首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Cai Z  Xu C  Xu Y  Lu W  Chi CW  Shi Y  Wu J 《Biochemistry》2004,43(13):3764-3771
BmBKTx1 is a 31-amino acid peptide identified from the venom of the Chinese scorpion Buthus martensi Karsch, blocking high-conductance calcium-activated potassium channels. Sequence homology analysis indicates that BmBKTx1 is a new subfamily of short-chain alpha-KTx toxins of the potassium channel, which we term alpha-KTx19. Synthetic BmBKTx1 was prepared by using solid-phase peptide synthesis. Two-dimensional NMR spectroscopy techniques were used to determine the solution structure of BmBKTx1. The results show that the BmBKTx1 forms a typical cysteine-stabilized alpha/beta scaffold adopted by most short-chain scorpion toxins. The structure of BmBKTx1 consists of a two-stranded antiparallel beta-sheet (residues 20-29) and an alpha-helix (residues 5-15). The three-dimensional structure of BmBKTx1 was also compared with those of two function-related scorpion toxins, charybdotoxin (ChTx) and BmTx1, and their structural and functional implications are discussed.  相似文献   

2.
The gamma-KTx-type scorpion toxins specific for K+ channels were found to interact with ERG channels on the turret region, while alpha-KTx3.2 Agitoxin-2 binds to the pore region of the Shaker K+ channel, and alpha-KTx5.3 BmP05 binds to the intermediate region of the small-conductance calcium-activated K-channel (SK(Ca)). In order to explore the critical residues for gamma-KTx binding, we determined the NMR structure of native gamma-KTx1.1 (CnErg1), a 42 amino acid residues scorpion toxin isolated from the venom of the Mexican scorpion Centruro?des noxius Hoffmann, and we used computational evolutionary trace (ET) analysis to predict possible structural and functional features of interacting surfaces. The 1H-NMR three-dimensional solution structure of native ergtoxin (CnErg1) was solved using a total of 452 distance constraints, 13 3J(NH-Halpha) and 10 hydrogen bonds. The structure is characterized by 2 segments of alpha-helices and a triple-stranded antiparallel beta-sheet stabilized by 4 disulfide bridges. The ET and structural analysis provided indication of the presence of two important amino acid residue clusters, one hydrophobic and the other hydrophilic, that should be involved in the surface contact between the toxin and the channel. Some features of the proposed interacting surface are discussed.  相似文献   

3.
Discrepin, isolated from the venom of the Venezuelan scorpion Tityus discrepans, blocks preferentially the I(A) currents of the voltage-dependent K+ channel of rat cerebellum granular cells in an irreversible way. It contains 38 amino acid residues with a pyroglutamic acid as the N-terminal residue [D'Suze, G., Batista, C. V., Frau, A., Murgia, A. R., Zamudio, F. Z., Sevcik, C., Possani, L. D., and Prestipino, G. (2004) Arch. Biochem. Biophys. 430, 256-63]. It is the most distinctive member of the alpha-KTx15 subfamily of scorpion toxins. Six members of the alpha-KTx15 subfamily have been reported so far to be specific for this subtype of the K+ channel; however, none of them have had their three-dimensional structure determined, and no information for the residues possibly involved in channel recognition and binding is available. Natural discrepin (n-discrepin) was prepared from scorpion venom, and its synthetic analogue (s-discrepin) was obtained by solid-phase synthesis. Analysis of two-dimensional 1H NMR spectra of n- and s-discrepin indicates that both peptides have the same structure. Here we report the solution structure of s-discrepin determined by NMR using 565 meaningful distance constraints derived from the volume integration of the two-dimensional NOESY spectrum, 22 dihedrals, and three hydrogen bonds. Discrepin displays the alpha/beta scaffold, characteristic of scorpion toxins. Some features of the proposed interacting surface between the toxin and channel as well as the opposite "alpha-helix surface" are discussed in comparison with those of other alpha-KTx15 members. Both n- and s-discrepin exhibit similar physiological actions as verified by patch-clamp and binding and displacement experiments.  相似文献   

4.
Zhang N  Li M  Chen X  Wang Y  Wu G  Hu G  Wu H 《Proteins》2004,55(4):835-845
A natural K+ channel blocker, BmKK2 (a member of scorpion toxin subfamily alpha-KTx 14), which is composed of 31 amino acid residues and purified from the venom of the Chinese scorpion Buthus martensi Karsch, was characterized using whole-cell patch-clamp recording in rat hippocampal neurons. The three dimensional structure of BmKK2 was determined with two-dimensional NMR spectroscopy and molecular modelling techniques. In solution this toxin adopted a common alpha/beta-motif, but showed distinct local conformation in the loop between alpha-helix and beta-sheet in comparison with typical short-chain scorpion toxins (e.g., CTX and NTX). Also, the alpha helix is shorter and the beta-sheet element is smaller (each strand consisted only two residues). The unusual structural feature of BmKK2 was attributed to the shorter loop between the alpha-helix and beta-sheet and the presence of two consecutive Pro residues at position 21 and 22 in the loop. Moreover, two models of BmKK2/hKv1.3 channel and BmKK2/rSK2 channel complexes were simulated with docking calculations. The results demonstrated the existence of a alpha-mode binding between the toxin and the channels. The model of BmKK2/rSK2 channel complex exhibited favorable contacts both in electrostatic and hydrophobic, including a network of five hydrogen bonds and bigger interface containing seven pairs of inter-residue interactions. In contrast, the model of BmKK2/hKv1.3 channel complex, containing only three pairs of inter-residue interactions, exhibited poor contacts and smaller interface. The results well explained its lower activity towards Kv channel, and predicted that it may prefer a type of SK channel with a narrower entryway as its specific receptor.  相似文献   

5.
Discrepin is a scorpion peptide that blocks preferentially the IA currents of the voltage-dependent K+ channel of rat cerebellum granular cells. It was isolated from the venom of the buthid scorpion Tityus discrepans and contains 38 amino acid residues with a pyroglutamic acid at the N-terminal site. Discrepin has the lowest sequence identity (approx. 50%) among the six members of the alpha-KTx15 sub-family of scorpion toxins. In order to find out which residues are important for the blocking effects of Discrepin, six mutants were chemically synthesized (V6K, I19R, D20K, T35V, I19R-D20K, I19R-D20K-R21V), correctly folded and their physiological properties were examined. Substitution of residues V6 and D20 for basically charged amino acids increases the blocking activity of Discrepin, specially the mutation V6K at the N-terminal segment of the toxin. Analysis of 3D-structure models of the mutants V6K and D20K supports the idea that basic residues improve their blocking activities, similarly to what happens with BmTx3, a toxic peptide obtained from Buthus martensi scorpion, which has the highest known blocking effects of IA currents in K+ channels of rat cerebellum granular cells.  相似文献   

6.
7.
Maurotoxin (MTX) and HsTx1 are two scorpion toxins belonging to the alpha-KTx6 structural family. These 34-residue toxins, cross-linked by four disulfide bridges, share 59% sequence identity and fold along the classical alpha/beta scaffold. Despite these structural similarities, they fully differ in their pharmacological profiles. MTX is highly active on small (SK) and intermediate (IK) conductance Ca(2+)-activated (K(+)) channels and on voltage-gated Kv1.2 channel, whereas HsTx1 potently blocks voltage-gated Kv1.1 and Kv1.3 channels only. Here, we designed and chemically produced MTX-HsTx1, a chimera of both toxins that contains the N-terminal helical region of MTX (sequence 1-16) and the C-terminal beta-sheet region of HsTx1 (sequence 17-34). The three-dimensional structure of the peptide in solution was solved by (1)H NMR. MTX-HsTx1 displays the activity of MTX on SK channel, whereas it exhibits the pharmacological profile of HsTx1 on Kv1.1, Kv1.2, Kv1.3, and IK channels. These data demonstrate that the helical region of MTX exerts a key role in SK channel recognition, whereas the beta-sheet region of HsTx1 is crucial for activity on all other channel types tested.  相似文献   

8.
9.
The first example of a new sub-family of toxins (alpha-KTx20.1) from the scorpion Tityus trivittatus was purified, sequenced and characterized physiologically. It has 29 amino acid residues, three disulfide bridges assumed to adopt the cysteine-stabilized alpha/beta scaffold with a pI value of 8.98. The sequence identities with all the other known alpha-KTx are less than 40%. Its effects were verified using seven different cloned K(+) channels (vertebrate Kv1.1-1.5, Shaker IR and hERG) expressed in Xenopus leavis oocytes. The toxin-induced effects show large differences among the different K(+) channels and a preference towards Kv1.3 (EC50=7.9+/-1.4 nM).  相似文献   

10.
Zuo XP  He HQ  He M  Liu ZR  Xu Q  Ye JG  Ji YH 《FEBS letters》2006,580(18):4508-4514
Scorpion toxins have been found lacking effect on Na(+) current of its own sodium channel, whereas the molecular mechanism remains mystery. In this study, the binding affinity of pharmacologically distinct scorpion toxins was found much weaker to scorpion (Buthus martensii) nerve synaptosomes than to spider (Ornithoctonus huwena) ones. The sodium channel cDNA from these two species were further cloned. The deduced proteins contain 1871 and 1987 amino acids respectively. Several key amino acid substitutions, i.e., A1610V, I1611L and S1617K, are found in IVS3-S4 constituting receptor site-3, and for receptor site-4, two residues (Leu-Pro) are inserted near IIS4 of scorpion sodium channel.  相似文献   

11.
The potassium channel Kv1.3 is an attractive pharmacological target for T-cell-mediated autoimmune diseases, and specific and selective peptidic blockers of Kv1.3 channels have served as valuable therapeutic leads for treating these diseases. Here, we found a new peptide toxin, J123, with 43 amino acids including six cysteine residues by screening the venomous cDNA library of scorpion Buthus martensii Karsch, which has been used as traditional medicine in China for more than 2000 years. The sequence analysis suggested that peptide J123 constituted a new member of the alpha-KTx toxins. The electrophysiological experiments further indicated that peptide J123 has a novel pharmacological profiles: it blocked Kv1.3 channel with high potency (IC(50)=0.79nM), and exhibited good selectivity on Kv1.3 over Kv1.1 (>1000-fold) and Kv1.2 (about 30-fold), respectively. Furthermore, peptide J123 had no activity on SKCa2 and SKCa3 channels at micromolar concentration level. Based on the pharmacological activities, the possible channel-interacting surface of peptide J123 was also predicted by molecular modeling and docking. All these data not only enrich the knowledge of the structure-function relationship of the new Kv1.3-speicific peptide but also present a potential drug candidate for selectively targeting Kv1.3 channels.  相似文献   

12.
The novel sex-specific potassium channel inhibitor IsTX, a 41-residue peptide, was isolated from the venom of male Opisthacanthus madagascariensis. Two-dimensional NMR techniques revealed that the structure of IsTX contains a cysteine-stabilized alpha/beta-fold. IsTX is classified, based on its sequential and structural similarity, in the scorpion short toxin family alpha-KTx6. The alpha-KTx6 family contains a single alpha-helix and two beta-strands connected by four disulfide bridges and binds to voltage-gated K(+) channels and apamin-sensitive Ca(2+)-activated K(+) channels. The three-dimensional structure of IsTX is similar to that of Heterometrus spinifer toxin (HsTX1). HsTX1 blocks the Kv1.3 channel at picomolar concentrations, whereas IsTX has much lower affinities (10 000-fold). To investigate the structure-activity relationship, the geometry of sidechains and electrostatic surface potential maps were compared with HsTX1. As a result of the comparison of the primary structures, Lys27 of IsTX was conserved at the same position in HsTX1. The analogous Lys23 of HsTX1, the most critical residue for binding to potassium channels, binds to the channel pore. However, IsTX has fewer basic residues to interact with acidic channel surfaces than HsTX1. MALDI-TOF MS analysis clearly indicated that IsTX was found in male scorpion venom, but not in female. This is the first report that scorpion venom contains sex-specific compounds.  相似文献   

13.

Background

The 21-residue compact tertiapin-Q (TPNQ) toxin, a derivative of honey bee toxin tertiapin (TPN), is a potent blocker of inward-rectifier K+ channel subtype, rat Kir1.1 (rKir1.1) channel, and their interaction mechanism remains unclear.

Principal Findings

Based on the flexible feature of potassium channel turrets, a good starting rKir1.1 channel structure was modeled for the accessibility of rKir1.1 channel turrets to TPNQ toxin. In combination with experimental alanine scanning mutagenesis data, computational approaches were further used to obtain a reasonable TPNQ toxin-rKir1.1 channel complex structure, which was completely different from the known binding modes between animal toxins and potassium channels. TPNQ toxin mainly adopted its helical domain as the channel-interacting surface together with His12 as the pore-blocking residue. The important Gln13 residue mainly contacted channel residues near the selectivity filter, and Lys20 residue was surrounded by a polar “groove” formed by Arg118, Thr119, Glu123, and Asn124 in the channel turret. On the other hand, four turrets of rKir1.1 channel gathered to form a narrow pore entryway for TPNQ toxin recognition. The Phe146 and Phe148 residues in the channel pore region formed strong hydrophobic protrusions, and produced dominant nonpolar interactions with toxin residues. These specific structure features of rKir1.1 channel vestibule well matched the binding of potent TPNQ toxin, and likely restricted the binding of the classical animal toxins.

Conclusions/Significance

The TPNQ toxin-rKir1.1 channel complex structure not only revealed their unique interaction mechanism, but also would highlight the diverse animal toxin-potassium channel interactions, and elucidate the relative insensitivity of rKir1.1 channel towards animal toxins.  相似文献   

14.
Potassium channels are widespread in living cells and are involved in many diseases. The scorpion toxin alpha-KTx(12.1) interacts with various K(+) channels, suggesting its capacity to match diverse channel pores. It is recognized that tissue injuries may affect the pH at toxins site of action, thereby modulating both protein conformation and activity. To better understand its molecular mechanism of action, we studied alpha-KTx(12.1) using pH as a tool to explore its plasticity and NMR in combination with MD calculations to detect it. The toxin solution structure consists of an alpha-helix and a triple-stranded beta-sheet stabilized by four disulfide bridges. The NMR results show, in addition, that His28 possesses an unusually low pK(a) of 5.2. The best set of protein conformers is obtained at pH 4.5, while at pH 7.0, the reduced number of NOEs resulting from a faster hydrogen exchange does not allow to reach a good structural convergence. Nonetheless, MD calculations show that the toxin structure does not vary significantly in that pH range, while conformational changes and modifications of the surface charge distribution occur when His28 is fully protonated. Moreover, essential dynamics analysis reveals variations in the toxin's coherent motions. In conclusion, His28, with its low pK(a) value, provides alpha-KTx(12.1) with the ability to preserve its active conformation over a wide pH interval, thus expanding the range of cellular conditions where the toxin can fully exhibit its activity. Overall, the results further underline the role of histidine as a natural controller of proteins' functionality.  相似文献   

15.
Moran Y  Cohen L  Kahn R  Karbat I  Gordon D  Gurevitz M 《Biochemistry》2006,45(29):8864-8873
Type I sea anemone toxins are highly potent modulators of voltage-gated Na-channels (Na(v)s) and compete with the structurally dissimilar scorpion alpha-toxins on binding to receptor site-3. Although these features provide two structurally different probes for studying receptor site-3 and channel fast inactivation, the bioactive surface of sea anemone toxins has not been fully resolved. We established an efficient expression system for Av2 (known as ATX II), a highly insecticidal sea anemone toxin from Anemonia viridis (previously named A. sulcata), and mutagenized it throughout. Each toxin mutant was analyzed in toxicity and binding assays as well as by circular dichroism spectroscopy to discern the effects derived from structural perturbation from those related to bioactivity. Six residues were found to constitute the anti-insect bioactive surface of Av2 (Val-2, Leu-5, Asn-16, Leu-18, and Ile-41). Further analysis of nine Av2 mutants on the human heart channel Na(v)1.5 expressed in Xenopus oocytes indicated that the bioactive surfaces toward insects and mammals practically coincide but differ from the bioactive surface of a structurally similar sea anemone toxin, Anthopleurin B, from Anthopleura xanthogrammica. Hence, our results not only demonstrate clear differences in the bioactive surfaces of Av2 and scorpion alpha-toxins but also indicate that despite the general conservation in structure and importance of the Arg-14 loop and its flanking residues Gly-10 and Gly-20 for function, the surface of interaction between different sea anemone toxins and Na(v)s varies.  相似文献   

16.
Animal toxins block voltage-dependent potassium channels (Kv) either by occluding the conduction pore (pore blockers) or by modifying the channel gating properties (gating modifiers). Gating modifiers of Kv channels bind to four equivalent extracellular sites near the S3 and S4 segments, close to the voltage sensor. Phrixotoxins are gating modifiers that bind preferentially to the closed state of the channel and fold into the Inhibitory Cystine Knot structural motif. We have solved the solution structure of Phrixotoxin 1, a gating modifier of Kv4 potassium channels. Analysis of the molecular surface and the electrostatic anisotropy of Phrixotoxin 1 and of other toxins acting on voltage-dependent potassium channels allowed us to propose a toxin interacting surface that encompasses both the surface from which the dipole moment emerges and a neighboring hydrophobic surface rich in aromatic residues.  相似文献   

17.
Discrepin is a scorpion peptide that blocks preferentially the IA currents of the voltage-dependent K+ channel of rat cerebellum granular cells. It was isolated from the venom of the buthid scorpion Tityus discrepans and contains 38 amino acid residues with a pyroglutamic acid at the N-terminal site. Discrepin has the lowest sequence identity (approx. 50%) among the six members of the α-KTx15 sub-family of scorpion toxins. In order to find out which residues are important for the blocking effects of Discrepin, six mutants were chemically synthesized (V6K, I19R, D20K, T35V, I19R-D20K, I19R-D20K-R21V), correctly folded and their physiological properties were examined. Substitution of residues V6 and D20 for basically charged amino acids increases the blocking activity of Discrepin, specially the mutation V6K at the N-terminal segment of the toxin. Analysis of 3D-structure models of the mutants V6K and D20K supports the idea that basic residues improve their blocking activities, similarly to what happens with BmTx3, a toxic peptide obtained from Buthus martensi scorpion, which has the highest known blocking effects of IA currents in K+ channels of rat cerebellum granular cells.  相似文献   

18.
Zhu S  Huys I  Dyason K  Verdonck F  Tytgat J 《Proteins》2004,54(2):361-370
Scorpion alpha-K(+) channel toxins are a large family of polypeptides with a similar structure but diverse pharmacological activities. Despite many structural and functional data available at present, little progress has been made in understanding the toxin's molecular basis responsible for the functional diversification. In this paper, we report the first complete cDNA sequences of toxins belonging to subfamily 6 and identify five new members, called alpha-KTx 6.6-6.10. By analyzing the rates of mutations that occurred in the corresponding cDNAs, we suggest that accelerated evolution in toxin-coding regions may be associated with the functional diversification of this subfamily. To pinpoint sites probably involved in the functional diversity of alpha-KTx family, we analyzed this family of sequences using the evolutionary trace method. This analysis highlighted one channel-binding surface common for all the members. This surface is composed of one conserved lysine residue at position 29 assisted by other residues at positions 10, 26, 27, 32, 34, and 36. Of them, the positions 29, 32, and 34 have been reported to be the most major determinants of channel specificity. Interestingly, another contrary surface was also observed at a higher evolutionary time cut-off value, which may be involved in the binding of ERG (ether-a-go-go-related gene) channel-specific toxins. The good match between the trace residues and the functional epitopes of the toxins suggested that the evolutionary trace results reported here can be applied to predict channel-binding sites of the toxins. Because, the side-chain variation in the trace positions is strongly linked with the functional alteration and channel-binding surface transfer of alpha-KTx family, we conclude that our findings should also be important for the rational design of new toxins targeting a given potassium channel with high selectivity.  相似文献   

19.
A structural model of BgK, a sea anemone toxin, complexed with the S5-S6 region of Kv1.1, a voltage-gated potassium channel, was determined by flexible docking under distance restraints identified by a double mutant cycles approach. This structure provides the molecular basis for identifying the major determinants of the BgK-Kv1.1 channel interactions involving the BgK dyad residues Lys(25) and Tyr(26). These interactions are (i) electrostatic interactions between the extremity of Lys(25) side chain and carbonyl oxygen atoms of residues from the channel selectivity filter that may be strengthened by solvent exclusion provided by (ii) hydrophobic interactions involving BgK residues Tyr(26) and Phe(6) and Kv1.1 residue Tyr(379) whose side chain protrudes in the channel vestibule. In other Kv1 channel-BgK complexes, these interactions are likely to be conserved, implicating both conserved and variable residues from the channels. The data suggest that the conservation in sea anemone and scorpion potassium channel blockers of a functional dyad composed of a lysine, and a hydrophobic residue reflects their use of convergent binding solutions based on a crucial interplay between these important conserved interactions.  相似文献   

20.
The alpha-KTx peptide toxins inhibit different types of potassium channels by occluding the outer channel pore composed of four identical alpha subunits. The large-conductance, calcium-activated (BK or Slo1) and voltage-dependent (KV) potassium channels differ in their specificity for the different alpha-KTx subfamilies. While many different alpha-KTx subfamilies of different sizes inhibit KV1 channels with high affinity, only one subfamily, alpha-KTx 1.x, inhibits BK channels with high affinity. Two solvent-exposed regions of the outer pore that influence alpha-KTx binding, the turret and loop, display high sequence variability among different potassium channels and may contribute to differences in alpha-KTx specificity. While these alpha-KTx domains have been studied in KV1 channels, little is known about the corresponding BK alpha-KTx domains. To define alpha-KTx sites in the BK outer pore, we examined the effect of 19 outer pore mutations on specific binding of 125I-labeled iberiotoxion (IbTX or alpha-KTx 1.3) and on their cell-surface expression. Similar to alpha-KTx sites in the Shaker KV1 loop, site-directed mutations in the BK loop disrupted specific IbTX binding. In contrast, mutations in the BK turret region revealed three novel alpha-KTx sites, Q267, N268, and L272, which are distinct from alpha-KTx sites in the KV1 turret. The BK turret region shows no sequence identity with KV1 and MthK turrets of known 3D structure. To define the BK turret, we used secondary structure prediction methods that incorporated information from sequence alignment of 30 different Slo1 and Slo3 turret sequences from 5 of the 7 major animal phyla representing 27 different species. Results of this analysis suggest that the BK turret contains 18 amino acids and is defined by a cluster of strictly conserved polar residues at the N-terminal side of the turret. Thus, the BK turret is predicted to have six more amino acids than the KV1 turret. Results of this work suggest that BK and KV1 outer pores have a similar alpha-KTx domain in the loop preceding the inner helix, but that the BK turret comprises a unique alpha-KTx interaction surface that likely contributes to the exclusive selectivity of BK channels for alpha-KTx1.x toxins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号