首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
All of the α-subgroups share similarity in their sequence and structure but different in the toxicity to various voltage-gated sodium channels (VGSCs). We modeled the first 3D structural model of the Od1 based on BmK M1 using homology modeling. The reliability of model for more investigation and compare to BmK M1 has been examined and confirmed. Then the model structure is further refined by energy minimization and molecular dynamics methods. The purpose of this modeling and simulation is comparison toxicity of two mentioned toxins by investigation structural feature of functional regions including core domain, 5-turn and C-terminal which make NC domain. In the one hand, it is intriguing that Od1 in comparison to BmK M1 shows same solvent accessible surface area (SASA) in 5-turn region but a little more exposed and feasibility (more SASA) in C-terminal region and key functional residues of C-terminal such as positive residues Arg58, lys62 and Arg (His)64. These data suggested that Od1 has similarity with BmK M1 but has more toxicity to sodium channel. In the other hand 5-turn proximity of C-terminal to 5-turn in BmK M1with cis peptide bond is less than Od1 without cis peptide bond which is a confirmation with experimental data about BmK M1.A better understanding of the 3-D structure of Od1and comparison to BmK M1 will be helpful for more investigation of functional characters action of natural toxins with a specialized role for VGSCs.  相似文献   

2.
3.
Protein phosphatase 1 (PP1) is widely distributed among tissues and species and acts as a regulator of many important cellular processes. By targeting the catalytic part of PP1 (PP1C) toward particular loci and substrates, regulatory subunits constitute key elements conferring specificity to the holoenzyme. Here, we report the identification of an (alpha/beta)8-barrel-like structure within the N-ter stretch of the human PP1 regulatory subunit hGM, which is part of the family of diverse proteins associated with glycogen metabolism. Protein homology modeling gave rise to a three-dimensional (3D) model for the 381 N-ter residue stretch of hGM, based on sequence similarity with Streptomyces olivochromogenes xylose isomerase, identified by using FASTA. The alignment was subsequently extended by using hydrophobic cluster analysis. The homology-derived model includes the putative glycogen binding area located within the 142-230 domain of hGM as well as a structural characterization of the PP1C interacting domain (segment 51-67). Refinement of the latter by molecular dynamics afforded a topology that is in agreement with previous X-ray studies (Egloff et al., 1997). Finite difference Poisson-Boltzmann calculations performed on the interacting domains of PP1C and hGM confirm the complementarity of the local electrostatic potentials of the two partners. This work highlights the presence of a conserved fold among distant species (mammalian, Caenorhabditis elegans, yeast) and, thus, emphasizes the involvement of PP1 in crucial basic cellular functions.  相似文献   

4.
5.
Protein kinase CK2 (formerly casein kinase II), an enzyme that participates in a wide variety of cellular processes, has traditionally been classified as a stable tetrameric complex consisting of two catalytic CK2alpha or CK2alpha' subunits and two regulatory CK2beta subunits. While consideration of CK2 as a tetrameric complex remains relevant, significant evidence has emerged to challenge the view that its individual subunits exist exclusively within these complexes. This review will summarize biochemical and genetic evidence indicating that the regulatory CK2beta subunit exists and performs functions independently of CK2 tetramers. For example, unbalanced expression of catalytic and regulatory CK2 subunits has been observed in a variety of tissues and tumors. Furthermore, localization studies including live cell imaging have demonstrated that while the catalytic and regulatory subunits of CK2 exhibit extensive co-localization, independent mobility of the individual CK2 subunits can also be observed within cells. Identification of proteins that interact with CK2beta in the absence of catalytic CK2 subunits reinforces the notion that CK2beta has functions distinct from CK2 and begins to offer insights into these CK2-independent functions. In this respect, the discovery that CK2beta can interact with and modulate the activity of a number of other serine/threonine protein kinases including A-Raf, c-Mos and Chk1 is particularly striking. This review will discuss the interactions between CK2beta and these protein kinases with special emphasis on the properties of CK2beta that mediate these interactions and on the implications of these interactions in yielding new prospects for elucidation of the cellular functions of CK2beta.  相似文献   

6.
Infections by Candida albicans in immune compromised patients cause significant morbidity and mortality. In the search for potential molecular targets for drug development, the family of agglutinin-like proteins (Als) in C. albicans have been identified due to numerous attributes associated with high virulence, most prominently due to their role in adherence. Here, molecular models of individual members of the Als family illustrated common and unique structure features. Additionally, dynamic simulations were performed to display regions of high mobility. The results showed variations between Als members in the fluctuation of the A1B1 protein loop, which is located at the entrance to the peptide binding cavity, suggesting that this feature may be a factor contributing to observed differences in affinities to ligands and adhesion properties. Molecular docking results further suggested that ligand affinity could be influenced by movements in the A1B1 loop. In addition, a new site was identified in Als in an area adjacent to the peptide binding cavity that could serve as a new binding site for the design of future anti-adhesion ligands that provide increased specificity inhibiting Als proteins from C. albicans.  相似文献   

7.
8.
Oscillations in plasma membrane potential play a central role in glucose-induced insulin secretion from pancreatic β-cells and related insulinoma cell lines. We have employed a novel fluorescent plasma membrane potential (Δψ(p)) indicator in combination with indicators of cytoplasmic free Ca(2+) ([Ca(2+)](c)), mitochondrial membrane potential (Δψ(m)), matrix ATP concentration, and NAD(P)H fluorescence to investigate the role of mitochondria in the generation of plasma membrane potential oscillations in clonal INS-1 832/13 β-cells. Elevated glucose caused oscillations in plasma membrane potential and cytoplasmic free Ca(2+) concentration over the same concentration range required for insulin release, although considerable cell-to-cell heterogeneity was observed. Exogenous pyruvate was as effective as glucose in inducing oscillations, both in the presence and absence of 2.8 mM glucose. Increased glucose and pyruvate each produced a concentration-dependent mitochondrial hyperpolarization. The causal relationships between pairs of parameters (Δψ(p) and [Ca(2+)](c), Δψ(p) and NAD(P)H, matrix ATP and [Ca(2+)](c), and Δψ(m) and [Ca(2+)](c)) were investigated at single cell level. It is concluded that, in these β-cells, depolarizing oscillations in Δψ(p) are not initiated by mitochondrial bioenergetic changes. Instead, regardless of substrate, it appears that the mitochondria may simply be required to exceed a critical bioenergetic threshold to allow release of insulin. Once this threshold is exceeded, an autonomous Δψ(p) oscillatory mechanism is initiated.  相似文献   

9.
Saccharomyces cerevisiae Kre6 is a type II membrane protein with amino acid sequence homology with glycoside hydrolase and is essential for β-1,6-glucan synthesis as revealed by the mutant phenotype, but its biochemical function is still unknown. The localization of Kre6, determined by epitope tagging, is a matter of debate. We raised anti-Kre6 rabbit antiserum and examined the localization of Kre6 and its tagged protein by immunofluorescence microscopy, subcellular fractionation in sucrose density gradients, and immunoelectron microscopy. Integration of the results indicates that the majority of Kre6 is in the endoplasmic reticulum; however, a small but significant portion is also present in the secretory vesicle-like compartments and plasma membrane. Kre6 in the latter compartments is observed as strong signals that accumulate at the sites of polarized growth by immunofluorescence. The truncated Kre6 without the N-terminal 230-amino acid cytoplasmic region did not show this polarized accumulation and had a severe defect in β-1,6-glucan synthesis. This is the first evidence of a β-1,6-glucan-related protein showing the polarized membrane localization that correlates with its biological function.  相似文献   

10.
β-Propiolactone is often applied for inactivation of viruses and preparation of viral vaccines. However, the exact nature of the reactions of β-propiolactone with viral components is largely unknown. The purpose of the current study was to elucidate the chemical modifications occurring on nucleotides and amino acid residues caused by β-propiolactone. Therefore, a set of nucleobase analogues was treated with β-propiolactone, and reaction products were identified and quantified. NMR revealed at least one modification in either deoxyguanosine, deoxyadenosine, or cytidine after treatment with β-propiolactone. However, no reaction products were found from thymidine and uracil. The most reactive sides of the nucleobase analogues and nucleosides were identified by NMR. Furthermore, a series of synthetic peptides was used to determine the conversion of reactive amino acid residues by liquid chromatography-mass spectrometry. β-Propiolactone was shown to react with nine different amino acid residues. The most reactive residues are cysteine, methionine, and histidine and, to a lesser degree, aspartic acid, glutamic acid, tyrosine, lysine, serine, and threonine. Remarkably, cystine residues (disulfide groups) do not react with β-propiolactone. In addition, no reaction was observed for β-propiolactone with asparagine, glutamine, and tryptophan residues. β-Propiolactone modifies proteins to a larger extent than expected from current literature. In conclusion, the study determined the reactivity of β-propiolactone with nucleobase analogues, nucleosides, and amino acid residues and elucidated the chemical structures of the reaction products. The study provides detailed knowledge on the chemistry of β-propiolactone inactivation of viruses.  相似文献   

11.
12.
13.
Carbohydrate chains of cancer glycoprotein antigens contain major outer changes dictated by tissue-specific regulation of glycosyltransferase genes, the availability of sugar nucleotides, and competition between enzymes for acceptor intermediates during glycan elongation. However, it is evident from recent studies with recombinant mucin probes that the final glycosylation profiles of mucin glycoproteins are mainly determined by the cellular repertoire of glycosyltransferases. Hence, we examined various cancer cell lines for the levels of fucosyl-, beta-galactosyl, beta-N-acetylgalactosaminyl-, sialyl-, and sulfotransferase activities that generate the outer ends of the oligosaccharide chains. We have identified glycosyltransferases activities at the levels that would give rise to O-glycan chains as reported by others in breast cancer cell lines, T47D, ZR75-1, MCF-7, and MDA-MB-231. Most breast cancer cells express Gal-3-O-sulfotransferase specific for T-hapten Gal beta1-->3GalNAc alpha-, whereas the enzyme from colon cancer cells exhibits a vast preference for the Gal beta1,4GlcNAc terminal unit in O-glycans. We also studied ovarian cancer cells SW626 and PA-1 and hepatic cancer cells HepG2. Our studies show that alpha1,2-L-fucosyl-T, alpha(2,3) sialyl-T, and 3-O-Sulfo-T capable of acting on the mucin core 2 tetrasaccharide, Gal beta1,4GlcNAc beta1,6(Gal beta1,3)GalNAc alpha-, can also act on the Globo H antigen backbone, Gal beta1,3GalNAc beta1,3Gal alpha-, suggesting the existence of unique carbohydrate moieties in certain cancer-associated glycolipids. Briefly, our study indicates the following: (i) 3'-Sulfo-T-hapten has an apparent relationship to the tumorigenic potential of breast cancer cells; (ii) the 3'-sulfo Lewis(x), the 3-O-sulfo-Globo unit, and the 3-fucosylchitobiose core could be uniquely associated with colon cancer cells; (iii) synthesis of a polylactosamine chain and T-hapten are favorable in ovarian cancer cells due to negligible sialyltransferase activities; and (iv) a 6'-sialyl LacNAc unit and 3'-sialyl T-hapten appear to be prevalent structures in hepatic cancer cell glycans. Thus, it is apparent that different cancer cells are expressing unique glycan epitopes, which could be novel targets for cancer diagnosis and treatment.  相似文献   

14.
The DNA-damaging agent camptothecin (CPT) and its analogs demonstrate clinical utility for the treatment of advanced solid tumors, and CPT-based nanopharmaceuticals are currently in clinical trials for advanced kidney cancer; however, little is known regarding the effects of CPT on hypoxia-inducible factor-2α (HIF-2α) accumulation and activity in clear cell renal cell carcinoma (ccRCC). Here we assessed the effects of CPT on the HIF/p53 pathway. CPT demonstrated striking inhibition of both HIF-1α and HIF-2α accumulation in von Hippel–Lindau (VHL)-defective ccRCC cells, but surprisingly failed to inhibit protein levels of HIF-2α-dependent target genes (VEGF, PAI-1, ET-1, cyclin D1). Instead, CPT induced DNA damage-dependent apoptosis that was augmented in the presence of pVHL. Further analysis revealed CPT regulated endothelin-1 (ET-1) in a p53-dependent manner: CPT increased ET-1 mRNA abundance in VHL-defective ccRCC cell lines that was significantly augmented in their VHL-expressing counterparts that displayed increased phosphorylation and accumulation of p53; p53 siRNA suppressed CPT-induced increase in ET-1 mRNA, as did an inhibitor of ataxia telangiectasia mutated (ATM) signaling, suggesting a role for ATM-dependent phosphorylation of p53 in the induction of ET-1. Finally, we demonstrate that p53 phosphorylation and accumulation is partially dependent on mTOR activity in ccRCC. Consistent with this result, pharmacological inhibition of mTORC1/2 kinase inhibited CPT-mediated ET-1 upregulation, and p53-dependent responses in ccRCC. Collectively, these data provide mechanistic insight into the action of CPT in ccRCC, identify ET-1 as a p53-regulated gene and demonstrate a requirement of mTOR for p53-mediated responses in this tumor type.  相似文献   

15.
A key pathological event in dialysis-related amyloidosis is the fibril formation of beta(2)-microglobulin (beta 2-m). Because beta 2-m does not form fibrils in vitro, except under acidic conditions, predisposing factors that may drive fibril formation at physiological pH have been the focus of much attention. One factor that may be implicated is Cu(2+) binding, which destabilizes the native state of beta 2-m and thus stabilizes the amyloid precursor. To address the Cu(2+)-induced destabilization of beta 2-m at the atomic level, we studied changes in the conformational dynamics of beta 2-m upon Cu(2+) binding. Titration of beta 2-m with Cu(2+) monitored by heteronuclear NMR showed that three out of four histidines (His13, His31, and His51) are involved in the binding at pH 7.0. (1)H-(15)N heteronuclear NOE suggested increased backbone dynamics for the residues Val49 to Ser55, implying that the Cu(2+) binding at His51 increased the local dynamics of beta-strand D. Hydrogen/deuterium exchange of amide protons showed increased flexibility of the core residues upon Cu(2+) binding. Taken together, it is likely that Cu(2+) binding increases the pico- to nanosecond fluctuation of the beta-strand D on which His51 exists, which is propagated to the core of the molecule, thus promoting the global and slow fluctuations. This may contribute to the overall destabilization of the molecule, increasing the equilibrium population of the amyloidogenic intermediate.  相似文献   

16.
The development of malignant tumors results from deregulated proliferation or an inability of cells to undergo apoptotic cell death. Experimental works of the past decade have highlighted the importance of calcium (Ca(2+)) in the regulation of apoptosis. Several studies indicate that the Ca(2+) content of the endoplasmic reticulum (ER) determines the cell's sensitivity to apoptotic stress and perturbation of ER Ca(2+) homeostasis appears to be a key component in the development of several pathological situations. Sensitivity to apoptosis depends on the ability of cells to transfer Ca(2+) from the ER to the mitochondria. The physical platform for the interplay between the ER and mitochondria is a domain of the ER called the mitochondria-associated membranes (MAMs). The disruption of these contact sites has profound consequences for cellular function, such as imbalances of intracellular Ca(2+) signaling, cellular stress, and disrupted apoptosis progression. The promyelocytic leukemia (PML) protein has been previously recognized as a critical and essential regulator of multiple apoptotic response. Nevertheless, how PML would exert such broad and fundamental role in apoptosis remained for long time a mystery. In this review, we will discuss how recent results demonstrate that the elusive mechanism whereby the PML tumor suppressor exerts its essential role in apoptosis triggered by Ca(2+)-dependent stimuli can be attributed to its unexpected and fundamental role at MAMs in the control of the functional cross-talk between ER and mitochondria.  相似文献   

17.
The UDP-sugar interconverting enzymes involved in UDP-GlcA metabolism are well described in eukaryotes but less is known in prokaryotes. Here we identify and characterize a gene (RsU4kpxs) from Ralstonia solanacearum str. GMI1000, which encodes a dual function enzyme not previously described. One activity is to decarboxylate UDP-glucuronic acid to UDP-β-l-threo-pentopyranosyl-4″-ulose in the presence of NAD+. The second activity converts UDP-β-l-threo-pentopyranosyl-4″-ulose and NADH to UDP-xylose and NAD+, albeit at a lower rate. Our data also suggest that following decarboxylation, there is stereospecific protonation at the C5 pro-R position. The identification of the R. solanacearum enzyme enables us to propose that the ancestral enzyme of UDP-xylose synthase and UDP-apiose/UDP-xylose synthase was diverged to two distinct enzymatic activities in early bacteria. This separation gave rise to the current UDP-xylose synthase in animal, fungus, and plant as well as to the plant Uaxs and bacterial ArnA and U4kpxs homologs.  相似文献   

18.
Neuzil J  Wang XF  Dong LF  Low P  Ralph SJ 《FEBS letters》2006,580(22):5125-5129
Mitochondria have emerged recently as effective targets for novel anti-cancer drugs referred to as 'mitocans'. We propose that the molecular mechanism of induction of apoptosis by mitocans, as exemplified by the drug alpha-tocopheryl succinate, involves generation of reactive oxygen species (ROS). ROS then mediate the formation of disufide bridges between cytosolic Bax monomers, resulting in the formation of mitochondrial outer membrane channels. ROS also cause oxidation of cardiolipin, triggering the release of cytochrome c and its translocation via the activated Bax channels. This model may provide a general mechanism for the action of inducers of apoptosis and anticancer drugs, mitocans, targeting mitochondria via ROS production.  相似文献   

19.
20.
"Loss of function" alterations in growth inhibitory signal transduction pathways are common in cancer cells. In this study, we show that growth arrest (GA) treatments--serum and growth factor withdrawal and growth inhibitory IL-6 family cytokines (Interleukin-6 and Oncostatin M (OSM))--increase STAT3 phosphorylation (pSTAT3), increase CCAAT enhancer binding protein delta (C/EBPdelta) gene expression and induce GA of primary, finite-lifespan human mammary epithelial cells (HMECs), and immortalized breast cell lines (MCF-10A and MCF-12A). In contrast, serum and growth factor withdrawal from human breast cancer cell lines (MCF-7, SK-BR-3, T-47D, and MDA-MB-231) for up to 48 h induced a relatively modest increase in pSTAT3 levels and C/EBPdelta gene expression and resulted in varying levels of GA. In most breast cancer cell lines, IL-6 family cytokine treatment increased pSTAT3 levels and C/EBPdelta gene expression, however, growth inhibition was cell line dependent. In addition to "loss of function" alterations in growth inhibitory pathways, breast cancer cell lines also exhibit "gain of function" alterations in growth signaling pathways. The Akt growth/ survival pathway is constitutively activated in T-47D and MCF-7 breast cancer cells. The Akt inhibitor LY 294,002 significantly enhanced T-47D growth inhibition by serum and growth factor withdrawal or IL-6 family cytokine treatment. Finally, we show that activation of the pSTAT3/C/EBPdelta growth control pathway is independent of estrogen receptor status. These results demonstrate that "loss of function" alterations in the pSTAT3/C/EBPdelta growth inhibitory signal transduction pathway are relatively common in human breast cancer cell lines. Defective activation of the pSTAT3/ C/EBPdelta growth inhibitory signal transduction pathway, in conjunction with constitutive activation of the Akt growth stimulatory pathway, may play a synergistic role in the etiology or progression of breast cancer.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号