引:5,他引:10  
对大旱之后白羊草(Bothrichloa ischaemum)群落地下部的生长状况与1991平水年该群落地下部的生长关况进行比较,以反映干旱气候对白羊草群落地下部生长的影响,结果表明,极旱年下生物量的峰值达到1249g.m^-2,比平水年峰值586g.m^-2高1倍多,在极旱年或旱季根系主要集中分布的层次下移,而在平水年或雨季则上移,极旱年群落地下生物量的周转值为52.64%,显著高于平水年时的周转值18.36%,极旱年群落的地下生物量与地上生物量在生长中互为消长关系,而平水年两者在生长季同时增另,基本呈直线关系,极旱年群落的地下生物量与地上生物量比为11.19,显著高于水平年时的比值2.03,极旱年群落的地下净初级生产量为390.7g.m^-2.年^-1,比平水年时的生产量107.6g.m^-2.年^-1高2.63倍。  相似文献   

14.
陕北黄土高原铁杆蒿群落生物量初步研究   总被引:13,自引:3,他引:10  
朱志诚  贾东林 《生态学报》1993,13(3):243-251
本文研究了陕北黄土高原森林区和森林草原地带分布面积广、在群落演替过程中具明显地位的铁杆蒿群落生物量,测定了地上和地下生物量的季节、空间和地带性变化。结果表明,铁杆蒿群落生物量季节动态明显,9月下旬地上和地下生物量均达峰值,分别为241.94g/m~2和1860.46g/m~2,地下生物量6月出现负值,这与植物生长发育阶段的物质运转有关。森林草原由于水条件的限制,地上和地下生物量均低于森林区。  相似文献   

15.
徐满厚  刘敏  翟大彤  薛娴  彭飞  尤全刚 《生态学报》2016,36(18):5759-5767
以青藏高原高寒草甸为研究区,设置模拟增温实验样地,于2010年开始持续增温,2012和2013年调查植被地上-地下生物量,探讨气候变暖背景下高寒草甸生物量的动态变化及其与环境因子的关系。结果表明:(1)增温处理下地上-地下生物量与根冠比的中值和平均值大于对照,其中地下生物量(变异系数为0.30)的增加幅度大于地上生物量(变异系数为0.27),根冠比的变异系数(0.33)大于地上-地下生物量,这表明增温可导致高寒草甸植被生物量分配出现差异。(2)地上-地下生物量呈极显著的幂指数函数关系(R~2=0.147,P0.001),表现为异速生长,但在增温处理下异速生长出现减缓(R~2=0.102,P0.05)。(3)地上生物量受深层土壤水分和浅层土壤温度影响较大,地下生物量受深层土壤水分和深层土壤温度影响较大;土壤温度对地上-地下生物量的影响强于土壤水分,表现为20 cm深度土壤温度对地上生物量(R=0.582,P0.01)和根冠比(R=-0.238,P0.05)影响较大,60 cm深度土壤温度对地下生物量影响较大(R=0.388,P0.01),100 cm深度土壤水分对地上生物量(R=0.423,P0.01)和地下生物量(R=0.245,P0.05)影响较大,这说明增温导致浅层土壤温度对生物量分配产生影响,使生物量更多分配到地上部分,而冻土融化致使深层土壤水分对生物量产生影响。  相似文献   

16.
张文辉  祖元刚 《植物研究》1998,18(1):118-118
在不同生境条件下的固定样地内,观察分析了裂叶沙参种群的地上部分在一个生长季的生长过程和物侯特点。生长于灌木群落下,裂叶沙参地上部分生物量生长(y,g)与时间(x、d)的关系可以用公式:y=0.2872-0.0187x+0.0009x^2表示;地上各器官茎、叶、花枝、花芽、花和果的生物量(y,克)与生长时间(x,天)的关系可以用公式:y=b0+b1x+b2x^2表示。从4月10日到8月15日的速生期  相似文献   

17.
全杜娟  魏岩  周晓青  严成 《生态学报》2012,32(11):3352-3358
通过对角果藜(Ceratocarpus arenarius L.)的地上与地下部分生长动态以及生物量配置进行研究,结合其生活周期内土壤含水量变化规律,分析了角果藜的生态适应对策。结果表明:①角果藜植株高度生长速率随时间变化呈"增加—减缓—增加"的模式,而根的生长速率呈"逐渐减缓"的模式。角果藜株高、垂直根的生长速率变化同土壤水分的变化密切相关。②地上部分生物量在5月果实初形成时期和8月至9月的果实成熟期形成两个高峰值。地下部分生物量在3月至5月增长缓慢,随后以最大增长速率迅速达到地下生物量的最大值。角果藜地上、地下生物量的积累动态体现了其与季节变化相吻合的生长发育特点。③具有地上地下结果性的角果藜的生殖配置高达40%以上,高于一次结实的草本植物的生殖投入。这些特性是角果藜适应荒漠生境生长策略选择的综合表现。  相似文献   

18.
缺苞箭竹密度对其生物量分配格局的影响   总被引:5,自引:0,他引:5  
研究了一个生长季节内缺苞箭竹(Fargesiadenudata)紫果云杉(Piceapurpurea)原始林下不同密度缺苞箭竹群落的生物量及其分配格局.结果表明,缺苞箭竹群落生物量、净生产量、平均单株生物量、地上部分生物量、地下部分生物量随密度的增加而增大,而缺苞箭竹地上部分净增长率却随密度的增加而降低.在一个生长季节内,缺苞箭竹地上部分与地下部分生长相关性随密度的增加而增大.除指数生长期(7、8月)外,缺苞箭竹地上部分/地下部分生物量比在生长季节内随密度增加而增大,但在缺苞箭竹生长的指数生长期,中等密度有较大的地上部分/地下部分生物量比.缺苞箭竹生物量在各器官的分配取决于密度和生长时期,密度对缺苞箭竹的生物量分配格局有显著影响.  相似文献   

19.
沙打旺种群生长期地上部生物量、营养物质产量呈单峰曲线。各器官生物量及营养物质的高峰期不一致,地上部生物量在9月上旬(花期)达最大值;其中茎杆量峰值在花期以后;叶量峰值在花期以前。粗蛋白,粗脂肪产量高峰在生物量高峰前,分别为166g/m2,29g/m2;粗纤维、无氮浸出物产量高峰在生物量高峰后,达591g/m2、663g/m2。沙打旺生物量形成过程中土壤水分逐渐亏缺。从返青到生物量高峰,地上部生物量与根区3m土层贮水量呈显著负相关(r=-0.7726**)。沙打旺绝对生长速度为一单峰曲线,在7月上旬达最大值(14.9g/m2·d):净同化率在返青后有一短暂上升期;相对生长速度持续下降。不同器官在不同生长发育阶段营养成份含量及其积累速度显著不同。  相似文献   

20.
为了解在亚热带地区人工栽培条件下皇竹草(Pennisetum hyardum)生物量构件随生长时间的变化, 于广州地区无人工施肥和灌溉且肥力偏差的典型赤红壤土旱地上, 分别对种植后4、6、12、18 和24 个月的皇竹草地典型样方进行了生物量构件调查分析。皇竹草在分株生长过程中, 叶片生物量呈线性或幂函数规律增长, 相关性模型确定系数R2为0. 279-0.995; 茎秆生物量呈线性或幂函数规律增长, 相关性模型确定系数较高, R2 为0.89-1, 茎秆生物量增长规律更为稳定。随着分株总生物量的增长, 6 个月生长期茎秆生物量、叶片生物量增长速率高于12 个月生长期。枯叶生物量在6 个月生长期有着较为稳定的增长规律, 相关性模型确定系数R2 为0.818-0.989。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号