首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
目的探讨哮喘患儿外周血白细胞介素-10(IL-10)、13的变化及其在哮喘发病机制中的作用。方法用ELISA双抗体夹心法测定20例哮喘患儿及18例正常儿童血浆IL-10、13的含量。结果哮喘组血浆IL-13水平明显高于正常对照组,IL-10水平明显低于正常对照组(p均<0.05)。结论IL-10、13等细胞因子参与儿童哮喘发病的病理生理过程,可为判断病情提供较好的实验室参数。  相似文献   

2.
Serum protein analysis for noninvasive quantification of airway inflammation in asthma is a promising research tool in the field of lung diseases. Cytokines are believed to have major role in inflammatory process of the airways of the lung. There is an imbalance between T-helper (Th)-2 cells, which secrete interleukin (IL)-4 and interleukin (IL)-13, and Th1 cells, which secrete interferon (IFN)-gamma in asthma. To test the hypothesis that serum IL-13 and IL-4 levels may be elevated whereas IFN-gamma would be decreased in this cohort of patients, a property that could make them possible candidate biomarkers in determining asthma occurrence and severity, we measured concentrations of IL-4, IL-13 and IFN-gamma in serum samples of 88 subjects (44 normal, 12 with mild asthma, 16 with moderate asthma, and 16 with severe asthma). Serum Levels of IL-4, IL-13, and IFN-gamma were determined by an enzyme-linked immune-sorbent assay (ELISA). Median serum level of IFN-gamma in asthmatic patients was 8.0pg/ml, while it was 11.4pg/ml in healthy controls. However, the difference was not significant. Among the different age groups in whom IFN-gamma was assessed, the highest median value in both cases and controls was observed in the age group of 31-40years. The median serum level of IL-13 was 40.0pg/ml in asthmatic patients and 58.25pg/ml in healthy controls. The difference was not significant. On subgroup analysis, no significant difference of IFN-gamma and IL-13 between asthma of different severities was observed. The study also revealed nonsignificant difference of serum cytokines with the duration of asthma, number of allergens, and severity of sensitization. Normal serum levels of IFN-gamma and IL-13 in asthmatic patients suggest their neutral role in the inflammatory process; however, more studies are required to establish the effect of these cytokines in adulthood asthma in different ethnic populations.  相似文献   

3.
The T cell-driven airway inflammation in chronic asthma is uninhibited and sustained. We examined the resistance of T cells from asthmatic patients against suppression by TGF-β, IL-10 and glucocorticoids and explored its signaling mechanism. CD4(+)CD25(-) T cells from allergic asthmatic subjects demonstrated increased TCR-stimulated proliferation as compared with healthy and chronic obstructive pulmonary disease controls. This proliferation was resistant to inhibition by TGF-β, IL-10, and dexamethasone and to anergy induction. CD4 T cells from asthmatic patients, but not chronic obstructive pulmonary disease, allergic rhinitis, and healthy subjects, showed increased expression of MEK1, heightened phosphorylation of ERK1/2, and increased levels of c-Fos. IL-2 and IL-4 stimulated the expression of MEK1 and c-Fos and induced T cell resistance. The inhibition of MEK1 reversed, whereas induced expression of c-Fos and JunB promoted T cell resistance against TGF-β- and IL-10-mediated suppression. We have uncovered an IL-2- and IL-4-driven MEK1 induction mechanism that results in heightened ERK1/2 activation in asthmatic T cells and make them resistant to certain inhibitory mechanisms.  相似文献   

4.
In asthma, T helper 2 (T(H)2)-type cytokines such as interleukin (IL)-4, IL-5, and IL-13 are produced by activated CD4(+) T cells. Dendritic cells played an important role in determining the fate of naive T cells into either T(H)1 or T(H)2 cells. We determined whether RG-II regulates the T(H)1/T(H)2 immune response by using an ovalbumin-induced murine model of asthma. RG-II reduced IL-4 production but increased interferon- gamma production, and inhibited GATA-3 gene expression. RG-II also inhibited asthmatic reactions including an increase in the number of eosinophils in bronchoalveolar lavage fluid, an increase in inflammatory cell infiltration in lung tissues, airway luminal narrowing, and airway hyperresponsiveness. This study provides evidence that RG-II plays a critical role in ameliorating the pathogenic process of asthmatic inflammation in mice. These findings provide new insights into the immunotherapeutic role of RG-II in terms of its effects in a murine model of asthma.  相似文献   

5.
Background and purposeImmune and inflammatory responses, mediated by cytokines, play important roles in the pathophysiology of asthma. These responses are associated with over expression of T helper (Th)-2 cytokine, particularly interleukin (IL)-4 and IL-5, and decreased expression of Th-1 cytokine, IL-2 and IFN-γ. We hypothesized that there would be an imbalance in the levels of circulating IL-4 and IFN-γ in the asthmatic subjects.MethodWe investigated serum levels of IL-4 and IFN-γ among eighty children (18 steroid-naïve, 30 steroid-treated children with asthma and 32 healthy controls) using commercially available ELISA kits.ResultsSerum level of IL-4 was significantly higher in steroid-naïve group of asthmatic children compared to the healthy control subjects and was lower in steroid-treated group though the level was statistically not significant. In contrast, serum levels of IFN-γ were significantly lower in both steroid-naïve and steroid-treated groups of asthmatic children compared to healthy control subjects.ConclusionThe results of our study suggest that serum level of IL-4 may be elevated in concert with decreased level of IFN-γ in asthma. Determination of serum levels of IL-4 and IFN-γ may be a useful tool for understanding the disease processes in asthma.  相似文献   

6.
Examination of sputum provides a direct method to investigate airway inflammation non-invasively in particular Th1 (IL-2, IFN-gamma) and Th2 (IL-4, IL-10) cytokine production. IL-2, IL-4, IL-10 and IFN-gamma cytokine were studied in induced sputum mononuclear cells of asthmatic patients. Sputum induction was performed on 10 patients and 10 normal controls. Basal and mitogen-stimulated cytokine production was determined in induced sputum T-cell culture. Supernatants were collected and assayed not only with specific ELISA but also with polymerase chain reaction (PCR) techniques. Data showed a significantly higher production of IL-10 by both the ELISA and the RT-PCR techniques in asthmatic patients compared with sputum mononuclear cells from healthy controls. IL-4 production was detected at a low level using the ELISA method in asthmatic patients. The RT-PCR analysis detected a significantly IL-4-mRNA expression in all asthmatic patients, compared with controls. Results of IL-10 and IL-4 mRNA expression were reproducible. We did not find any alteration in the expression of the type 1 derived cytokines (IL-2 and IFN-gamma) in asthmatic patients or in healthy controls. Our study showed a tendency of induced sputum mononuclear cells to express a Th2-like cytokine pattern in acute exacerbation of asthmatic patients, where IL-10 and IL-4 are synthesized in larger amounts. The combination of sputum induction as a non-invasive tool to explore the lung and the identification of disease-associated cytokine expression and of specific cytokine mRNA should help elucidate mechanisms of the immunologically mediated inflammatory responses in asthma.  相似文献   

7.
Estrogen influences the disease severity and sexual dimorphism in asthma, which is caused by complex mechanisms. Besides classical nuclear estrogen receptors (ERαβ), G-protein-coupled estrogen receptor (GPER) was recently established as an estrogen receptor on the cell membrane. Although GPER is associated with immunoregulatory functions of estrogen, the pathophysiological role of GPER in allergic inflammatory lung disease has not been examined. We investigated the effect of GPER-specific agonist G-1 in asthmatic mice. GPER expression in asthmatic lung was confirmed by immunofluorescent staining. OVA-sensitized BALB/c and C57BL/6 mice were treated with G-1 by daily subcutaneous injections during an airway challenge phase, followed by histological and biochemical examination. Strikingly, administration of G-1 attenuated airway hyperresponsiveness, accumulation of inflammatory cells, and levels of Th2 cytokines (IL-5 and IL-13) in BAL fluid. G-1 treatment also decreased serum levels of anti-OVA IgE antibodies. The frequency of splenic Foxp3+CD4+ regulatory T cells and IL-10-producing GPER+CD4+ T cells was significantly increased in G-1-treated mice. Additionally, splenocytes isolated from G-1-treated mice showed greater IL-10 production. G-1-induced amelioration of airway inflammation and IgE production were abolished in IL-10-deficient mice. Taken together, these results indicate that extended GPER activation negatively regulates the acute asthmatic condition by altering the IL-10-producing lymphocyte population. The current results have potential importance for understanding the mechanistic aspects of function of estrogen in allergic inflammatory response.  相似文献   

8.
Suppressive effect of IL-4 on IL-13-induced genes in mouse lung   总被引:4,自引:0,他引:4  
Although IL-4 signals through two receptors, IL-4R alpha/common gamma-chain (gamma(c)) and IL-4R alpha/IL-13R alpha1, and only the latter is also activated by IL-13, IL-13 contributes more than IL-4 to goblet cell hyperplasia and airway hyperresponsiveness in murine asthma. To determine whether unique gene induction by IL-13 might contribute to its greater proasthmatic effects, mice were inoculated intratracheally with IL-4 or IL-13, and pulmonary gene induction was compared by gene microarray and real-time PCR. Only the collagen alpha2 type VI (Ca2T6) gene and three small proline-rich protein (SPRR) genes were reproducibly induced > 4-fold more by IL-13 than by IL-4. Preferential IL-13 gene induction was not attributable to B cells, T cells, or differences in cytokine potency. IL-4 signaling through IL-4R alpha/gamma(c) suppresses Ca2T6 and SPRR gene expression in normal mice and induces these genes in RAG2/gamma(c)-deficient mice. Although IL-4, but not IL-13, induces IL-12 and IFN-gamma, which suppress many effects of IL-4, IL-12 suppresses only the Ca2T6 gene, and IL-4-induced IFN-gamma production does not suppress the Ca2T6 or SPRR genes. Thus, IL-4 induces genes in addition to IL-12 that suppress STAT6-mediated SPRR gene induction. These results provide a potential explanation for the dominant role of IL-13 in induction of goblet cell hyperplasia and airway hyperresponsiveness in asthma.  相似文献   

9.
Asthma is characterized by a predominant T(H)2 type immune response to airborne allergens. Controlling T(H)2 cell function has been proposed as therapy for this disease. We show here that ligands for the nuclear receptor peroxisome proliferator activated receptor (PPAR)gamma significantly reduced the immunological symptoms of allergic asthma in a murine model of this disease. A PPARgamma ligand, 15-deoxy-delta(12,14)-prostaglandin J(2), significantly inhibited production of the T(H)2 type cytokine IL-5 from T cells activated in vitro. More importantly, in a murine model of allergic asthma, mice treated orally with ciglitazone, a potent synthetic PPARgamma ligand, had significantly reduced lung inflammation and mucous production following induction of allergic asthma. T cells from these ciglitazone treated mice also produced less IFNgamma, IL-4, and IL-2 upon rechallenge in vitro with the model allergen. Our results suggest that ligands for PPARgamma may be effective treatments for asthmatic patients.  相似文献   

10.
目的: 探究颗粒蛋白前体(PGRN)在过敏性哮喘中的作用及机制。方法: 分别在野生鼠和IL-6 缺陷鼠中设置对照组和哮喘模型组,每组8只。模型组中,在第0日和第7日致敏小鼠(腹腔注射OVA 100 μg),从第14日起连续激发8 d(5%OVA雾化吸入,30 min/d,每日1次),末次激发24 h后取标本;对照组用PBS代替OVA做相同处理。采集支气管肺泡灌洗液(BALF)进行白细胞计数和分类计数;HE染色观察肺组织病理情况;Q-PCR及ELISA检测小鼠肺匀浆、血清和BALF中细胞因子水平。用IL-13刺激A549或BEAS-2B细胞建立体外哮喘炎症模型,每组3个复孔,共4组:PBS处理组、IL-13处理组、IL-13与重组人PGRN蛋白(rhPGRN)共同处理组及p38磷酸化抑制剂(SB203508)处理组。0 min~48 h后收集细胞及上清,用Q-PCR及ELISA检测PGRN和IL-6的表达;Western blot检测p38的磷酸化。结果: 与对照组相比,哮喘组小鼠肺匀浆和BALF中PGRN均显著降低(P< 0.01),血清PGRN有降低的趋势,然而哮喘小鼠BALF中IL-6显著升高(P<0.05)。与野生鼠哮喘组相比,IL-6缺陷鼠哮喘组BALF中白细胞总数降低(P<0.05),中性粒细胞数降低(P<0.05),PGRN显著升高(P<0.05),肺部病理损伤也减轻。体外实验中,IL-13处理组与PBS处理组相比,PGRN显著降低(P<0.05),IL-6显著增高(P< 0.05),p38的磷酸化增加;p38抑制剂处理组比未处理组中IL-6水平降低(P<0.05)。IL-13与rhPGRN共同处理组的IL-6显著低于IL-13处理组(P<0.05),p38的磷酸化降低(P<0.05)。结论: PGRN通过抑制p38磷酸化降低IL-6水平从而减轻哮喘小鼠气道炎症。  相似文献   

11.
12.
Warburg and coworkers (Warburg O, Posener K, Negelein E. Z Biochem 152: 319, 1924) first reported that cancerous cells switch glucose metabolism from oxidative phosphorylation to aerobic glycolysis, and that this switch is important for their proliferation. Nothing is known about aerobic glycolysis in T cells from asthma. The objective was to study aerobic glycolysis in human asthma and the role of this metabolic pathway in airway hyperreactivity and inflammation in a mouse model of asthma. Human peripheral blood and mouse spleen CD4 T cells were isolated by negative selection. T cell proliferation was measured by thymidine incorporation. Cytokines and serum lactate were measured by ELISA. Mouse airway hyperreactivity to inhaled methacholine was measured by a FlexiVent apparatus. The serum lactate concentration was significantly elevated in clinically stable asthmatic subjects compared with healthy and chronic obstructive pulmonary disease controls, and negatively correlated with forced expiratory volume in 1 s. Proliferating CD4 T cells from human asthma and a mouse model of asthma produced higher amounts of lactate upon stimulation, suggesting a heightened glycolytic activity. Lactate stimulated and inhibited T cell proliferation at low and high concentrations, respectively. Dichloroacetate (DCA), an inhibitor of aerobic glycolysis, inhibited lactate production, proliferation of T cells, and production of IL-5, IL-17, and IFN-γ, but it stimulated production of IL-10 and induction of Foxp3. DCA also inhibited airway inflammation and hyperreactivity in a mouse model of asthma. We conclude that aerobic glycolysis is increased in asthma, which promotes T cell activation. Inhibition of aerobic glycolysis blocks T cell activation and development of asthma.  相似文献   

13.
T cells play an important role in the pathogenesis of bronchial asthma. However, it is not completely known how circulating lymphocytes infiltrate into the airways of asthmatic patients. Because SCID mice are unable to reject xenogenic transplants, many xenotransplant models using various human tissues have been developed. Therefore, to examine the interaction between bronchi and T lymphocytes of asthma, it may be possible to use the human bronchial xenograft and PBMC xenograft in SCID mice. We transplanted human bronchi into the subcutaneum of SCID mice and i.p. injected PBMCs that were obtained from patients with atopic asthma, atopic dermatitis and rheumatoid arthritis, and normal subjects (asthmatic, dermatitis, rheumatic, and normal huPBMC-SCID mice). There was no difference in the percentage of CD3-, CD4-, CD8-, CD25-, CD45RO-, CD103-, and cutaneous lymphocyte Ag-positive cells in PBMCs among the patients with asthma, dermatitis, rheumatoid arthritis, and normal subjects, and CD3-positive cells in peripheral blood of asthmatic, dermatitis, rheumatic, and normal huPBMC-SCID mice. The number of CD3-, CD4-, and CD8-positive cells in the xenografts of asthmatic huPBMC-SCID mice was higher than those of dermatitis, rheumatic, and normal huPBMC-SCID mice. IL-4 mRNA and IL-5 mRNA were significantly higher in the xenografts of asthmatic huPBMC-SCID mice than those in the xenografts of normal huPBMC-SCID mice, but there were no significant differences in the expressions of IL-2 mRNA or IFN-gamma mRNA between them. These findings suggest that T cells, especially Th2-type T cells, of asthmatics preferentially infiltrate into the human bronchi.  相似文献   

14.

Background

Virus infections are the major cause of asthma exacerbations. CD8+ T cells have an important role in antiviral immune responses and animal studies suggest a role for CD8+ T cells in the pathogenesis of virus-induced asthma exacerbations. We have previously shown that the presence of IL-4 during stimulation increases the frequency of IL-5-positive cells and CD30 surface staining in CD8+ T cells from healthy, normal subjects. In this study, we investigated whether excess IL-4 during repeated TCR/CD3 stimulation of CD8+ T cells from atopic asthmatic subjects alters the balance of type 1/type 2 cytokine production in favour of the latter.

Methods

Peripheral blood CD8+ T cells from mild atopic asthmatic subjects were stimulated in vitro with anti-CD3 and IL-2 ± excess IL-4 and the expression of activation and adhesion molecules and type 1 and type 2 cytokine production were assessed.

Results

Surface expression of very late antigen-4 [VLA-4] and LFA-1 was decreased and the production of the type 2 cytokines IL-5 and IL-13 was augmented by the presence of IL-4 during stimulation of CD8+ T cells from mild atopic asthmatics.

Conclusion

These data suggest that during a respiratory virus infection activated CD8+ T cells from asthmatic subjects may produce excess type 2 cytokines and may contribute to asthma exacerbation by augmenting allergic inflammation.  相似文献   

15.
Asthma is a chronic inflammatory disease characterized by reversible bronchial constriction, pulmonary inflammation and airway remodeling. Current standard therapies for asthma provide symptomatic control but fail to target the underlying disease pathology. Furthermore, no therapeutic agent is effective in preventing airway remodeling. Interleukin 13 (IL-13) is a pleiotropic cytokine produced mainly by T cells. A substantial amount of evidence suggests that IL-13 plays a critical role in the pathogenesis of asthma. Therefore, a neutralizing anti-IL-13 monoclonal antibody could provide therapeutic benefits to asthmatic patients. To test the concept we have generated a neutralizing rat anti-mouse IL-13 monoclonal antibody, and evaluated its effects in a chronic mouse model of asthma. Chronic asthma-like response was induced in ovalbumin (OVA) sensitized mice by repeated intranasal OVA challenges. After weeks of challenge, mice developed airway hyperresponsiveness (AHR) to methacholine stimulation, severe airway inflammation, hyper mucus production, and subepithelial fibrosis. When given at the time of each intranasal OVA challenge, anti-IL-13 antibody significantly suppressed AHR, eosinophil infiltration, proinflammatory cytokine/chemokine production, serum IgE, and most interestingly, airway remodeling. Taken together, these results strongly suggest that a neutralizing anti-human IL-13 monoclonal antibody could be an effective therapeutic agent for asthma.  相似文献   

16.
Lymphokines derived from activated T cells regulate the proliferation and postmitotic differentiation of eosinophils in vitro. We investigated whether peripheral blood eosinophilia, which is a characteristic feature of both allergic and nonallergic asthma, correlates with T cell activation and lymphokine production in asthmatic patients. Flow cytometric analysis of T cell activation markers revealed that asthmatic individuals are characterized by increased numbers of IL-2R (CD25)-bearing T cell subsets. The absolute number of IL-2R+ T cells correlated with the eosinophilia observed in the asthmatic patients. Purified CD4+ and CD8+ T cells from allergic and nonallergic asthmatic individuals spontaneously secreted factors that extend the lifespan of eosinophils in vitro. T cells from normal donors displayed this effect only after polyclonal stimulation with anti-CD3 antibody. The eosinophil lifespan-extending factors were also found in sera of asthmatic patients. Identification of these factors was performed by using neutralizing antibodies against IL-3, IL-5, and granulocyte-macrophage CSF. In sera, mainly IL-5 and granulocyte-macrophage CSF were responsible for prolonged eosinophil survival, whereas granulocyte-macrophage CSF was dominant in T cell supernatants. These results indicate that T cells and secretion of lymphokines play an important regulatory function toward eosinophils, which are thought to represent major proinflammatory effector cells in certain types of asthma.  相似文献   

17.
T cells and T cell derived cytokines are involved in the complex pathogenesis of asthma. The role of the cytokine IL-18 however, is not clearly defined so far. On the one hand side IL-18 induces Th1-type cytokines and thereby might counter-regulate Th2-mediated allergic asthma. On the other hand IL-18 also bears pro-inflammatory effects possibly enhancing experimental asthma. In order to elucidate the role of IL-18 in allergic pulmonary inflammation typical symptoms were compared after induction of experimental asthma in IL-18−/− and in wild type mice. Asthma was induced using ovalbumin (OVA) as allergen for sensitization and challenge. Sham sensitized and OVA challenged mice served as controls. Bronchoalveolar lavage-fluid cytology, leukocyte infiltration in lung tissues, serum levels of OVA-specific IgE and cytokines, and lung function were analyzed. Clear differences could be observed between control and asthmatic mice, both in wild type and IL-18−/− animals. Surprisingly, no differences were found between asthmatic wild type and IL-18−/− mice. Thus, in contrast to conflicting data in the literature IL-18 did not suppress or enhance the pulmonary allergic immune response in a murine experimental model of asthma.  相似文献   

18.
Exaggerated levels of VEGF (vascular endothelial growth factor) are present in persons with asthma, but the role(s) of VEGF in normal and asthmatic lungs has not been defined. We generated lung-targeted VEGF(165) transgenic mice and evaluated the role of VEGF in T-helper type 2 cell (T(H)2)-mediated inflammation. In these mice, VEGF induced, through IL-13-dependent and -independent pathways, an asthma-like phenotype with inflammation, parenchymal and vascular remodeling, edema, mucus metaplasia, myocyte hyperplasia and airway hyper-responsiveness. VEGF also enhanced respiratory antigen sensitization and T(H)2 inflammation and increased the number of activated DC2 dendritic cells. In antigen-induced inflammation, VEGF was produced by epithelial cells and preferentially by T(H)2 versus T(H)1 cells. In this setting, it had a critical role in T(H)2 inflammation, cytokine production and physiologic dysregulation. Thus, VEGF is a mediator of vascular and extravascular remodeling and inflammation that enhances antigen sensitization and is crucial in adaptive T(H)2 inflammation. VEGF regulation may be therapeutic in asthma and other T(H)2 disorders.  相似文献   

19.
CD80 and CD86 interact with CD28 and deliver costimulatory signals required for T cell activation. We demonstrate that ex vivo allergen stimulation of bronchial biopsy tissue from mild atopic asthmatic, but not atopic nonasthmatic, subjects induced production of IL-5, IL-4, and IL-13. Explants from both study groups did not produce IFN-gamma, but secreted the chemokine RANTES without any overt stimulation. In addition to allergen, stimulation of asthmatic explants with mAbs to CD3 and TCR-alphabeta but not TCR-gammadelta induced IL-5 secretion. Allergen-induced IL-5 and IL-13 production by the asthmatic tissue was inhibited by anti-CD80 and, to a lesser extent, by anti-CD86 mAbs. In contrast, the production of these cytokines by PBMCs was not affected by mAbs to CD80, was inhibited by anti-CD86, and was strongly attenuated in the presence of both Abs. FACS analysis revealed that stimulated asthmatic bronchial tissue was comprised of CD4+ T cells that expressed surface CD28 (75. 3%) but little CTLA-4 (4.0%). Neutralizing mAbs to CD40 ligand had no effect on the cytokine levels produced by asthmatic tissue or PBMCs. Collectively, these findings suggest that allergen-specific alphabeta T cells are resident in asthmatic bronchial tissue and demonstrate that costimulation by both CD80 and CD86 is essential for allergen-induced cytokine production. In contrast, CD86 appears to be the principal costimulatory molecule required in PBMC responses. Attenuation of type 2 alphabeta T cell responses in the bronchial mucosa by blocking these costimulatory molecules may be of therapeutic potential in asthma.  相似文献   

20.
B7-H3 is a new member of the B7 family. The receptor for B7-H3 has not been identified, but it seems to be expressed on activated T cells. Initial studies have shown that B7-H3 provides a stimulatory signal to T cells. However, recent studies suggest a negative regulatory role for B7-H3 in T cell responses. Thus, the immunological function of B7-H3 is controversial and unclear. In this study, we investigated the effects of neutralizing anti-B7-H3 mAb in a mouse model of allergic asthma to determine whether B7-H3 contributes to the development of pathogenic Th2 cells and pulmonary inflammation. Administration of anti-B7-H3 mAb significantly reduced airway hyperreactivity with a concomitant decrease in eosinophils in the lung as compared with control IgG-treated mice. Treatment with anti-B7-H3 mAb also resulted in decreased production of Th2 cytokines (IL-4, IL-5, and IL-13) in the draining lymph node cells. Although blockade of B7-H3 during the induction phase abrogated the development of asthmatic responses, B7-H3 blockade during the effector phase did not inhibit asthmatic responses. These results indicated an important role for B7-H3 in the development of pathogenic Th2 cells during the induction phase in a murine model of asthma.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号