首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
DNA topoisomerase I relaxes supercoiled DNA by the formation of a covalent intermediate in which the active-site tyrosine is transiently bound to the cleaved DNA strand. The antineoplastic agent camptothecin specifically targets DNA topoisomerase I, and several mutations have been isolated that render the enzyme camptothecin-resistant. The catalytic and structural dynamical properties of a human DNA topoisomerase I mutant in which Ala-653 in the linker domain was mutated into Pro have been investigated. The mutant is resistant to camptothecin and in the absence of the drug displays a cleavage-religation equilibrium strongly shifted toward religation. The shift is mainly because of an increase in the religation rate relative to the wild type enzyme, indicating that the unperturbed linker is involved in slowing religation. Molecular dynamics simulation indicates that the Ala to Pro mutation increases the linker flexibility allowing it to sample a wider conformational space. The increase in religation rate of the mutant, explained by means of the enhanced linker flexibility, provides an explanation for the mutant camptothecin resistance.  相似文献   

2.
Increased DNA topoisomerase I activity in aging human cell chromatin   总被引:1,自引:0,他引:1  
Chromatin-associated DNA topoisomerase I activity was measured in human diploid fibroblasts during in vitro aging. No diilerence was detected as a function of cell age in the nicking and the closing activities of the DNA-unwinding enzyme. The capacity of type-I topoisomerase to relax superhelical DNA molecules was, however, increased in aged cells. An age-related increase in nucleoprotein content was also observed.  相似文献   

3.
DNA topoisomerases are important clinical targets for antibacterial and anticancer therapy. At least one type IA DNA topoisomerase can be found in every bacterium, making it a logical target for antibacterial agents that can convert the enzyme into poison by trapping its covalent complex with DNA. However, it has not been possible previously to observe the consequence of having such a stabilized covalent complex of bacterial topoisomerase I in vivo. We isolated a mutant of recombinant Yersinia pestis topoisomerase I that forms a stabilized covalent complex with DNA by screening for the ability to induce the SOS response in Escherichia coli. Overexpression of this mutant topoisomerase I resulted in bacterial cell death. From sequence analysis and site-directed mutagenesis, it was determined that a single amino acid substitution in the TOPRIM domain changing a strictly conserved glycine residue to serine in either the Y. pestis or E. coli topoisomerase I can result in a mutant enzyme that has the SOS-inducing and cell-killing properties. Analysis of the purified mutant enzymes showed that they have no relaxation activity but retain the ability to cleave DNA and form a covalent complex. These results demonstrate that perturbation of the active site region of bacterial topoisomerase I can result in stabilization of the covalent intermediate, with the in vivo consequence of bacterial cell death. Small molecules that induce similar perturbation in the enzyme-DNA complex should be candidates as leads for novel antibacterial agents.  相似文献   

4.
The aim of the present study was to identify proteins that bind nicked DNA intermediates formed in the course of base excision repair (BER) in cell free extracts of Saccharomyces cerevisiae. In mammalian cells, nicks in DNA are targets of proteins such as PARP-1 or XRCC1 that have no homologues in yeast. One of the most promising methodologies to trap proteins that interact with damaged DNA lies in using a photocrosslinking technique with photoactivable dNTP analogues such as exo-N-{2-[N-(4-azido-2,5-difluoro-3-chloropyridine-6-yl)-3-aminopropionyl]-aminoethyl}-2'-deoxycytidine-5'-triphosphate (FAP-dCTP) for enzymatic synthesis of DNA probes with a photoreactive dNMP residue at the 3'-margin of a nick. Using this approach, we identified a major covalent DNA-protein adduct between a nick-containing 34-mer DNA duplex and a protein of a molecular mass of around 100-kDa. Unexpectedly, the formation of the 100-kDa adduct did not require the incorporation of the photoreactive dNMP residue at the 3'-margin of the nick nor exposure to near UV-light. However, the formation of the 100-kDa adduct strictly required a nick or a short gap in the DNA probe. Furthermore, the 100-kDa adduct was not detected in yeast extracts lacking DNA topoisomerase I (Top1). To further establish the nature of crosslinked protein, yeast Top1 was tagged with a Myc-epitope. In this case, the mobility of the Top1-DNA adduct increased by 7- kDa. Therefore, our data speak in favor of Top1 trapping by nicked DNA. In support of this hypothesis, purified yeast Top1 was also crosslinked to nicked DNA structures. Undamaged, uracil- and abasic (AP) site-containing DNAs were unable to trap Top1 under the same assay conditions. Since nicked DNA structures are frequently formed in the course of BER, their covalent linkage to Top1 has the potential to interfere with BER in vivo.  相似文献   

5.
In this study we report that human placenta is an excellent source of DNA topoisomerase I. The enzyme can be isolated in the fully intact 100 kDa form although lower molecular mass species are also observed. Occasionally, the enzyme can be resolved into two peaks of activity by chromatography on phosphocellulose. As expected, the enzyme promotes marked cleavage of DNA in response to the anticancer drug camptothecin. Because of this property and the ready availability of human placenta, the enzyme should prove to be useful in the development and testing of new anticancer drugs that target topoisomerase I.  相似文献   

6.
The therapeutic anticancer potential of flavonoids shown by recent research needs a greater understanding of these compounds. They are antioxidants and antimutagenic agents that can inhibit tumor promotion and transformation and can modify the activity of a large number of mammalian enzyme systems, such as human DNA-topoisomerases. Poisons of topoisomerases generate toxic DNA damage by stabilization of the covalent DNA-topoisomerase cleavage complex and some of them have therapeutic efficacy in human cancer. The present investigation has assayed ten flavonoids, isolated in our laboratory, as topoisomerase I poisons obtaining myricetin and myricetin-3-galactoside as two new topoiosomerase I poisons. These two flavonoids, and the plant extract from which they were isolated, were assayed for cytotoxic activity against three human cancer cell lines using the SRB assay. Taking into account our previous research, structural requisites implicated in the topoisomerase poisoning are discussed.  相似文献   

7.
Human topoisomerase I is composed of four major domains: the highly charged NH(2)-terminal region, the conserved core domain, the positively charged linker domain, and the highly conserved COOH-terminal domain. Near complete enzyme activity can be reconstituted by combining recombinant polypeptides that approximate the core and COOH-terminal domains, although DNA binding is reduced somewhat for the reconstituted enzyme (Stewart, L., Ireton, G. C., and Champoux, J. J. (1997) J. Mol. Biol. 269, 355-372). A reconstituted enzyme comprising the core domain plus a COOH-terminal fragment containing the complete linker region exhibits the same biochemical properties as a reconstituted enzyme lacking the linker altogether, and thus detachment of the linker from the core domain renders the linker non-functional. The rate of religation by the reconstituted enzyme is increased relative to the forms of the enzyme containing the linker indicating that in the intact enzyme the linker slows religation. Relaxation of plasmid DNA by full-length human topoisomerase I or a 70-kDa form of the enzyme that is missing only the non-essential NH(2)-terminal domain (topo70) is inhibited approximately 16-fold by the anticancer compound, camptothecin, whereas the reconstituted enzyme is nearly resistant to the inhibitory effects of the drug despite similar affinities for the drug by the two forms of the enzyme. Based on these results and in light of the crystal structure of human topoisomerase I, we propose that the linker plays a role in hindering supercoil relaxation during the normal relaxation reaction and that camptothecin inhibition of DNA relaxation depends on a direct effect of the drug on DNA rotation that is also dependent on the linker.  相似文献   

8.
The discovery of new topoisomerase I inhibitors is necessary since most of the antitumor drugs are targeted against type II and only a very few can specifically affect type I. Topoisomerase poisons generate toxic DNA damage by stabilization of the covalent DNA-topoisomerase cleavage complex and some have therapeutic efficacy in human cancer. Two iridoids, aucubin and geniposide, have shown antitumoral activities, but their activity against topoisomerase enzymes has not been tested. Here it was found that both compounds are able to stabilize covalent attachments of the topoisomerase I subunits to DNA at sites of DNA strand breaks, generating cleavage complexes intermediates so being active as poisons of topoisomerase I, but not topoisomerase II. This result points to DNA damage induced by topoisomerase I poisoning as one of the possible mechanisms by which these two iridoids have shown antitumoral activity, increasing interest in their possible use in cancer chemoprevention and therapy.  相似文献   

9.
We have initiated a genetic analysis of the physiologically important enzyme type I DNA topoisomerase in mouse. The exon-intron structures of the 5 part and the 3 part of the active gene, Top-1, were determined and shown to be quite similar to those of the previously determined human gene TOP1. The active mouse gene was mapped to the distal Chromosome (Chr) 2. In addition, the mouse genome contains one truncated processed topoisomerase-I-related pseudogene (retroposon), Top-1ps, on Chr 16. The Top-1ps locus, together with the immunoglobulin-lambda-light-chain locus, defines and additional conserved linkage group common to murine Chr 16 and human Chr 22, the site of the human pseudogene TOP1P2. The mapping data suggest that the pseudogene was established before mammalian radiation. Structural features, shared by the mouse and the human pseudogene, support this possibility.  相似文献   

10.
Chloroplast DNA topoisomerase I from cauliflower   总被引:1,自引:0,他引:1  
An ATP-independent DNA topoisomerase has been isolated from chloroplasts of cauliflower leaves (Brassica oleracea var. botrytis) through DEAE-cellulose, AF-blue Toyopearl, and hydroxyapatite column chromatography. The sedimentation coefficient and Stokes radius of this enzyme are 3.6S and 3.6 nm, respectively, and the molecular weight of native enzyme is estimated to be 54,000. This enzyme changes the linking number in steps of one. The enzyme activity is stimulated by MgCl2, and this enzyme shows optimum activity at 30 degrees C in the range of 3 mM MgCl2 + 100 mM KCl-10 mM MgCl2 + 50 mM KCl. The enzyme activity was reduced remarkably by N-ethylmaleimide, indicating that a free sulfhydryl group is important for the activity; heparin and ellipticine also reduced the activity. Both cauliflower chloroplast topoisomerase and spinach chloroplast topoisomerase can relax positive supercoils as well as negative supercoils. From these properties, cauliflower chloroplast topoisomerase can be classified as a eukaryotic type I DNA topoisomerase.  相似文献   

11.
The discovery of new topoisomerase I inhibitors is necessary since most of the antitumor drugs are targeted against type II and only a very few can specifically affect type I. Topoisomerase poisons generate toxic DNA damage by stabilization of the covalent DNA-topoisomerase cleavage complex and some have therapeutic efficacy in human cancer. Two iridoids, aucubin and geniposide, have shown antitumoral activities, but their activity against topoisomerase enzymes has not been tested. Here it was found that both compounds are able to stabilize covalent attachments of the topoisomerase I subunits to DNA at sites of DNA strand breaks, generating cleavage complexes intermediates so being active as poisons of topoisomerase I, but not topoisomerase II. This result points to DNA damage induced by topoisomerase I poisoning as one of the possible mechanisms by which these two iridoids have shown antitumoral activity, increasing interest in their possible use in cancer chemoprevention and therapy.  相似文献   

12.
Inhibition of HeLa cell DNA topoisomerase I by ATP and phosphate.   总被引:3,自引:0,他引:3       下载免费PDF全文
The relaxation activity of DNA topoisomerase I from HeLa cell nuclei is strongly inhibited by a variety of purine nucleotides in the presence but not absence of 1 mM potassium phosphate. For ATP, 3-4 mM causes nearly complete inhibition. The 2'-and 3'-AMP isomer are active as well in the presence of 1 mM phosphate, but the 5'-AMP isomer and adenosine are inert. At 3 mM ATP, the titration curve for phosphate is sigmoidal with inhibition beginning abruptly at about 0.5 mM. The negatively-supercoiled DNA isolated from an "inhibited" reaction is relaxed as well as the standard DNA template in the absence of ATP and phosphate suggesting that inhibition does not result from an alteration of the template which protects against its relaxation. Relaxation of positively-supercoiled DNA is also inhibited. Catalysis by E. coli DNA topoisomerase I and HeLa DNA topoisomerase II is not inhibited at concentrations of ATP and phosphate sufficient to cause 80-90% inhibition of HeLa type 1 enzyme.  相似文献   

13.
The influence of the N-terminal residues 203-214 and the linker domain on motions in the human topoisomerase I-DNA complex has been investigated by comparing the molecular dynamics simulations of the system with (topo70) or without (topo58/6.3) these regions. Topo58/6.3 is found to fluctuate more than topo70, indicating that the presence of the N-terminal residues and the linker domain dampen the core and C-terminal fluctuations. The simulations also show that residues 203-207 and the linker domain participate in a network of correlated movements with key regions of the enzyme, involved in the human topoisomerase I catalytic cycle, providing a structural-dynamical explanation for the better DNA relaxation activity of topo70 when compared to topo58/6.3. The data have been examined in relation to a wealth of biochemical, site-directed mutagenesis and crystallographic data on human topoisomerase I. The simulations finally show the occurrence of a network of direct and water mediated hydrogen bonds in the proximity of the active site, and the presence of a water molecule in the appropriate position to accept a proton from the catalytic Tyr-723 residue, suggesting that water molecules have an important role in the stabilization and function of this enzyme.  相似文献   

14.
15.
16.
17.
The DNA topoisomerase I has been isolated from neurons of rat cerebral cortex. The most homogeneous fraction purified contains only one polypeptide of Mr approx. 100 000. The enzyme relaxes supercoiled DNA in the absence of ATP or Mg2+. The optimum monovalent cation concentration for the relaxation of superhelical DNA under conditions of DNA excess is found to be 175-200 mM. The neuron enzyme is similar to other mammalian type I DNA topoisomerases in that it links to the 3' ends of the broken DNA strands. Like calf thymus DNA topoisomerase I, the neuron topoisomerase can be selectively inhibited by poly(dG) but not by other homopolymerical deoxyribonucleotides.  相似文献   

18.
An organic extract prepared from Rinorea anguifera was investigated in order to identify the natural principle(s) responsible for stabilization of a topoisomerase I-DNA covalent binary complex. Bioassay-guided fractionation resulted in the isolation of mauritianin and (+)-syringaresinol as new topoisomerase I inhibitors, and also of the known inhibitor camptothecin.  相似文献   

19.
20.
The induction by interleukin-2 of DNA topoisomerase I and DNA topoisomerase II activities in the human T cell line HuT 78 was investigated. HuT 78 cells were treated with 1000 U of interleukin-2/ml, and extracts of the HuT 78 nuclei were prepared over a 24 h period. The extracts were assayed quantitatively for the activities of DNA topoisomerase I and DNA topoisomerase II. Three concomitant, transient increases of 3- to 11-fold in the specific activities of both DNA topoisomerase I and DNA topoisomerase II were observed following treatment with IL-2 at 0.5, 4, and 10 h after treatment with interleukin-2. The specific activities of both enzymes returned to base-line values after each of these transient increases. These results reveal that the activities of DNA topoisomerase I and DNA topoisomerase II are highly regulated in HuT 78 cells upon treatment with IL-2.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号