首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Coupled mutagenesis screens and genetic mapping in zebrafish   总被引:4,自引:0,他引:4  
Forward genetic analysis is one of the principal advantages of the zebrafish model system. However, managing zebrafish mutant lines derived from mutagenesis screens and mapping the corresponding mutations and integrating them into the larger collection of mutations remain arduous tasks. To simplify and focus these endeavors, we developed an approach that facilitates the rapid mapping of new zebrafish mutations as they are generated through mutagenesis screens. We selected a minimal panel of 149 simple sequence length polymorphism markers for a first-pass genome scan in crosses involving C32 and SJD inbred lines. We also conducted a small chemical mutagenesis screen that identified several new mutations affecting zebrafish embryonic melanocyte development. Using our first-pass marker panel in bulked-segregant analysis, we were able to identify the genetic map positions of these mutations as they were isolated in our screen. Rapid mapping of the mutations facilitated stock management, helped direct allelism tests, and should accelerate identification of the affected genes. These results demonstrate the efficacy of coupling mutagenesis screens with genetic mapping.  相似文献   

2.
Martin SG  Dobi KC  St Johnston D 《Genome biology》2001,2(9):research0036.1-research003612

Background

Genetic screens in Drosophila have provided a wealth of information about a variety of cellular and developmental processes. It is now possible to screen for mutant phenotypes in virtually any cell at any stage of development by performing clonal screens using the flp/FRT system. The rate-limiting step in the analysis of these mutants is often the identification of the mutated gene, however, because traditional mapping strategies rely mainly on genetic and cytological markers that are not easily linked to the molecular map.

Results

Here we describe the development of a single-nucleotide polymorphism (SNP) map for chromosome arm 3R. The map contains 73 polymorphisms between the standard FRT chromosome, and a mapping chromosome that carries several visible markers (rucuca), at an average density of one SNP per 370 kilobases (kb). Using this collection, we show that mutants can be mapped to a 400 kb interval in a single meiotic mapping cross, with only a few hundred SNP detection reactions. Discovery of further SNPs in the region of interest allows the mutation to be mapped with the same recombinants to a region of about 50 kb.

Conclusion

The combined use of standard visible markers and molecular polymorphisms in a single mapping strategy greatly reduces both the time and cost of mapping mutations, because it requires at least four times fewer SNP detection reactions than a standard approach. The use of this map, or others developed along the same lines, will greatly facilitate the identification of the molecular lesions in mutants from clonal screens.  相似文献   

3.

Background

The asymmetric segregation of determinants during cell division is a fundamental mechanism for generating cell fate diversity during development. In Drosophila, neural precursors (neuroblasts) divide in a stem cell-like manner generating a larger apical neuroblast and a smaller basal ganglion mother cell. The cell fate determinant Prospero and its adapter protein Miranda are asymmetrically localized to the basal cortex of the dividing neuroblast and segregated into the GMC upon cytokinesis. Previous screens to identify components of the asymmetric division machinery have concentrated on embryonic phenotypes. However, such screens are reaching saturation and are limited in that the maternal contribution of many genes can mask the effects of zygotic loss of function, and other approaches will be necessary to identify further genes involved in neuroblast asymmetric division.

Results

We have performed a genetic screen in the third instar larval brain using the basal localization of Miranda as a marker for neuroblast asymmetry. In addition to the examination of pupal lethal mutations, we have employed the MARCM (Mosaic Analysis with a Repressible Cell Marker) system to generate postembryonic clones of mutations with an early lethal phase. We have screened a total of 2,300 mutagenized chromosomes and isolated alleles affecting cell fate, the localization of basal determinants or the orientation of the mitotic spindle. We have also identified a number of complementation groups exhibiting defects in cell cycle progression and cytokinesis, including both novel genes and new alleles of known components of these processes.

Conclusion

We have identified four mutations which affect the process of neuroblast asymmetric division. One of these, mapping to the imaginal discs arrested locus, suggests a novel role for the anaphase promoting complex/cyclosome (APC/C) in the targeting of determinants to the basal cortex. The identification and analysis of the remaining mutations will further advance our understanding of the process of asymmetric cell division. We have also isolated a number of mutations affecting cell division which will complement the functional genomics approaches to this process being employed by other laboratories. Taken together, these results demonstrate the value of mosaic screens in the identification of genes involved in neuroblast division.  相似文献   

4.

Background

Cynomolgus macaques (Macaca fascicularis) are a valuable resource for linkage studies of genetic disorders, but their microsatellite markers are not sufficient. In genetic studies, a prerequisite for mapping genes is development of a genome-wide set of microsatellite markers in target organisms. A whole genome sequence and its annotation also facilitate identification of markers for causative mutations. The aim of this study is to establish hundreds of microsatellite markers and to develop an integrative cynomolgus macaque genome database with a variety of datasets including marker and gene information that will be useful for further genetic analyses in this species.

Results

We investigated the level of polymorphisms in cynomolgus monkeys for 671 microsatellite markers that are covered by our established Bacterial Artificial Chromosome (BAC) clones. Four hundred and ninety-nine (74.4%) of the markers were found to be polymorphic using standard PCR analysis. The average number of alleles and average expected heterozygosity at these polymorphic loci in ten cynomolgus macaques were 8.20 and 0.75, respectively.

Conclusion

BAC clones and novel microsatellite markers were assigned to the rhesus genome sequence and linked with our cynomolgus macaque cDNA database (QFbase). Our novel microsatellite marker set and genomic database will be valuable integrative resources in analyzing genetic disorders in cynomolgus macaques.  相似文献   

5.

Background

Common carp is one of the most important aquaculture teleost fish in the world. Common carp and other closely related Cyprinidae species provide over 30% aquaculture production in the world. However, common carp genomic resources are still relatively underdeveloped. BAC end sequences (BES) are important resources for genome research on BAC-anchored genetic marker development, linkage map and physical map integration, and whole genome sequence assembling and scaffolding.

Result

To develop such valuable resources in common carp (Cyprinus carpio), a total of 40,224 BAC clones were sequenced on both ends, generating 65,720 clean BES with an average read length of 647 bp after sequence processing, representing 42,522,168 bp or 2.5% of common carp genome. The first survey of common carp genome was conducted with various bioinformatics tools. The common carp genome contains over 17.3% of repetitive elements with GC content of 36.8% and 518 transposon ORFs. To identify and develop BAC-anchored microsatellite markers, a total of 13,581 microsatellites were detected from 10,355 BES. The coding region of 7,127 genes were recognized from 9,443 BES on 7,453 BACs, with 1,990 BACs have genes on both ends. To evaluate the similarity to the genome of closely related zebrafish, BES of common carp were aligned against zebrafish genome. A total of 39,335 BES of common carp have conserved homologs on zebrafish genome which demonstrated the high similarity between zebrafish and common carp genomes, indicating the feasibility of comparative mapping between zebrafish and common carp once we have physical map of common carp.

Conclusion

BAC end sequences are great resources for the first genome wide survey of common carp. The repetitive DNA was estimated to be approximate 28% of common carp genome, indicating the higher complexity of the genome. Comparative analysis had mapped around 40,000 BES to zebrafish genome and established over 3,100 microsyntenies, covering over 50% of the zebrafish genome. BES of common carp are tremendous tools for comparative mapping between the two closely related species, zebrafish and common carp, which should facilitate both structural and functional genome analysis in common carp.  相似文献   

6.

Background

Drosophila mojavensishas been a model system for genetic studies of ecological adaptation and speciation. However, despite its use for over half a century, no linkage map has been produced for this species or its close relatives.

Results

We have developed and mapped 90 microsatellites in D. mojavensis, and we present a detailed recombinational linkage map of 34 of these microsatellites. A slight excess of repetitive sequence was observed on the X-chromosome relative to the autosomes, and the linkage groups have a greater recombinational length than the homologous D. melanogaster chromosome arms. We also confirmed the conservation of Muller's elements in 23 sequences between D. melanogaster and D. mojavensis.

Conclusions

The microsatellite primer sequences and localizations are presented here and made available to the public. This map will facilitate future quantitative trait locus mapping studies of phenotypes involved in adaptation or reproductive isolation using this species.  相似文献   

7.

Background

Gaucher disease (GD) is due to deficiency of the glucocerebrosidase enzyme. It is panethnic, but its presentation reveals ethnicity-specific characteristics.

Methods

We evaluated the distribution, and clinical and genetic characteristics of GD patients in the Iberian Peninsula (IP). We analysed geographical distribution, demographic, genetic and clinical data, age at diagnosis, type, and years of therapy in 436 GD patients from the IP.

Results

The prevalence of GD was 1/149,000 inhabitants; 88.3% were type 1, 6.7% type 2, and 5.0% type 3. The mean age at diagnosis in type 1 was 28.7 years. A total of 72.7% were classified as having mild forms, 25.5% moderate, and 1.7% severe. Anemia and thrombocytopenia were present in 56% and 55%, respectively. Bone disease and hepatomegaly were reported in 62% and 68%, respectively, and were more likely in asplenic than in non-splenectomized patients. Sixty-nine mutant alleles were identified, and five mutations accounted for 75% of the GBA alleles. Several patients described in our series had interesting phenotypes. A total of 58.7% of patients had received enzyme replacement therapy and 12.6% were treated with miglustat.

Conclusions

A broad spectrum of GBA mutations is present in the IP, with 98.2% of type 1 GD being mild and 23.0% never treated. These data highlight genetic and phenotypic heterogeneities among geographic populations.  相似文献   

8.
9.

Background

Genome wide association (GWA) studies provide the opportunity to develop new kinds of analysis. Analysing pairs of markers from separate regions might lead to the detection of allelic association which might indicate an interaction between nearby genes.

Methods

396,591 markers typed in 541 subjects were studied. 7.8*1010 pairs of markers were screened and those showing initial evidence for allelic association were subjected to more thorough investigation along with 10 flanking markers on either side.

Results

No evidence was detected for interaction. However 6 markers appeared to have an incorrect map position according to NCBI Build 35. One of these was corrected in Build 36 and 2 were dropped. The remaining 3 were left with map positions inconsistent with their allelic association relationships.

Discussion

Although no interaction effects were detected the method was successful in identifying markers with probably incorrect map positions.

Conclusion

The study of allelic association can supplement other methods for assigning markers to particular map positions. Analyses of this type may usefully be applied to data from future GWA studies.  相似文献   

10.

Key message

Generation of a dense SNP-based linkage map of a diploid potato population and identification of major QTLs for tuber shape and eye depth on chromosomes 2 and 10.

Abstract

This paper reports the construction of a genetic map of a highly heterozygous full-sib diploid potato population (06H1) based on the use of a set of 8,303 single nucleotide polymorphism (SNP) markers. The map contains 1,355 distinct loci and 2,157 SNPs, 802 of which co-segregate with other markers. We find high levels of collinearity between the 12 chromosomal maps with a recently improved version of the potato genome assembly, with the expected genetic clustering in centromeric regions. The linkage maps are used in combination with highly detailed phenotypic assessments conducted over two growing seasons to perform quantitative trait loci analysis of two important potato traits, tuber shape and eye depth. The major loci segregating for tuber shape in 06H1 map to loci on chromosomes 2 and 10, with smaller effects mapping to three other chromosomes. A major locus for tuber eye depth co-locates with the tuber shape locus on chromosome 10. To assess when tuber shape is established in the developing tuber, we have performed staged observations of tuber formation. Our observations suggest that tuber shape is determined very early in tuber development.  相似文献   

11.
Forward genetic screens provide a powerful approach for inferring gene function on the basis of the phenotypes associated with mutated genes. However, determining the causal mutation by traditional mapping and candidate gene sequencing is often the rate-limiting step, especially when analyzing many mutants. We report two genomic approaches for more rapidly determining the identity of the affected genes in Caenorhabditis elegans mutants. First, we report our use of restriction site-associated DNA (RAD) polymorphism markers for rapidly mapping mutations after chemical mutagenesis and mutant isolation. Second, we describe our use of genomic interval pull-down sequencing (GIPS) to selectively capture and sequence megabase-sized portions of a mutant genome. Together, these two methods provide a rapid and cost-effective approach for positional cloning of C. elegans mutant loci, and are also applicable to other genetic model systems.  相似文献   

12.

Background

Genome-wide RNA interference (RNAi) screening is a very powerful tool for analyzing gene function in vivo in Caenorhabditis elegans. The effectiveness of RNAi varies from gene to gene, however, and neuronally expressed genes are largely refractive to RNAi in wild-type worms.

Results

We found that C. elegans strains carrying mutations in lin-35, the worm ortholog of the tumor suppressor gene p105Rb, or a subset of the genetically related synMuv B family of chromatin-modifying genes, show increased strength and penetrance for many germline, embryonic, and post-embryonic RNAi phenotypes, including neuronal RNAi phenotypes. Mutations in these same genes also enhance somatic transgene silencing via an RNAi-dependent mechanism. Two genes, mes-4 and zfp-1, are required both for the vulval lineage defects resulting from mutations in synMuv B genes and for RNAi, suggesting a common mechanism for the function of synMuv B genes in vulval development and in regulating RNAi. Enhanced RNAi in the germline of lin-35 worms suggests that misexpression of germline genes in somatic cells cannot alone account for the enhanced RNAi observed in this strain.

Conclusion

A worm strain with a null mutation in lin-35 is more sensitive to RNAi than any other previously described single mutant strain, and so will prove very useful for future genome-wide RNAi screens, particularly for identifying genes with neuronal functions. As lin-35 is the worm ortholog of the mammalian tumor suppressor gene p105Rb, misregulation of RNAi may be important during human oncogenesis.  相似文献   

13.

Background

The ChickRH6 whole chicken genome radiation hybrid (RH) panel recently produced has already been used to build radiation hybrid maps for several chromosomes, generating comparative maps with the human and mouse genomes and suggesting improvements to the chicken draft sequence assembly. Here we present the construction of a RH map of chicken chromosome 2. Markers from the genetic map were used for alignment to the existing GGA2 (Gallus gallus chromosome 2) linkage group and EST were used to provide valuable comparative mapping information. Finally, all markers from the RH map were localised on the chicken draft sequence assembly to check for eventual discordances.

Results

Eighty eight microsatellite markers, 10 genes and 219 EST were selected from the genetic map or on the basis of available comparative mapping information. Out of these 317 markers, 270 gave reliable amplifications on the radiation hybrid panel and 198 were effectively assigned to GGA2. The final RH map is 2794 cR6000 long and is composed of 86 framework markers distributed in 5 groups. Conservation of synteny was found between GGA2 and eight human chromosomes, with segments of conserved gene order of varying lengths.

Conclusion

We obtained a radiation hybrid map of chicken chromosome 2. Comparison to the human genome indicated that most of the 8 groups of conserved synteny studied underwent internal rearrangements. The alignment of our RH map to the first draft of the chicken genome sequence assembly revealed a good agreement between both sets of data, indicative of a low error rate.  相似文献   

14.

Background

Deficiency of complex II (succinate dehydrogenase, SDH) represents a rare cause of mitochondrial disease and is associated with a wide range of clinical symptoms. Recently, mutations of SDHAF1, the gene encoding for the SDH assembly factor 1, were reported in SDH-defective infantile leukoencephalopathy. Our goal was to identify SDHAF1 mutations in further patients and to delineate the clinical phenotype.

Methods

In a retrospective data collection study we identified nine children with biochemically proven complex II deficiency among our cohorts of patients with mitochondrial disorders. The cohort comprised five patients from three families affected by SDH-defective infantile leukoencephalopathy with accumulation of succinate in disordered cerebral white matter, as detected by in vivo proton MR spectroscopy. One of these patients had neuropathological features of Leigh syndrome. Four further unrelated patients of the cohort showed diverse clinical phenotypes without leukoencephalopathy. SDHAF1 was sequenced in all nine patients.

Results

Homozygous mutations of SDHAF1 were detected in all five patients affected by leukoencephalopathy with accumulated succinate, but not in any of the four patients with other, diverse clinical phenotypes. Two sisters had a mutation reported previously, in three patients two novel mutations were found.

Conclusion

Leukoencephalopathy with accumulated succinate is a key symptom of defective complex II assembly due to SDHAF1 mutations.  相似文献   

15.

Background

Genomic resources for the majority of free-living vertebrates of ecological and evolutionary importance are scarce. Therefore, linkage maps with high-density genome coverage are needed for progress in genomics of wild species. The Siberian jay (Perisoreus infaustus; Corvidae) is a passerine bird which has been subject to lots of research in the areas of ecology and evolutionary biology. Knowledge of its genome structure and organization is required to advance our understanding of the genetic basis of ecologically important traits in this species, as well as to provide insights into avian genome evolution.

Results

We describe the first genetic linkage map of Siberian jay constructed using 117 microsatellites and a mapping pedigree of 349 animals representing five families from a natural population breeding in western Finland from the years 1975 to 2006. Markers were resolved into nine autosomal and a Z-chromosome-specific linkage group, 10 markers remaining unlinked. The best-position map with the most likely positions of all significantly linked loci had a total sex-average size of 862.8 cM, with an average interval distance of 9.69 cM. The female map covered 988.4 cM, whereas the male map covered only 774 cM. The Z-chromosome linkage group comprised six markers, three pseudoautosomal and three sex-specific loci, and spanned 10.6 cM in females and 48.9 cM in males. Eighty-one of the mapped loci could be ordered on a framework map with odds of >1000:1 covering a total size of 809.6 cM in females and 694.2 cM in males. Significant sex specific distortions towards reduced male recombination rates were revealed in the entire best-position map as well as within two autosomal linkage groups. Comparative mapping between Siberian jay and chicken anchored 22 homologous loci on 6 different linkage groups corresponding to chicken chromosomes Gga1, 2, 3, 4, 5, and Z. Quite a few cases of intra-chromosomal rearrangements within the autosomes and three cases of inter-chromosomal rearrangement between the Siberian jay autosomal linkage groups (LG1, LG2 and LG3) and the chicken sex chromosome GgaZ were observed, suggesting a conserved synteny, but changes in marker order, within autosomes during about 100 million years of avian evolution.

Conclusion

The constructed linkage map represents a valuable resource for intraspecific genomics of Siberian jay, as well as for avian comparative genomic studies. Apart from providing novel insights into sex-specific recombination rates and patterns, the described maps – from a previously genomically uncharacterized superfamily (Corvidae) of passerine birds – provide new insights into avian genome evolution. In combination with high-resolution data on quantitative trait variability from the study population, they also provide a foundation for QTL-mapping studies.  相似文献   

16.

Key message

This consensus map of stem rust genes, QTLs, and molecular markers will facilitate the identification of new resistance genes and provide a resource of in formation for development of new markers for breeding wheat varieties resistant to Ug99.

Abstract

The global effort to identify new sources of resistance to wheat stem rust, caused by Puccinia graminis f. sp. tritici race group Ug99 has resulted in numerous studies reporting both qualitative genes and quantitative trait loci. The purpose of our study was to assemble all available information on loci associated with stem rust resistance from 21 recent studies on Triticum aestivum L. (bread wheat) and Triticum turgidum subsp. durum desf. (durum wheat). The software LPmerge was used to construct a stem rust resistance loci consensus wheat map with 1,433 markers incorporating Single Nucleotide Polymorphism, Diversity Arrays Technology, Genotyping-by-Sequencing as well as Simple Sequence Repeat marker information. Most of the markers associated with stem rust resistance have been identified in more than one population. Several loci identified in these populations map to the same regions with known Sr genes including Sr2, SrND643, Sr25 and Sr57 (Lr34/Yr18/Pm38), while other significant markers were located in chromosome regions where no Sr genes have been previously reported. This consensus map provides a comprehensive source of information on 141 stem rust resistance loci conferring resistance to stem rust Ug99 as well as linked markers for use in marker-assisted selection.  相似文献   

17.
18.

Key message

Genetic basis of grain yield heterosis relies on the cumulative effects of dominance, overdominance, and epistasis in maize hybrid Yuyu22.

Abstract

Heterosis, i.e., when F1 hybrid phenotypes are superior to those of the parents, continues to play a critical role in boosting global grain yield. Notwithstanding our limited insight into the genetic and molecular basis of heterosis, it has been exploited extensively using different breeding approaches. In this study, we investigated the genetic underpinnings of grain yield and its components using “immortalized F2” and recombinant inbred line populations derived from the elite hybrid Yuyu22. A high-density linkage map consisting of 3,184 bins was used to assess (1) the additive and additive-by-additive effects determined using recombinant inbred lines; (2) the dominance and dominance-by-dominance effects from a mid-parent heterosis dataset; and (3) the various genetic effects in the “immortalized F2” population. Compared with a low-density simple sequence repeat map, the bin map identified more quantitative trait loci, with higher LOD scores and better accuracy of detecting quantitative trait loci. The bin map showed that, among all traits, dominance was more important to heterosis than other genetic effects. The importance of overdominance/pseudo-overdominance was proportional to the amount of heterosis. In addition, epistasis contributed to heterosis as well. Phenotypic variances explained by the QTLs detected were close to the broad-sense heritabilities of the observed traits. Comparison of the analyzed results obtained for the “immortalized F2” population with those for the mid-parent heterosis dataset indicated identical genetic modes of action for mid-parent heterosis and grain yield performance of the hybrid.  相似文献   

19.

Objective

To develop a practically simple and robust multi-site saturation mutagenesis (MSSM) method that enables simultaneously recombination of amino acid positions for focused mutant library generation.

Results

A general restriction enzyme-free and ligase-free MSSM method (Simple-MSSM) based on prolonged overlap extension PCR (POE-PCR) and Simple Cloning techniques. As a proof of principle of Simple-MSSM, the gene of eGFP (enhanced green fluorescent protein) was used as a template gene for simultaneous mutagenesis of five codons. Forty-eight randomly selected clones were sequenced. Sequencing revealed that all the 48 clones showed at least one mutant codon (mutation efficiency = 100%), and 46 out of the 48 clones had mutations at all the five codons. The obtained diversities at these five codons are 27, 24, 26, 26 and 22, respectively, which correspond to 84, 75, 81, 81, 69% of the theoretical diversity offered by NNK-degeneration (32 codons; NNK, K = T or G).

Conclusion

The enzyme-free Simple-MSSM method can simultaneously and efficiently saturate five codons within one day, and therefore avoid missing interactions between residues in interacting amino acid networks.
  相似文献   

20.

Background

Functional genomics tools provide researchers with the ability to apply high-throughput techniques to determine the function and interaction of a diverse range of genes. Mutagenised plant populations are one such resource that facilitate gene characterisation. They allow complex physiological responses to be correlated with the expression of single genes in planta, through either reverse genetics where target genes are mutagenised to assay the affect, or through forward genetics where populations of mutant lines are screened to identify those whose phenotype diverges from wild type for a particular trait. One limitation of these types of populations is the prevalence of gene redundancy within plant genomes, which can mask the affect of individual genes. Activation or enhancer populations, which not only provide knock-out but also dominant activation mutations, can facilitate the study of such genes.

Results

We have developed a population of almost 50,000 activation tagged A. thaliana lines that have been archived as individual lines to the T3 generation. The population is an excellent tool for both reverse and forward genetic screens and has been used successfully to identify a number of novel mutants. Insertion site sequences have been generated and mapped for 15,507 lines to enable further application of the population, while providing a clear distribution of T-DNA insertions across the genome. The population is being screened for a number of biochemical and developmental phenotypes, provisional data identifying novel alleles and genes controlling steps in proanthocyanidin biosynthesis and trichome development is presented.

Conclusion

This publicly available population provides an additional tool for plant researcher's to assist with determining gene function for the many as yet uncharacterised genes annotated within the Arabidopsis genome sequence http://aafc-aac.usask.ca/FST. The presence of enhancer elements on the inserted T-DNA molecule allows both knock-out and dominant activation phenotypes to be identified for traits of interest.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号